

Lecture Notes in Computer Science 4287
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
University of Dortmund, Germany

Madhu Sudan
Massachusetts Institute of Technology, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Moshe Y. Vardi
Rice University, Houston, TX, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany

Chengde Mao Takashi Yokomori (Eds.)

DNA Computing

12th International Meeting on DNA Computing, DNA12
Seoul, Korea, June 5-9, 2006
Revised Selected Papers

13

Volume Editors

Chengde Mao
Purdue University
Department of Chemistry
560 Oval Drive, West Lafayette, IN 47907-2084, USA
E-mail: mao@purdue.edu

Takashi Yokomori
Waseda University
Faculty of Education and Integrated Arts and Sciences
Department of Mathematics
1-6-1 Nishiwaseda, Shinjuku-ku, Tokyo 169-8050, Japan
E-mail: yokomori@waseda.jp

Library of Congress Control Number: 2006938335

CR Subject Classification (1998): F.1, F.2.2, I.2.9, J.3

LNCS Sublibrary: SL 1 – Theoretical Computer Science and General Issues

ISSN 0302-9743
ISBN-10 3-540-49024-8 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-49024-1 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springer.com

© Springer-Verlag Berlin Heidelberg 2006
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 11925903 06/3142 5 4 3 2 1 0

Preface

This volume is based on papers presented at the 12th International Meeting
on DNA Computing (DNA12), which was held during June 5–9, 2006 at Seoul
National University, Seoul, South Korea. DNA computing is an interdisciplinary
field across computer science, mathematics, molecular biology, chemistry, physics,
and nanotechnology. The central theme is to develop novel computing paradigms
based on DNA. The annual meeting on DNA computing provides a major forum
for scientists to present and discuss their latest results and promotes interactions
between experimentalists and theoreticians.

The DNA12 Program Committee received 72 submissions and the current
volume contains a selection of 34 papers from the preliminary proceedings.
All selected papers were significantly revised by the authors according to the
discussion during the meeting. It is our intention to cover all major areas in DNA
computing, including demonstrations of biomolecular computing, theoretical
models of biomolecular computing, biomolecular algorithms, in vitro and in
vivo computational processes, analysis and theoretical models of laboratory
techniques, biotechnological and other applications of DNA computing, DNA
nanostructures, DNA nanodevices, DNA error evaluation and correction, in
vitro evolution, molecular design, self-assembly systems, nucleic acid chemistry,
and simulation tools. However, some papers on experimental works are not
included because the authors would like to publish their works in more
traditional journals.

We have organized the current volume by classifying 34 papers into
8 categories whose topical section headings (and breakdowns) are: Molecular
and Membrane Computing Models (6), Complexity Analysis (3), Sequence and
Tile Designs and Their Properties (5), DNA Tile Self-Assembly Models (4),
Simulator and Software for DNA Computing (4), DNA Computing Algorithms
and New Applications (4), Novel Experimental Approaches (3), and Experimental
Solutions (5).

The editors would like to thank all participants, referees, the Program
Committee, the Organization Committee, all assistants, and all sponsors for
making this conference and this volume possible.

September 2006 Chengde Mao
Takashi Yokomori

Organization

Steering Committee

Lila Kari (Chair) University of Western Ontario
Loenard Adleman University of Southern California

(Honorary member)
Anne Condon University of British Columbia
Masami Hagiya University of Tokyo
Natasha Jonoska University of South Florida
Chengde Mao Purdue University
Giancarlo Mauri University of Milan, Bicocca
Satoshi Murata Tokyo Institute of Technology
Gheorghe Paun Romanian Academy and Sevilla University
John H. Reif Duke University
Grzegorz Rozenberg University of Leiden
Nadrian Seeman New York University
Andrew Turberfield University of Oxford
Erik Winfree California Institute of Technology

Program Committee

Yaakov Benenson Harvard University
Junghuei Chen University of Delaware
Anne Condon University of British Columbia
Robert M. Corn University of California, Irvine
Max H. Garzon University of Memphis
Hendrik Jan Hoogeboom Leiden University
Natasha Jonoska University of South Florida
Lila Kari University of Western Ontario
Thomas H. LaBean Duke University
Chengde Mao (Co-chair) Purdue University
Satoshi Murata Tokyo Institute of Technology
Gheorghe Paun Romanian Academy and Sevilla University
Nadrian C. Seeman New York University
Dipankar Sen Simon Fraser University
William M. Shih Harvard Medical School
Friedrich C. Simmel University of Munich
Lloyd M. Smith University of Wisconsin, Madison
Petr Sosik Opava University
Milan N. Stojanovic Columbia University
Erik Winfree California Institute of Technology

VIII Organization

Masahito Yamamoto Hokkaido University
Hao Yan Arizona State University
Takashi Yokomori (Co-chair) Waseda University
Bernard Yurke Lucent Technologies
Claudio Zandron University of Milan, Bicocca
Byoung-Tak Zhang Seoul National University

External Reviewers

A. Alhazov
F. Bernardini
D. Besozzi
R. Brijder
L. Cienciala
P. Dario
C. Ferretti
R. Freund
T. Fujii
A. Kameda

S. Kashiwamura
M. Hagiya
A. Kelemenov
S. Kobayashi
K. Komiya
H. Ono
A. Leporati
U. Majumder
A. Paton
K. Sadakane

J. Schaeffer
A. Suyama
S. Sahu
F. Tanaka
D. Tulpan
M. Yamamura
M. Yamashita
P. Yin

Sponsoring Institutions

Center for Bioinformation Technology (CBIT) of Seoul National University
CT & D, Inc.
Digital Genomics, Inc.
GenoProt, Inc.
Japan Ministry of Education, Sports and Culture and Sciences (MEXT)
Korea Information Science Society (SIG Bioinformation Tech.)
Ministry of Industry, Commerce and Energy of Korea
Ministry of Science and Technology of Korea (KOSEF/NRL Program)
Nano Systems Institute (NSI) of Seoul National University
Research Foundation of Seoul National University
Super Intelligence Technology Center (SITC) of Inha University
US Air Force Research Laboratory (AFRL/IFTC)

Table of Contents

Molecular and Membrane Computing Models

Computing with Spiking Neural P Systems: Traces and Small
Universal Systems . 1

Mihai Ionescu, Andrei Păun, Gheorghe Păun,
Mario J. Pérez-Jiménez

Minimal Parallelism for Polarizationless P Systems . 17
Tseren-Onolt Ishdorj

P Systems with Active Membranes Characterize PSPACE 33
Petr Sośık, Alfonso Rodŕıguez-Patón

All NP-Problems Can Be Solved in Polynomial Time by Accepting
Networks of Splicing Processors of Constant Size . 47

Florin Manea, Carlos Mart́ın-Vide, Victor Mitrana

Length-Separating Test Tube Systems . 58
Erzsébet Csuhaj-Varjú, Sergey Verlan

Gene Assembly Algorithms for Ciliates . 71
Lucian Ilie, Roberto Solis-Oba

Complexity Analysis

Spectrum of a Pot for DNA Complexes . 83
Nataša Jonoska, Gregory L. McColm, Ana Staninska

On the Complexity of Graph Self-assembly in Accretive Systems 95
Stanislav Angelov, Sanjeev Khanna, Mirkó Visontai

Viral Genome Compression . 111
Lucian Ilie, Liviu Tinta, Cristian Popescu,
Kathleen A. Hill

Sequence and Tile Designs and Their Properties

DNA Codes and Their Properties . 127
Lila Kari, Kalpana Mahalingam

X Table of Contents

In Search of Optimal Codes for DNA Computing . 143
Max H. Garzon, Vinhthuy Phan, Sujoy Roy, Andrew J. Neel

DNA Sequence Design by Dynamic Neighborhood Searches 157
Suguru Kawashimo, Hirotaka Ono, Kunihiko Sadakane,
Masafumi Yamashita

Sequence Design for Stable DNA Tiles . 172
Naoki Iimura, Masahito Yamamoto, Fumiaki Tanaka,
Atsushi Kameda, Azuma Ohuchi

Hairpin Structures Defined by DNA Trajectories . 182
Michael Domaratzki

DNA Tile Self-assembly Models

Design and Simulation of Self-repairing DNA Lattices 195
Urmi Majumder, Sudheer Sahu, Thomas H. LaBean, John H. Reif

On Times to Compute Shapes in 2D Tile Self-assembly 215
Yuliy Baryshnikov, Ed Coffman, Boonsit Yimwadsana

Capabilities and Limits of Compact Error Resilience Methods
for Algorithmic Self-assembly in Two and Three Dimensions 223

Sudheer Sahu, John H. Reif

A Mathematical Approach to Cross-Linked Structures in Viral
Capsids:Predicting the Architecture of Novel Containers for Drug
Delivery . 239

Thomas Keef

Simulator and Software for DNA Computing

A Framework for Modeling DNA Based Molecular Systems 250
Sudheer Sahu, Bei Wang, John H. Reif

Uniquimer: A de Novo DNA Sequence Generation Computer
Software for DNA Self-assembly . 266

Bryan Wei, Zhengyu Wang, Yongli Mi

A Probabilistic Model of the DNA Conformational Change 274
Masashi Shiozaki, Hirotaka Ono, Kunihiko Sadakane,
Masafumi Yamashita

Table of Contents XI

Simulations of Microreactors: The Order of Things . 286
Joseph Ibershoff, Jerzy W. Jaromczyk, Danny van Noort

DNA Computing Algorithms and New Applications

DNA Hypernetworks for Information Storage and Retrieval 298
Byoung-Tak Zhang, Joo-Kyung Kim

Abstraction Layers for Scalable Microfluidic Biocomputers 308
William Thies, John Paul Urbanski, Todd Thorsen,
Saman Amarasinghe

Fuzzy Forecasting with DNA Computing . 324
Don Jyh-Fu Jeng, Junzo Watada, Berlin Wu, Jui-Yu Wu

“Reasoning” and “Talking” DNA: Can DNA Understand English? 337
Kiran C. Bobba, Andrew J. Neel, Vinhthuy Phan, Max H. Garzon

Novel Experimental Approaches

A New Readout Approach in DNA Computing Based on Real-Time
PCR with TaqMan Probes . 350

Zuwairie Ibrahim, John A. Rose, Yusei Tsuboi, Osamu Ono,
Marzuki Khalid

Automating the DNA Computer: Solving n-Variable 3-SAT Problems 360
Clifford R. Johnson

Local Area Manipulation of DNA Molecules for Photonic
DNA Memory . 374

Rui Shogenji, Naoya Tate, Taro Beppu, Yusuke Ogura,
Jun Tanida

Experimental Solutions

Unravel Four Hairpins! . 381
Atsushi Kameda, Masahito Yamamoto, Azuma Ohuchi,
Satsuki Yaegashi, Masami Hagiya

Displacement Whiplash PCR: Optimized Architecture
and Experimental Validation . 393

John A. Rose, Ken Komiya, Satsuki Yaegashi, Masami Hagiya

XII Table of Contents

MethyLogic: Implementation of Boolean Logic Using
DNA Methylation . 404

Nevenka Dimitrova, Susannah Gal

Development of DNA Relational Database and Data Manipulation
Experiments . 418

Masahito Yamamoto, Yutaka Kita, Satoshi Kashiwamura,
Atsushi Kameda, Azuma Ohuchi

Experimental Validation of the Statistical Thermodynamic Model
for Prediction of the Behavior of Autonomous Molecular Computers
Based on DNA Hairpin Formation . 428

Ken Komiya, Satsuki Yaegashi, Masami Hagiya, Akira Suyama,
John A. Rose

Author Index . 439

Computing with Spiking Neural P Systems:
Traces and Small Universal Systems

Mihai Ionescu1, Andrei Păun2,
Gheorghe Păun3,4, and Mario J. Pérez-Jiménez4

1 Research Group on Mathematical Linguistics
Universitat Rovira i Virgili

Pl. Imperial Tàrraco 1, 43005 Tarragona, Spain
armandmihai.ionescu@urv.net

2 Department of Computer Science, Louisiana Tech University
Ruston, PO Box 10348, Louisiana, LA-71272 USA, and

Universidad Politécnica de Madrid – UPM, Faculdad de Informat́ıca
Campus de Montegancedo s/n, Boadilla del Monte

28660 Madrid, Spain
apaun@latech.edu

3 Institute of Mathematics of the Romanian Academy
PO Box 1-764, 014700 Bucharest, Romania

george.paun@imar.ro
4 Department of Computer Science and AI, University of Sevilla

Avda Reina Mercedes s/n, 41012 Sevilla, Spain
gpaun@us.es, marper@us.es

Abstract. Recently, the idea of spiking neurons and thus of computing
by spiking was incorporated into membrane computing, and so-called
spiking neural P systems (abbreviated SN P systems) were introduced.
Very shortly, in these systems neurons linked by synapses communicate
by exchanging identical signals (spikes), with the information encoded
in the distance between consecutive spikes. Several ways of using such
devices for computing were considered in a series of papers, with uni-
versality results obtained in the case of computing numbers, both in the
generating and the accepting mode; generating, accepting, or processing
strings or infinite sequences was also proved to be of interest.

In the present paper, after a short survey of central notions and re-
sults related to spiking neural P systems (including the case when SN P
systems are used as string generators), we contribute to this area with
two (types of) results: (i) we produce small universal spiking neural P
systems (84 neurons are sufficient in the basic definition, but this num-
ber is decreased to 49 neurons if a slight generalization of spiking rules
is adopted), and (ii) we investigate the possibility of generating a lan-
guage by following the trace of a designated spike in its way through the
neurons.

1 Introduction

Spiking neural P systems (in short, SN P systems) were introduced in [6], with
the motivation coming from two directions: the attempt of membrane computing

C. Mao and T. Yokomori (Eds.): DNA12, LNCS 4287, pp. 1–16, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

2 M. Ionescu et al.

to pass from cell-like architectures to tissue-like or neural-like architectures (see
[15], [12]), and the intriguing possibility of encoding information in the duration
of events, or in the interval of time elapsed between events, as vividly investigated
in recent research in neural computing (of “third generation”) [8], [9].

This double challenge led to a class of P systems based on the following simple
ideas: let us use only one object, the symbol denoting a spike, and one-membrane
cells (called neurons) which can hold any number of spikes; each neuron fires in
specified conditions (after collecting a specified number of spikes) and then sends
one spike along its axon; this spike passes to all neurons connected by a synapse
to the spiking neuron (hence it is replicated into as many copies as many target
neurons exist); between the moment when a neuron fires and the moment when
it spikes, each neuron needs a time interval, and this time interval is the essential
ingredient of the system functioning (the basic information carrier – with the
mentioning that also the number of spikes accumulated in each moment in the
neurons provides an important information for controlling the functioning of
the system); one of the neurons is considered the output one, and its spikes
provide the output of the computation. The sequence of time moments when
spikes are sent out of the system is called a spike train. The rules for spiking
take into account all spikes present in a neuron not only part of them, but not
all spikes present in a neuron are consumed in this way; after getting fired and
before sending the spike to its synapses, the neuron is idle (biology calls this
the refractory period) and cannot receive spikes. There are also rules used for
“forgetting” some spikes, rules which just remove a specified number of spikes
from a neuron.

In the spirit of spiking neurons, as the result of a computation (not necessarily
a halting one) in [6] one considers the number of steps elapsed between the first
two spikes of the output neuron. Even in this restrictive framework, SN P sys-
tems turned out to be Turing complete, able to compute all Turing computable sets
of natural numbers. This holds both in the generative mode (as sketched above,
a number is computed if it represents the interval between the two consecutive
spikes of the output neuron) and in the accepting mode (a number is introduced
in the system in the form of the interval of time between the first two spikes enter-
ing a designated neuron, and this number is accepted if the computation halts).
If a bound is imposed on the number of spikes present in any neuron during a
computation, then a characterization of semilinear sets of numbers is obtained.

These results were extended in [13] to several other ways of associating a set of
numbers with an SN P system: taking into account the interval between the first
k spikes of each spike train, or all spikes, taking only alternately the intervals,
or all of them, considering halting computations. Then, the spike train itself
(the sequences of symbols 0, 1 describing the activity of the output neuron: we
write 0 if no spike exits the system in a time unit and 1 if a spike is emitted) was
considered as the result of a computation; the infinite case is investigated in [14],
the finite one in [2]. A series of possibilities of handling infinite sequences of bits
are discussed in [14], while morphic representations of regular and of recursively

Computing with SN P Systems: Traces and Small Universal Systems 3

enumerable languages are found in [2]. The results from [2] are briefly recalled
in Section 5 below.

In this paper we directly continue these investigations, contributing in two
natural directions. First, the above mentioned universality results (the possibility
to compute all Turing computable sets of numbers) do not give an estimation on
the number of neurons sufficient for obtaining the universality. Which is the size
of the smallest universal “brain” (of the form of an SN P system)? This is both
a natural and important (from computer science and, also, from neuro-science
point of view) problem, reminding the extensive efforts paid for finding small
universal Turing machines – see, e.g., [16] and the references therein.

Our answer is rather surprising/encouraging: 84 neurons ensure the univer-
sality in the basic setup of SN P systems, as they were defined in [6], while this
number is decreased to 49 if slightly more general spiking rules are used (rules
with the possibility to produce not only one spike, but also two or more spikes
at the same time – such rules are called extended). The proof is based on simu-
lating a small universal register machine from [7]. (The full details for the proof
of these results about small universal SN P systems will be provided elsewhere
– see [11].)

Extended rules are also useful when generating strings: we associate a symbol
bi with a step when the system outputs i spikes and in this way we obtain a
string over an arbitrary alphabet, not only on the binary one, as in the case
of standard rules. Especially flexible is the case when we associate the empty
string with a step when no spike is sent out of the system we associate (that is,
b0 is interpreted as λ). Results from [3], concerning the power of extended SN P
systems as language generators, are also recalled in Section 5.

Then, another natural issue is to bring to the SN P systems area a notion
introduced for symport/antiport P systems in [5]: mark a spike and follow its
path through the system, recording the labels of the visited neurons until either
the marking disappears or the computation halts. Because of the very restrictive
way of generating strings in this way, there are simple languages which cannot
be computed, but, on the other hand, there are rather complex languages which
can be obtained in this framework.

Due to space restrictions, we do not give full formal details in definitions and
proofs (we refer to the above mentioned papers for that); such details are or will
be available in separate papers to be circulated/announced through [19].

2 Formal Language Theory Prerequisites

We assume the reader to be familiar with basic language and automata theory,
e.g., from [17] and [18], so that we introduce here only some notations and notions
used later in the paper.

For an alphabet V , V ∗ denotes the set of all finite strings of symbols from
V ; the empty string is denoted by λ, and the set of all nonempty strings over V
is denoted by V +. When V = {a} is a singleton, then we write simply a∗ and
a+ instead of {a}∗, {a}+. If x = a1a2 . . . an, ai ∈ V, 1 ≤ i ≤ n, then the mirror
image of x is mi(x) = an . . . a2a1.

4 M. Ionescu et al.

A morphism h : V ∗
1 −→ V ∗

1 such that h(a) ∈ {a, λ} for each a ∈ V1 is called
a projection, and a morphism h : V ∗

1 −→ V ∗
2 such that h(a) ∈ V2 ∪ {λ} for each

a ∈ V1 is called a weak coding.
If L1, L2 ⊆ V ∗ are two languages, the left and right quotients of L1 with

respect to L2 are defined by L2\L1 = {w ∈ V ∗ | xw ∈ L1 for some x ∈ L2},
and respectively L1/L2 = {w ∈ V ∗ | wx ∈ L1 for some x ∈ L2}. When the
language L2 is a singleton, these operations are called left and right derivatives,
and denoted by ∂l

x(L) = {x}\L and ∂r
x(L) = L/{x}, respectively.

A Chomsky grammar is given in the form G = (N, T, S, P), where N is the
nonterminal alphabet, T is the terminal alphabet, S ∈ N is the axiom, and
P is the finite set of rules. For regular grammars, the rules are of the form
A→ aB, A→ a, for some A, B ∈ N, a ∈ T .

We denote by FIN, REG, CF, CS, RE the families of finite, regular, context-
free, context-sensitive, and recursively enumerable languages; by MAT we de-
note the family of languages generated by matrix grammars without appearance
checking. The family of Turing computable sets of numbers is denoted by NRE
(these sets are length sets of RE languages, hence the notation).

Let V = {b1, b2, . . . , bm}, for some m ≥ 1. For a string x ∈ V ∗, let us denote
by valm(x) the value in base m + 1 of x (we use base m + 1 in order to consider
the symbols b1, . . . , bm as digits 1, 2, . . . , m, thus avoiding the digit 0 in the left
hand of the string). We extend this notation in the natural way to sets of strings.

All universality results of the paper are based on the notion of a register
machine. Such a device – in the non-deterministic version – is a construct M =
(m, H, l0, lh, I), where m is the number of registers, H is the set of instruction
labels, l0 is the start label (labeling an ADD instruction), lh is the halt label
(assigned to instruction HALT), and I is the set of instructions; each label from H
labels only one instruction from I, thus precisely identifying it. The instructions
are of the following forms:

– li : (ADD(r), lj , lk) (add 1 to register r and then go to one of the instructions
with labels lj , lk non-deterministically chosen),

– li : (SUB(r), lj , lk) (if register r is non-empty, then subtract 1 from it and go
to the instruction with label lj , otherwise go to the instruction with label
lk),

– lh : HALT (the halt instruction).

A register machine M generates a set N(M) of numbers in the following way:
we start with all registers empty (i.e., storing the number zero), we apply the
instruction with label l0 and we continue to apply instructions as indicated by
the labels (and made possible by the contents of registers); if we reach the halt
instruction, then the number n present in register 1 at that time is said to be
generated by M . (Without loss of generality we may assume that in the halting
configuration all other registers are empty; also, we may assume that register 1
is never subject of SUB instructions, but only of ADD instructions.) It is known
(see, e.g., [10]) that register machines generate all sets of numbers which are
Turing computable.

Computing with SN P Systems: Traces and Small Universal Systems 5

A register machine can also be used as a number accepting device: we in-
troduce a number n in some register r0, we start working with the instruction
with label l0, and if the machine eventually halts, then n is accepted (we may
also assume that all registers are empty in the halting configuration). Again,
accepting register machines characterize NRE.

Furthermore, register machines can compute all Turing computable functions:
we introduce the numbers n1, . . . , nk in some specified registers r1, . . . , rk, we
start with the instruction with label l0, and when we stop (with the instruction
with label lh) the value of the function is placed in another specified register,
rt, with all registers different from rt being empty. Without loss of generality we
may assume that r1, . . . , rk are the first k registers of M , and then the result of
the computation is denoted by M(n1, . . . , nk).

In both the accepting and the computing case, the register machines can be
deterministic, i.e., with the ADD instructions of the form li : (ADD(r), lj) (add 1
to register r and then go to the instruction with label lj).

In the following sections, when comparing the power of two language gener-
ating/accepting devices the empty string λ is ignored.

3 Spiking Neural P Systems

We give here the basic definition we work with, introducing SN P systems in the
form considered in the small universal SN P systems, hence computing functions
(which, actually, covers both the generative and accepting cases).

A computing spiking neural membrane system (abbreviated SN P system), of
degree m ≥ 1, is a construct of the form

Π = (O, σ1, . . . , σm, syn, in, out),

where:

1. O = {a} is the singleton alphabet (a is called spike);
2. σ1, . . . , σm are neurons, of the form

σi = (ni, Ri), 1 ≤ i ≤ m,

where:
a) ni ≥ 0 is the initial number of spikes contained in σi;
b) Ri is a finite set of rules of the following two forms:

(1) E/ac → a; d, where E is a regular expression1 over a, c ≥ 1, and
d ≥ 0;

(2) as → λ, for s ≥ 1, with the restriction that for each rule E/ac → a; d
of type (1) from Ri, we have as /∈ L(E);

3. syn ⊆ {1, 2, . . . , m}×{1, 2, . . . , m} with (i, i) /∈ syn for 1 ≤ i ≤ m (synapses
between neurons);

4. in, out ∈ {1, 2, . . . , m} indicate the input and the output neurons of Π .
1 The regular language defined by E is denoted by L(E).

6 M. Ionescu et al.

The rules of type (1) are firing (we also say spiking) rules, and they are applied
as follows. If the neuron σi contains k spikes, and ak ∈ L(E), k ≥ c, then the
rule E/ac → a; d ∈ Ri can be applied. This means consuming (removing) c
spikes (thus only k− c remain in σi), the neuron is fired, and it produces a spike
after d time units (as usual in membrane computing, a global clock is assumed,
marking the time for the whole system, hence the functioning of the system is
synchronized). If d = 0, then the spike is emitted immediately, if d = 1, then the
spike is emitted in the next step, etc. If the rule is used in step t and d ≥ 1, then
in steps t, t + 1, t + 2, . . . , t + d− 1 the neuron is closed (this corresponds to the
refractory period from neurobiology), so that it cannot receive new spikes (if a
neuron has a synapse to a closed neuron and tries to send a spike along it, then
that particular spike is lost). In the step t + d, the neuron spikes and becomes
again open, so that it can receive spikes (which can be used starting with the
step t + d + 1).

The rules of type (2) are forgetting rules; they are applied as follows: if the
neuron σi contains exactly s spikes, then the rule as → λ from Ri can be used,
meaning that all s spikes are removed from σi.

If a rule E/ac → a; d of type (1) has E = ac, then we will write it in the
following simplified form: ac → a; d. If all spiking rules are of this form, then
the system is said to be finite (it can handle only a bounded number of spikes
in each of its neurons).

In each time unit, if a neuron σi can use one of its rules, then a rule from Ri

must be used. Since two firing rules, E1/ac1 → a; d1 and E2/ac2 → a; d2, can
have L(E1)∩L(E2) 	= ∅, it is possible that two or more rules can be applied in a
neuron, and in that case, only one of them is chosen non-deterministically. Note
however that, by definition, if a firing rule is applicable, then no forgetting rule
is applicable, and vice versa.

Thus, the rules are used in the sequential manner in each neuron, but neurons
function in parallel with each other (the system is synchronized).

The initial configuration of the system is described by the numbers n1, n2, . . . ,
nm, of spikes present in each neuron, with all neurons being open. During the
computation, a configuration is described by both the number of spikes present
in each neuron and by the state of the neuron, more precisely, by the number of
steps to count down until it becomes open (this number is zero if the neuron is
already open).

A computation in a system as above starts in the initial configuration. In
order to compute a function f : Nk −→ N, we introduce k natural numbers
n1, . . . , nk in the system by “reading” from the environment a binary sequence
z = 0b10n1−110n2−11 . . . 10nk−110f , for some b, f ≥ 0; this means that the input
neuron of Π receives a spike in each step corresponding to a digit 1 from the
string z. Note that we input exactly k + 1 spikes. The result of the computation
is also encoded in the distance between two spikes: we impose to the system to
output exactly two spikes and halt (sometimes after the second spike), hence
producing a train spike of the form 0b′

10r−110f ′
, for some b′, f ′ ≥ 0 and with

r = f(n1, . . . , nk).

Computing with SN P Systems: Traces and Small Universal Systems 7

If we use an SN P system in the generative mode, then no input neuron is
considered, hence no input is taken from the environment; we start from the
initial configuration and the distance between the first two spikes of the output
neuron (or other numbers, see the discussion in the Introduction) is the result of
the computation. Dually, we can ignore the output neuron, we input a number
in the system as the distance between two spikes entering the input neuron, and
if the computation halts, then the number is accepted.

We do not give here examples, because in the next section we show the four
basic modules of our small universal SN P system.

4 Two Small Universal SN P Systems

In both the generating and the accepting case, SN P systems are universal,
they compute the Turing computable sets of numbers. The proofs from [6], [13]
are based on simulating register machines, which are known to be equivalent
to Turing machines when computing (generating or accepting) sets of numbers,
[10]. In [7], the register machines are used for computing functions, with the
universality defined as follows. Let (ϕ0, ϕ1, . . .) be a fixed admissible enumeration
of the set of unary partial recursive functions. A register machine Mu is said to
be universal if there is a recursive function g such that for all natural numbers
x, y we have ϕx(y) = Mu(g(x), y). In [7], the input is introduced in registers 1
and 2, and the result is obtained in register 0 of the machine.

l0 : (SUB(1), l1, l2), l1 : (ADD(7), l0),
l2 : (ADD(6), l3), l3 : (SUB(5), l2, l4),
l4 : (SUB(6), l5, l3), l5 : (ADD(5), l6),
l6 : (SUB(7), l7, l8), l7 : (ADD(1), l4),
l8 : (SUB(6), l9, l0), l9 : (ADD(6), l10),
l10 : (SUB(4), l0, l11), l11 : (SUB(5), l12, l13),
l12 : (SUB(5), l14, l15), l13 : (SUB(2), l18, l19),
l14 : (SUB(5), l16, l17), l15 : (SUB(3), l18, l20),
l16 : (ADD(4), l11), l17 : (ADD(2), l21),
l18 : (SUB(4), l0, lh), l19 : (SUB(0), l0, l18),
l20 : (ADD(0), l0), l21 : (ADD(3), l18),
lh : HALT.

Fig. 1. The universal register machine from [7]

The constructions from [6] do not provide a bound on the number of neurons,
but such a bound can be found if we start from a specific universal register
machine. We will use here the one with 8 registers and 23 instructions from [7] –
for the reader convenience, this machine is recalled in Figure 1, in the notation
and the setup introduced in the previous section.

Theorem 1. There is a universal SN P system with 84 neurons.

8 M. Ionescu et al.

Proof. (Outline) We follow the way used in [6] to simulate a register machine by
an SN P system. This is done as follows: neurons are associated with each register
(r) and with each label (li) of the machine; if a register contains a number n,
then the associated neuron will contain 2n spikes; modules as in Figures 2 and 3
are associated with the ADD and the SUB instructions (each of these modules
contains two neurons – with primed labels – which do not correspond to registers
and labels of the simulated machine).

�
�

�
�

�
�

�
�

�
�

�
	

�
�

�
	

�
�

�
�

�
�

��

�
�

���

�
�

��

������	

�

�
�

��

li
a2 → a; 0
a → λ

l′i l′′i

a → a; 0 a → a; 0

rlj

a2 → a; 0
a → λ

Fig. 2. Module ADD (simulating li : (ADD(r), lj))

The work of the system is triggered by introducing two spikes in the neuron
σl0 (associated with the starting instruction of the register machine). In general,
the simulation of an ADD or SUB instruction starts by introducing two spikes
in the neuron with the instruction label. We do not describe here in detail the
(pretty transparent) way the modules from Figures 2 and 3 work – the reader
can consult [6] in this respect.

Starting with neurons σ1 and σ2 already loaded with 2g(x) and 2y spikes,
respectively, and introducing two spikes in neuron σl0 , we can compute in our
system in the same way as Mu; if the computation halts, then neuron σ0 will
contain 2ϕx(y) spikes. What remains to do is to construct input and output
modules, for reading a sequence of bits and introducing the right number of
spikes in the neurons corresponding to registers 1 and 2, and, in the end of the
computation, to output the contents of register 0. Modules of these types are
given in Figures 4, 5, having seven and two additional neurons, respectively.

After this direct construction, we get a system with 91 neurons (9 for the
registers of the starting register machine – one further register is necessary for
technical reasons, 25 for its labels, 24× 2 for the ADD and SUB instructions, 7
in the input module, and 2 in the output module). However, some “code opti-
mization” is possible, based on certain properties of the register machine from

Computing with SN P Systems: Traces and Small Universal Systems 9

�

�

�
�

�
�

�
�

�
�

�

�

�

�

�

�

�
�

�
���

�
�

�
�

�
���

�
�

�
���

�
�

�
���

������	
�

���

li
a2 → a; 0

a → λ

r

(a2)+a/a3 → a; 0

a → a; 1

l′i

l′′i

a → a; 0

a → a; 1

lj

a2 → a; 0

a → λ

a2 → a; 0

a → λ

lk

Fig. 3. Module SUB (simulating li : (SUB(r), lj , lk))

[7] (for instance, consecutive ADD instructions can be simulated by a specific
module, smaller than two separate ADD modules); we skip the technical details
and we only mention that the final SN P system will contain 84 neurons.

This is a small number (a small “brain”, compared to the human one; it would be
nice to know where in the evolution scale there are animals with about 84 neurons
in their brain), but we do not know whether it is optimal or not. Anyway, we
believe that in the previous setup, we cannot significantly decrease the number
of neurons from a universal SN P system.

However, we can do better starting from the following observation. In many
modules mentioned above we need pairs of intermediate neurons for duplicating
the spike to be transmitted further (this is the case for neurons σl′

i
, σl′′

i
in Figure

2), and this suggests to consider a slight extension of the rules of SN P systems:
to allow spiking rules of the form E/ac → ap; d, where all components are as
usual, and p ≥ 1. The meaning is that c spikes are consumed and p spikes are
produced. To be “realistic”, we impose the restriction c ≥ p (the number of
produced spikes is not larger than the number of consumed spikes).

Theorem 2. There is a universal SN P system with 49 neurons, using rules of
the form E/ac → ap; 0, with p ≥ 1.

(Note that the delay is zero in the rules of the extended form used in the the-
orem.) As above, we do not know whether this result is optimal, but we again
believe that it cannot be significantly improved (without, maybe, changing the
definition of SN P systems in an essential way).

10 M. Ionescu et al.

�
�

�
	

�
�

�
	

�
�

�
	

�
�

�
��

�
�
�

�
�

�
��

�
�
�
�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
��

�

�
�

�
�

�
�

�
���

�
�

�
�

�
�

��

�
�
�
�
�
�
�
���

�
�

�
���

�
��� �

��
�

�� �
���

�
�

�
�

�
�
�

�
�
��

�
�

��

�
�

�
�

�
�
��

�
�
�
�
�
���

�
�

���

�in

a → a; 0

c1

a3 → a; 0

c2

a3 → a; 0

l0

a2 → a; 0
a → λ

c3

a → a; 0

a → a; 0

c4

1 2

a2/a → a; 0

c5

c6

a2/a → a; 0

Fig. 4. Module INPUT

5 SN P Systems as String Generators

Following [2] we can also consider as the result of a computation the spike train
itself, thus associating a language with an SN P system. Specifically, like in
[2], we can consider the language Lbin(Π) of all binary strings associated with
halting computations in Π : the digit 1 is associated with a step when one or
more spikes exit the output neuron, and 0 is associated with a step when no
spike is emitted by the output neuron. We denote B = {0, 1}.

Because (in the case of extended systems) several spikes can exit at the same
time, we can also work on an arbitrary alphabet: let us associate the symbol bi

with a step when the output neuron emits i spikes. We have two cases: inter-
preting b0 (hence a step when no spike is emitted) as a symbol or as the empty
string. In the first case we denote the generated language by Lres(Π) (with “res”
coming from “restricted”), in the latter one we write Lλ(Π).

The respective families are denoted by LαSNePm(rulek, consp, prodq), where
α ∈ {bin, res, λ} and parameters m, k, p, q are as above. We omit the superscript
e and the parameter prodq when working with standard rules (in this case we
always have q = 1).

We recall from [2] the following results:

Theorem 3. (i) There are finite languages (for instance, {0k, 10j}, for any k ≥
1, j ≥ 0) which cannot be generated by any SN P system with restricted rules,
but for any L ∈ FIN , L ⊆ B+, we have L{1} ∈ LbinSNP1(rule∗, cons∗), and if
L = {x1, x2, . . . , xn}, then we also have {0i+3xi | 1 ≤ i ≤ n} ∈ LbinSNP∗(rule∗,
cons∗).

Computing with SN P Systems: Traces and Small Universal Systems 11

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
	

�

�

�

!

�
�

�
�

��

l′h

8 d1

out

a2 → a; 0
a → λ

a → a; 0a(aa)+/a2 → a; 0

a(aa)∗/a → a; 0

Fig. 5. Module OUTPUT

(ii) The family of languages generated by finite non-extended SN P systems
is strictly included in the family of regular languages over the binary alphabet,
but for any regular language L ⊆ V ∗ there is a finite SN P system Π and a
morphism h : V ∗ −→ B∗ such that L = h−1(L(Π)).

(iii) LbinSNP∗(rule∗, cons∗) ⊂ REC, but for every alphabet V = {b1, b2,
. . . ,bs} there are a morphism h1 : (V ∪ {b, c})∗ −→ B∗ and a projection h2 :
(V ∪ {b, c})∗ −→ V ∗ such that for each language L ⊆ V ∗, L ∈ RE, there is an
SN P system Π such that L = h2(h−1

1 (L(Π))).

These results show that the language generating power of non-extended SN P
systems is rather eccentric; on the one hand, finite languages (like {0, 1}) cannot
be generated, on the other hand, we can represent any RE language as the direct
morphic image of an inverse morphic image of a language generated in this way.
This eccentricity is due mainly to the restricted way of generating strings, with
one symbol added in each computation step, and this again naturally suggests
the idea of extended rules, with the possibility of having λ as output in steps
when no spike exits the system. As we will see immediately, this possibility
considerably enlarges the generated families of languages.

The next results were obtained in [3], as counterparts of the results from
Theorem 3; as expected, the extended rules are useful, the obtained families
of languages are larger, and finite, regular, and recursively enumerable can be
directly obtained, without additional symbols and squeezing mechanisms.

We consider at the same time both the restricted case (with b0 associated with
a step when no spike is sent out) and the non-restricted one (with b0 interpreted
as λ); V is the alphabet {b1, . . . , bs}:
Theorem 4. (i) FIN = LαSNeP1(rule∗, cons∗, prod∗), α ∈ {res, λ}, and this
result is sharp, becauseLresSNeP2(rule2, cons3, prod3) contains infinite languages.

12 M. Ionescu et al.

(ii) If L ∈ REG, then {b0}L ∈ LresSNeP4(rule∗, cons∗, prod∗) and L{b0} ∈
LresSNeP3(rule∗, cons∗, prod∗), but there are minimal linear languages which
are not in the family LresSNeP∗(rule∗, cons∗, prod∗).

(iii) LλSNeP2(rule∗, cons∗, prod∗) ⊆ REG ⊂ LλSNeP3(rule∗, cons∗, prod∗);
the second inclusion is proper, because LλSNeP3(rule4, cons4, prod2) contains
non-regular languages; actually, the family LλSNeP3(rule3, cons6, prod4) con-
tains non-semilinear languages.

(iv) RE = LλSNeP∗(rule∗, cons∗, prod∗).

It is an open problem to find characterizations (even only representations) of
other families of languages in the Chomsky hierarchy.

6 Following the Traces of Spikes

We have seen above that SN P systems can be used also for generating or accept-
ing languages, and even infinite sequences [14], by just taking the spike trains as
generated strings/sequences. Here we consider yet another idea for defining a lan-
guage, taking into account the traces of a distinguished spike through the system.
This is a direct counterpart of trace languages from [5], and also has some simi-
larity with the idea of “computing by observing”, as recently considered in [1].

Specifically, in the initial configuration of the system we “mark” one spike
from a specified neuron – the intuition is that this spike has a “flag” – and we
follow the path of this flag during the computation, recording the labels of the
neurons where the flag is present in the end of each step. Actually, for neuron
σi we consider the symbol bi in the trace string.

The previous definition contains many delicate points which need clarifications
– and we use a simple example to do this.

Assume that in neuron σi we have three spikes, one of them marked; we write
aaa′ to represent them. Assume also that we have a spiking rule aaa/aa→ a; 0.
When applied, this rule consumes two spikes, one remains in the neuron and one
spike is produced and sent along the synapses going out of neuron σi. Two cases
already appear: the marked spike is consumed or not. If not consumed, then it
remains in the neuron. If consumed, then the flag passes to the produced spike.
Now, if there are two or more synapses going out of neuron σi, then again we can
have a branching: only one spike is marked, hence only on one of the synapses
(i, j), non-deterministically chosen, we will transmit a marked spike. If σj is an
open neuron, then the marked spike ends in this neuron. If σj is a closed neuron,
then the marked spike is lost, and the same happens if the marked spike exits
in the environment. Anyway, if the marked spike is consumed, at the end of this
step it is no longer present in neuron i; it is in neuron σj if (i, j) ∈ syn and
neuron σj is open, or it is removed from the system in other cases.

Therefore, if in the initial configuration of the system neuron σi contains the
marked spike, then the trace can start either with bi (if the marked spike is not
consumed) or with bj (if the marked spike was consumed and passed to neuron
σj); if the marked spike is consumed and lost, then we generate the empty string,
which is ignored in our considerations. Similarly in later steps.

Computing with SN P Systems: Traces and Small Universal Systems 13

If the rule used is of the form aaa/aa→ a; d, for some d ≥ 1, and the marked
spike is consumed, then the newly marked spike remains in neuron σi for d steps,
hence the trace starts/continues with bd

i . Similarly, if no rule is used in neuron
σi for k steps, then the trace records k copies of bi.

If a forgetting rule is used in the neuron where the marked spike is placed,
then the trace string stops (and no symbol is recorded for this step).

Therefore, when considering the possible branchings of the computation, we
have to take into account the non-determinism not only in using the spiking
rules, but also in consuming the marked spike and in sending it along one of the
possible synapses.

The previous discussion has, hopefully, made clear what we mean by recording
the labels of the neurons where the flag is present in the end of each step, and
why choosing the end of a step and not the beginning: in the latter case, all
traces would start with the same symbol, corresponding to the input neuron,
which is a strong – and artificial – restriction.

Anyway, we take into account only halting computations: irrespective whether
or not a marked spike is still present in the system, the computation should halt
(note that it is possible that the marked spike is removed and the computation
still continues for a while – but this time without adding further symbols to the
trace string).

For an SN P system Π we denote by T (Π) the language of all strings de-
scribing the traces of the marked spike in all halting computations of Π . Then,
we denote by TSNPm(rulek, consp, forgq) the family of languages T (Π), gen-
erated by systems Π with at most m neurons, each neuron having at most k
rules, each of the spiking rules consuming at most p spikes, and each forgetting
rule removing at most q spikes. As usual, a parameter m, k, p, q is replaced with
∗ if it is not bounded.

We pass now to investigating the relationship with the families of languages
from Chomsky hierarchy, starting with a counterexample result (whose simple
proof is omitted).

Lemma 1. There are singleton languages which are not in TSNP∗(rule∗,
cons∗, forg∗).

Theorem 5. The family of trace languages generated by SN P systems by means
of computations with a bounded number of spikes present in their neurons is
strictly included in the family of regular languages.

The inclusion follows from the fact that the transition diagram associated with
the computations of an SN P system which use a bounded number of spikes is
finite and can be interpreted as the transition diagram of a finite automaton.
The fact that the inclusion is proper is a consequence of Lemma 1.

As expected, also non-regular languages can be generated – as well as much
more complex languages.

Theorem 6. Every unary language L ∈ RE can be written in the form L =
h(L′) = (b∗1\L′) ∩ b∗2, where L′ ∈ TSNP∗(rule∗, cons∗, forg∗) and h is a
projection.

14 M. Ionescu et al.

Proof. (Sketch) This result is a consequence of the fact that SN P systems can
simulate register machines. Specifically, starting from a register machine M , we
construct an SN P system Π which halts its computation with 2n spikes in a
specified neuron σout if and only if n can be generated by the register machine
M ; in the halting moment, a neuron σlh of Π associated with the label of the
halting instruction of M gets two spikes and fires. The neuron σout contains no
rule used in the simulation of M (the corresponding register is only incremented,
but never decremented – see the details of the construction from [6], as well as
Figures 2 and 3).

�
�

�
�

�
�

�
�

�

�
�

�
�
�

�
�

�
��

�
�
�

�

�

�

�

�
�

�
�"

�

�

�

�

�
!

#
##$

�
���

Π

out

a(aa)+/a2 → a; 0

lh

a2 → a; 0

a → λ

1

a′

a2 → a; 4

2

a2 → λ

a → a; 0
3

4

a → a; 0

5

a(aa)∗/a → a; 0

6

a2 → a; 0

Fig. 6. The SN P system from the proof of Theorem 6

Now, consider a language L ⊆ b∗2, L ∈ RE. There is a register machine M
such that n ∈ N(M) if and only if bn

2 ∈ L. Starting from such a machine M ,
we construct the system Π as in [6], having the properties described above. We
append to the system Π six more neurons, as indicated in Figure 6. There is a
marked spike in neuron σ1, and it will stay here during all the simulation of M .
In the moment when neuron σlh of Π spikes, its spike goes both to neuron σout

and to neuron σ1.
Neurons σ3, σ4, σ5, σ6 send a spike to neuron σ2 only when neuron σout has

finished its work (this happens after n steps of using the rule a(aa)+/a2 → a; 0,
for 2n being the contents of neuron σout in the moment when neuron σlh spikes).

Computing with SN P Systems: Traces and Small Universal Systems 15

The marked spike leaves neuron σ1 four steps after using the rule a2 → a; 4,
hence five steps after the spiking of neuron σlh . This means that the marked
spike waits in neuron σ2 exactly n steps. When the spike of neuron σ6 reaches
neuron σ2, the two spikes present here, the marked one included, are forgotten.

Thus, the traces of the marked spike are of the form br
1b

n
2 , for some r ≥ 1

and n ∈ N(M). By means of the left derivative with the regular language b∗1
we can remove prefixes of the form bk

1 and by means of the intersection with
b∗2 we ensure that the maximal prefix of this form is removed. Similarly, the
projection h : {b1, b2}∗ −→ {b1, b2}∗ defined by h(b1) = λ, h(b2) = b2, removes
all occurrences of b1. Consequently, L = (b∗1\T (Π)) ∩ b∗2 = h(T (Π)).

Corollary 1. The family TSNP∗(reg∗, cons∗, forg∗) is incomparable with each
family of languages FL which contains the singleton languages, is closed under
left derivative with regular languages and intersection with regular languages,
and does not contain all unary recursively enumerable languages.

Families FL as above are FIN, REG, CF, CS, MAT etc.

7 Final Remarks

After a brief informal survey of main results related to SN P systems as number
generating or accepting devices, we have produced small universal SN P systems
(with 84 and 49 neurons, depending on the type of spiking rules used), and
we have introduced and preliminarily investigated the possibility of using SN P
systems as language generators by following the trace of a marked spike across
the neurons. Many topics remain open for further research, and other suggestions
from biology are worth considering.

Acknowledgements

Thanks are due to Takashi Yokomori for many discussions about spiking neural
P systems, as well as for many comments about a previous version of this paper.

The authors gratefully acknowledge the following (partial) support of their re-
search. M. Ionescu: Programa Nacional para la Formación del Profesorado Uni-
versitario from the Spanish Ministry of Education. A. Păun: LA BoR RSC grant
LEQSF (2004-07)-RD-A-23, and NSF Grants IMR-0414903 and CCF-0523572.
Gh. Păun and M.J. Pérez-Jiménez: Project TIN2005-09345-C03-01 of Ministerio
de Educación y Ciencia of Spain, cofinanced by FEDER funds, and Project of
Excellence TIC 581 of Junta de Andalucia.

References

1. M. Cavaliere, P. Leupold: Evolution and observation – A new way to look at
membrane systems. In Membrane Computing. Intern. Workshop‘WMC 2003, Tar-
ragona, Spain, July 2003. Revised Papers (C. Martin-Vide, G. Mauri, Gh. Păun,
G. Rozenberg, A. Salomaa, eds.), LNCS 2933, Springer, Berlin, 2004, 70–87.

16 M. Ionescu et al.

2. H. Chen, R. Freund, M. Ionescu, Gh. Păun, M.J. Pérez-Jiménez: On string lan-
guages generated by spiking neural P systems. In Proc. of Fourth. Brainstorming
Week on Membrane Computing, Sevilla, 2006, vol. I, 169–193 (also available at
[19]).

3. H. Chen, T.-O. Ishdorj, Gh. Păun, M.J. Pérez-Jiménez: Spiking neural P systems
with extended rules. In Proc. of Fourth. Brainstorming Week on Membrane Com-
puting, Sevilla, 2006, vol. I, 241–266 (also available at [19]).

4. O.H. Ibarra, A. Păun, Gh. Păun, A. Rodŕıguez-Patón, P. Sosik, S. Woodworth:
Normal forms for spiking neural P systems. In Fourth Brainstorming Week on
Membrane Computing, Febr. 2006, Fenix Editora, Sevilla, 2006, vol. II, 105–136
(also available at [19]).

5. M. Ionescu, C. Martin-Vide, A. Păun, Gh. Păun: Membrane systems with sym-
port/antiport: (unexpected) universality results. In Proc. 8th International Meeting
of DNA Based Computing (M. Hagiya, A. Ohuchi, eds.), Japan, 2002, 151–160.

6. M. Ionescu, Gh. Păun, T. Yokomori: Spiking neural P systems. Fundamenta In-
formaticae, 71, 2-3 (2006), 279–308.

7. I. Korec: Small universal register machines. Theoretical Computer Science, 168
(1996), 267–301.

8. W. Maass: Computing with spikes. Special Issue on Foundations of Information
Processing of TELEMATIK, 8, 1 (2002), 32–36.

9. W. Maass, C. Bishop, eds.: Pulsed Neural Networks, MIT Press, Cambridge, 1999.
10. M. Minsky: Computation – Finite and Infinite Machines. Prentice Hall, Englewood

Cliffs, NJ, 1967.
11. A. Păun, Gh. Păun: Small universal spiking neural P systems. BioSystems, to

appear.
12. Gh. Păun: Membrane Computing – An Introduction. Springer-Verlag, Berlin, 2002.
13. Gh. Păun, M.J. Pérez-Jiménez, G. Rozenberg: Spike trains in spiking neural P

systems. Intern. J. Found. Computer Sci., to appear (also available at [19]).
14. Gh. Păun, M.J. Pérez-Jiménez, G. Rozenberg: Infinite spike trains in spiking neural

P systems. Submitted, 2006.
15. Gh. Păun, Y. Sakakibara, T. Yokomori: P systems on graphs of restricted forms.

Publicationes Mathematicae Debrecen, 60 (2002), 635–660.
16. Y. Rogozhin: Small universal Turing machines. Theoretical Computer Science, 168

(1996), 215–240.
17. G. Rozenberg, A. Salomaa, eds.: Handbook of Formal Languages, 3 volumes.

Springer-Verlag, Berlin, 1997.
18. A. Salomaa: Formal Languages. Academic Press, New York, 1973.
19. The P Systems Web Page: http://psystems.disco.unimib.it.

Minimal Parallelism for
Polarizationless P Systems

Tseren-Onolt Ishdorj

Research Group on Natural Computing
Department of Computer Science and AI, University of Sevilla

Avda Reina Mercedes s/n, 41012 Sevilla, Spain
tserren@yahoo.com

Computational Biomodelling Laboratory
Turku Centre for Computer Science

Åbo Akademi University, Turku 20520, Finland
tishdorj@abo.fi

Abstract. Minimal parallelism was recently introduced [3] as a way
the rules of a P system are used: from each set of applicable rules as-
sociated to the same membrane, at least one must be applied. In this
paper, we consider the minimal parallelism for P systems with active
membranes without polarizations, using additional features, such as sep-
aration operations, changing membrane labels, catalytic or cooperative
rules, etc. With several combinations of such features we obtain computa-
tional completeness. In cases where membrane division (of elementary or
non-elementary membranes) is allowed, we show how SAT can be solved
in polynomial time.

1 Introduction

Membrane systems (referred also as P systems) are a class of distributed parallel
computing devices of a biochemical type, which can be seen as a general com-
puting architecture where various types of objects can be processed in parallel
by various operations. A key structural notion is that of a membrane by which
a system is divided into compartments where chemical reactions can take place.
These reactions transform multisets of objects present in the compartments into
new objects, possibly transferring objects to neighboring compartments, includ-
ing the environment.

For a comprehensive introduction to membrane computing we refer to [11].
As membrane systems are inspired by living cell behavior, a continuous re-

search topic in the area was looking for as bio-realistic computing models as
possible. In this framework, the application of developmental rules under differ-
ent constraints is an interesting problem to study. An idea concerning the rule
application that has recently attracted the attention is the minimal parallelism,
introduced and investigated in [3]. Minimal parallelism relaxes the condition of
using the rules in a maximally parallel way. More precisely, the rules are used in
the non-deterministic minimally parallel manner: in each step, from each set of

C. Mao and T. Yokomori (Eds.): DNA12, LNCS 4287, pp. 17–32, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

18 T.-O. Ishdorj

rules Ri (associated with a membrane i of a P system) we use at least one rule
(without specifying how many) provided that this is possible. The rules to be
used, as well as the objects to which they are applied, are non-deterministically
chosen.

In the original paper [3], certain open problems have been formulated, such
as: removing the polarizations of membranes and/or decreasing the number of
membranes in the universality proofs; whether or not membrane division for only
elementary membranes suffices when solving computationally hard problems in
polynomial time; looking for uniform constructions, or for deterministic systems.

We address here some of these problems, considering the minimal parallelism
within the framework of P systems with active membranes, without using po-
larizations. In this framework, we have obtained the Turing completeness in ac-
cepting as well as in generative cases (Section 4) by simulating Minsky register
machines, [6], and matrix grammars, [4]. Moreover, computational complexity
issues (solving NP-complete problems) are also considered for polarizationless
P systems in Section 5, where both uniform and semi-uniform solutions to SAT
are provided.

2 Preliminaries

We assume the reader to be familiar with the basic elements of formal languages,
Turing computability [5], computational complexity, [9], and membrane comput-
ing, [11]. We introduce here only some of the necessary notions and notation.

An alphabet is a finite set of symbols (letters), and a word (string) over an
alphabet Σ is a finite sequence of letters from Σ. We denote the empty word by
λ. A multiset over an alphabet Σ is a mapping from Σ to N, the set of natural
numbers; we represent a multiset by a string from Σ∗, where the number of
occurrences of a symbol a ∈ Σ in a string w represents the multiplicity of a in
the multiset represented by w (hence all strings obtained by permuting symbols
in the string w represent the same multiset). The family of Turing computable
sets of natural numbers is denoted by NRE (with RE coming from “recursively
enumerable”; RE denotes the family of recursively enumerable languages).

For the Turing computability proofs in the next sections, we use the charac-
terization of NRE by means of matrix grammars (in a precise normal form) and
register machines.

A matrix grammar in the binary normal form is a construct G =
(N, T, S, M, F), where N = N1 ∪ N2 ∪ {S, #}, with these three sets mutually
disjoint, and the matrices in M are in one of the following forms:

1. (S → XA), with X ∈ N1, A ∈ N2;
2. (X → Y, A→ x), with X, Y ∈ N1, A ∈ N2, x ∈ (N2 ∪ T)∗, |x| ≤ 2;
3. (X → Y, A→ #), with X, Y ∈ N1, A ∈ N2;
4. (X → λ, A→ x), with X ∈ N1, A ∈ N2, and x ∈ T ∗, |x| ≤ 2.

Moreover, there is only one matrix of type 1 (that is why one uses to write
it in the form (S → XinitAinit), in order to fix the symbols X, A present in it),

Minimal Parallelism for Polarizationless P Systems 19

and F consists exactly of all rules A→ # appearing in matrices of type 3; # is
a trap-symbol, because once introduced, it is never removed. A matrix of type
4 is used only once, in the last step of a derivation.

For w, z ∈ (N ∪T)∗ we write w =⇒ z if there is a matrix in m ∈M such that
starting from w and applying once each rule of m in the order specified by m,
one can obtain z; a rule can be skipped if it is in F and it is not applicable.

The language generated by G is defined by L(G) = {w ∈ T ∗ | S =⇒∗ w}.
The family of languages of this form is denoted by MATac. It is known that
MATac = RE.

In turn, an n-register machine is a construct M = (n, B, l0, lh, I), where n is
the number of registers, B is a set of labels, and I is a set of labeled instructions
of the form li : (op(r), lj , lk), where op(r) is an operation on register r of M , and
li, lj , lk are labels from the set B; l0 is the label of the initial instruction, and lh
is the label of the halting instruction. The machine is capable of the following
instructions:

1. li : (ADD(r), lj , lk): Add one to the content of register r and proceed, in a non-
deterministic way, to instruction with label lj or to instruction with label lk;
in the deterministic variant we demand lj = lk and then the instruction is
written in the form li : (ADD(r), lj).

2. li : (SUB(r), lj , lk): If register r is not empty, then subtract one from its
contents and go to instruction with label lj , otherwise proceed to instruction
with label lk.

3. lh : halt: This instruction stops the machine and can only be assigned to the
final label lh.

A deterministic n-register machine can analyze an input m ∈ N, introduced
in register 1, which is accepted if and only if the machine finally stops by the
halt instruction with all its registers being empty. If the machine does not halt,
then the analysis was not successful. We denote by N(M) the set of numbers
accepted by the register machine M . If Q is a Turing computable set, then there
exists a deterministic register machine M with at most three registers, such that
N(M) = Q, [6].

It is not enough that a problem can be solved algorithmically, it is necessary
that the solution comes in a reasonable time and using reasonable computing
resources. Defining what “reasonable time and resources” means and classifying
problems from these points of view are the main tasks of computational com-
plexity. For details we refer to [9]. In Section 5 we show that the NP-complete
problem SAT can be solved in polynomial time by P systems from various classes,
that is why we introduce here this problem.

In SAT we are given Boolean variables x1, x2, . . . , xn and a Boolean formula
β involving such variables; the formula is given in a particular format called
conjunctive normal form, that we will explain in a moment. The question is
whether there is a way to assign Boolean (true/false) values to the variables so
that the formula is satisfied.

20 T.-O. Ishdorj

Boolean formulas are constructed starting from variables and applying the
operators ∨ (that stands for OR), ∧ (that stands for AND), and ¬ (that stands
for NOT).

A clause is formed by taking one or more variables and connecting them with
OR; for example, (x2∨¬x4∨x5) is a clause. A formula in conjunctive normal form
is the AND of a given set of clauses. For example, (x3∨¬x4)∧(x1)∧(¬x3∨x2) is a
formula in conjunctive normal form. Note that the above formula is satisfiable,
and, for example, it is satisfied by setting all the variables to true (there are
also other possible assignments of values to the variables that would satisfy
the formula). On the other hand, the formula (x1) ∧ (¬x1 ∨ x2) ∧ (¬x2) is not
satisfiable, as it can easily be observed.

3 P Systems with Active Membranes

We briefly recall now the notion of P systems with active membranes.
Informally speaking, in P systems with active membranes, the following types

of rules are used: (a) multiset rewriting rules (including non-cooperative and
cooperative evolution rules), (b) rules for introducing objects into membranes, (c)
rules for sending objects out of membranes, (d) rules for dissolving membranes,
(e) rules for dividing elementary membranes, and (f) rules for dividing non-
elementary membranes. In these rules, a single object is involved. Occasionally,
also (g) membrane merging rules, (h) membrane separation rules, (i) membrane
release rules, (k) replicative-distribution rules for sibling membranes, and (l)
replicative-distribution rules for nested membranes were used, e.g., in [1,7,8].
Their common feature is that they involve multisets of objects.

Formally, a polarizationless P system with active membranes is a construct

Π = (O, C, H, μ, w1, w2, . . . , wm, R1, R2, . . . , Rm, h0),

where: m ≥ 1 is the initial degree of the system; O is the alphabet of objects;
C ⊆ O is the set of catalysts (when C = ∅, we omit writing it); H is a finite set
of labels for membranes; μ is a membrane structure, consisting of m membranes,
labeled (not necessarily in a one-to-one manner) with elements of H ; w1, . . . , wm

are strings over O, describing the multisets of objects placed in the m regions of μ;
h0 is the output membrane of Π ; Ri, 1 ≤ i ≤ m, are finite sets of developmental
rules of the forms described below.

In these rules, objects a, b, d are from the alphabet O, c is a catalyst from
C, h is a label from H , and u, v are multisets of objects over the alphabet O.
In membrane separation operation (sep), Q ⊆ O and K ⊂ Q; we denote the
subtraction operation Q−K by ¬K.

It is important to note that we do not use polarizations for membranes. (As
considered in [10,12], the membranes can have one of the negative, positive,
neutral, “electrical charges”, represented by −, +, and 0, respectively, but we do
not use this feature here.) In the literature, one uses to add the subscript 0 to
indicate that the rules do not use polarizations, writing, for instance, sep0, mer0,
etc., but here we omit this subscript.

Minimal Parallelism for Polarizationless P Systems 21

Action & Identification Type of Rule
separate (sep) [Q]

h
→ [K]

h
[¬K]

h

merge (mer) []
h
[]

h
→ []

h

move in (in) a[]
h
→ [b]

h

move out (out) [b]
h
→ []

h
a

promoter (pro) [a → v|b]h

catalytic (cat) [ca → cv]
h

cooperative (coo) [v → u]
h

non-cooperative (ncoo) [a → v]
h

divide for elementary (ediv) [a]
h
→ [b]

h
[d]

h

divide for non-elementary (ndiv) [a]
h
→ [b]

h
[d]

h

The actions and the notations of rules are as follows: sep – separation rules for
elementary membranes; the membrane h, containing objects from Q, is separated
into two membranes with the same labels; the objects from K are placed in the
first membrane, those from Q−K are placed in the other membrane; we request
that both K and Q − K = ¬K are not empty and also that both membranes
[K]h, [¬K]h are non-empty (the rule is not applied otherwise). mer – merging
rules for elementary membranes; the two membranes are merged into a single
membrane; the objects of the former membranes are put together in the new
membrane. in – communication rules; an object is introduced in the membrane
during this process. out – communication rules; an object is sent out of the
membrane during this process. pro – evolution rule with promoter; the rule is
applied only if the promoter object b is present in the region. cat – catalytic
rules; ca → cv, where c ∈ C, a ∈ O − C, v ∈ (O − C)∗; the catalyst c is never
modified, it only assists the evolution of other objects. coo – evolution rules
of radius greater than one; a particular case is that of catalytic rules. ncoo –
object evolution rules, associated with membranes and depending on the label,
but not directly involving the membranes, in the sense that the membranes are
neither taking part in the application of these rules nor are they modified by
them. ediv – 2-division rules for elementary membranes; in reaction with an
object, the membrane is divided into two membranes with the same label; the
object specified in the rule is replaced in the two new membranes by possibly
new objects and the remaining objects are duplicated. ndiv – 2-division rules
for non-elementary membranes; in reaction with an object, the membrane is
divided into two membranes with the same label; the object specified in the rule
is replaced in the two new membranes by possibly new objects; the remaining
objects and membranes contained in this membrane are duplicated, and then
are part of the contents of both new copies of the membrane [2].

Each copy of an object and each copy of a membrane can be used by only one
rule (a promoter can promote several rules at the same time, and a membrane
can appear in several evolution rules at the same time).

In each step, the use of rules is done in the bottom-up manner (first the
inner objects and inner membranes evolve, and the result is duplicated if any
surrounding membrane is divided or separated).

22 T.-O. Ishdorj

When the rules of a given type (α) are able to change the label(s) of the
involved membranes, we denote that type of rules by (α′). For example, the
primed versions of the merging and the separation rules are of the following
forms:

(mer′): []h1 []h2 → []h3 , for h1, h2, h3 ∈ H .
(sep′): [Q]h1 → [K]h2 [¬K]h3 , for h1, h2, h3 ∈ H, K ⊂ Q.

Here we use the rules in the minimally parallel manner [3]. All rules of any
type involving a membrane h form a set Rh. Moreover, if a membrane h appears
several times in a given configuration of the system, then for each occurrence i
of the membrane we consider a different set Rhi . Then, in each step, from each
set Rhi , h ∈ H , from which at least a rule can be used, at least one rule must
be used.

As usual for P systems with active membranes, each membrane and each
object can be involved in only one rule, and the choice of rules to use and of
objects and membranes to evolve is done in a non-deterministic way.

A halting computation gives a result, in the form of the number of objects
present in membrane h0 in the end of the computation; for a computation to
be successful, exactly one membrane with label h0 should be present in the
halting configuration. The set of numbers generated in this way by a system Π
is denoted by Ngen(Π) and the family of such sets, generated by systems having
initially at most n1 membranes and using during the computation configurations
with at most n2 membranes is denoted by Ngen

mp OPn1,n2(types-of-rules), with the
subscript “mp” indicating the “minimal parallelism” used in computations, and
types-of-rules indicating the allowed types of rules. A P system can be also used
in the accepting mode: we introduce a number in the system in the form of a
multiset an, for some a ∈ O, in region h0 and start computing; if the system
halts, then the number n is accepted. The set of all numbers accepted in this
way by Π is denoted by Nacc(Π), and the family of such sets is denoted by
Nacc

mp OPn1,n2(types-of-rules), with the obvious meaning of the used parameters.
When the number of membranes does not increase during the computation we
use only the subscript n1, denoting the maximal number of membranes initially
present in the used systems. When using systems with at most r catalysts, we
write catr for the respective type of rules.

In what follows we give several accepting and generative universality results, as
well as efficiency results for polarizationless P systems working in the minimally
parallel mode.

4 Computational Completeness Results

The Accepting Case. When we remove polarizations from active membranes,
additional features are in general necessary in order to reach the universality.
There are several such features, for instance, cooperative rewriting rules, chang-
ing membrane labels, using promoter/inhibitor objects, priorities among rules,
etc. Some of these tools will be also used in what follows.

Minimal Parallelism for Polarizationless P Systems 23

In the proofs we will simulate register machines. In all constructions, with
each register r of a register machine we associate a membrane with label r, and
the number stored in register r is represented by the number of copies of object
a present in membrane r.

Theorem 1. Nacc
mp OPn(cat1, pro, in, out) = NRE, n ≥ 7.

Proof. Let us consider a deterministic register machine M = (3, B, l0, lh, I) ac-
cepting an arbitrary set N(M) ∈ NRE. We construct the P system

Π = (O, C, H, μ, (wh)h∈H , (Rh)h∈H , 1) with
O = {a, c} ∪ {l, l̄, l′, l′′, l′′′, liv, lv, lvi, lvii | l ∈ B},
C = {c},
H = {0, 1, 1′, 2, 2′, 3, 3′},
μ = [[[]1′]1[[]2′]2[[]3′]3]0,

w0 = l0, w1 = w2 = w3 = c, w′
1 = w′

2 = w′
3 = λ,

and with the following rules in Rh, h ∈ H . (Remember that the number to be
analyzed is introduced in region 1 in the form an.)

An instruction l1 : (ADD(r), l2) is simulated by means of the following rules:

step R0 Rr

1. — l1[]r → [l1]r
2. — [l1 → l′2a]r
3. — [l′2]r

→ []
r
l′2

4. [l′2 → l2]0 —

The label-object l1 enters the correct membrane r, produces one further copy
of a and the label l2, primed, inside membrane r, then the label l′2 exits to the
skin region, loses its prime, and the process can be iterated.

For the simulation of a SUB instruction l1 : (SUB(r), l2, l3) we use the next
rules:

step R0 Rr Rr′

1. [l1 → l′1l′′1]0 — —
2. [l′1 → l′′′1]0 l′′1 []r → [l′′1]r —
3. [l′′′1 → liv1]0 [ca→ ca′|l′′

1
]r l′′1 []r′ → [l′′1]r′

4. — liv1 []r → [liv1]r [l′′1 → lv1]r′

5. — [liv1 → l̄2|a′]r [lv1 → lvi
1]r′

6. — [a′ → λ|l̄2]r [lvi
1]r′ → lvi

1 []r′

7. — [l̄2 → l2|lvi
1

]r or [liv1 → l3|lvi
1

]r lvi
1 []r′ → [lvii

1]r′

8. — [l2]r → l2[]r or [l3]r → l3[]r [lvii
1 → λ]r′

We start the computation by producing a couple of objects l′1 and l′′1 in the
skin region by rule 1. Then l′1 evolves to l′′′1 in the skin region, while object l′′1

24 T.-O. Ishdorj

enters into membrane r. In the third step, while l′′′1 changes to the next primed
version liv1 in the skin region, object l′′1 enters into the inner membrane r′ – this
happens in both cases irrespective whether object a exists or not in membrane r.
If an object a was present, it evolves to a′ in the presence of promoter object l′′1
by means of the catalytic evolution rule [ca→ ca′|l′′

1
]r and the promoter leaves

the membrane r. The catalyst c is used to prevent more objects a to evolve in
the same step. At the fourth step, object l′′1 evolves to lv1 in membrane r′ and
object liv1 enters into membrane r, respectively. Since no object remains in the
skin region, this region will stay idle until the end of the computation. In the
step five, object lv1 evolves to lvi

1 , which will be sent out of the membrane r′

in the following step; in membrane r, if a promoter object a′ is present, then
object liv1 produces the object l̄2. Otherwise, there is no rule to be applied here
in this or the next step. In step 6, object lvi

1 arrives into membrane r, where
the object l̄2 promotes the deletion rule [a′ → λ|l̄2]r and removes the object a′

previously produced. In membrane r, object lvi
1 promotes either object l̄2 or liv1 ,

to introduce the corresponding label-object l2 or l3, respectively. The correct
label-object l2 or l3 is moved to skin region at the 8th step of the computation.
The object lvi

1 enters membrane r′ and is removed.
Note that in the simulation of instructions ADD and SUB of M in each compu-

tation step at most one rule from each set Rh has been used, hence the system
works both in the minimally and in the maximally parallel mode. The starting
configuration of the system is restored after each simulation, hence another in-
struction can be simulated. If the computation in M halts, hence lh is reached,
this means that the halting label-object lh is introduced in the skin region, and
also the computation in Π halts. Consequently, N(M) = Nacc(Π), and this con-
cludes the proof. ��
Because of space restriction, the proofs of the next two results are omitted.

Theorem 2. Nacc
mp OPn(ncoo, in′, out′) = NRE, n ≥ 4.

In the next theorem we use the rather strong tool of cooperative evolution rules
(with radius at most 2), but the membrane labels will not be changed during
the computation.

Theorem 3. Nacc
mp OPn(coo, in, out) = NRE, n ≥ 4.

The Generative Case. We consider now P systems working in the generative
mode.

The next universality result is based on the simulation of a matrix gram-
mar. Catalytic evolution rules, membrane merging and separation, also changing
membrane labels, are used in the proof.

Theorem 4. Ngen
mp OP2,5(cat1, sep

′, mer′) = NRE.

Proof. Let us consider a matrix grammar G = (N, T, S, M, F) with appearance
checking, in the binary normal form, hence with N = N1∪N2∪{S, #}, T = {a},
and with the matrices of the forms as mentioned in Section 2.

Minimal Parallelism for Polarizationless P Systems 25

Assume that all matrices are injectively labeled with elements of a set B.
We construct the P system of degree 2

Π = (O, C, H, μ, w0, ws, (Rh)h∈H , 0) with
O = N1 ∪N2 ∪ {c, c1, c2, a, f,#},
C = {c},
H = {m, m1, m2, m

′
1, m

′′
1 , m′

2, m
′′
2 , m′′′

2 | m ∈ B} ∪ {0, 0′, 0′′, s},
μ = [[]0]s,

w0 = XAcc1c2, ws = λ,

and the sets Rh containing the rules below.

The simulation of a matrix m : (X → Y, A→ x), with X ∈ N1, Y ∈ N1, and
A ∈ N2, x ∈ (N2∪T)∗, |x| ≤ 2, is done in four steps, using the following rules (the
matrix with label m is encoded in the labels of the membranes created by the
separation operation; we start from a configuration of the form [[Xwcc1c2]0]s,
for some w ∈ (N2 ∪ T)∗):

step (X → Y, A→ x)
1. [O]

0
→ [{X}]

m1
[¬{X}]

m2
—

2. [X → Y]m1
[O]m2

→ [{c, A}]m′
2
[¬{c, A}]m′′

2
, or

[c1 → #]m2
, [#→ #]m2

3. []m1
[]m′′

2
→ []m′

1
[cA→ cx]m′

2

4. []m′
1
[]m′

2
→ []0 —

— [α→ #]m′
1
, α ∈ O [#→ #]m′

1

We start the simulation of matrix m by separating membrane 0 under the con-
trol of object X . After separation, object X takes place in a new membrane m1,
and other objects (including c, c1, c2) are placed in a membrane m2. In the second
step, object X evolves to Y while objects A, c makes membrane m2 separate. At
the third step, one copy of object A evolves to x in the new membrane m′

2. Thus,
the rules of matrix m have been simulated. In the meantime, membranes with
labels m1 and m′′

2 are merged into a new membrane labeled m′
1. At the fourth

step, objects Y, x, c, c1, c2 returns to membrane 0, obtained by merging mem-
branes m′

1 and m′
2. If this does not happen, i.e., the rule [cA → cx]m′

2
is used

again in step 4, then the trap object # is introduced (there is at least the object
Y in membrane m′

1). If the object X is present, hence membrane 0 is separated,
but object A not, then in step 2 one introduces the trap object # by the rule
[c1 → #]m2

, which must be used, because [O]m2
→ [{c, A}]m′

2
[¬{c, A}]m′′

2

cannot be used.
Thus, the matrix m is correctly simulated, and the system can pass to the

simulation of another matrix.
The simulation of a matrix with appearance checking m : (X → Y, A → #),

with X, Y ∈ N1, and A ∈ N2, is done in four steps using the following rules:

26 T.-O. Ishdorj

step (X → Y, A→ #)
1. [O]0 → [{X, c1}]m1

[¬{X, c1}]m2

2. [O]m1
→ [{X}]m′

1
[¬{X}]m′′

1
[O]m2

→ [{A}]m′
2
[¬{A}]m′′

2

3. [X → Y]m′
1

[A→ #]m′
2

[]m′′
1
[]m2

→ []m′′′
2

[#→ #]m′
2

4. []m′
1
[]m′′′

2
→ []0

The computation starts with objects X, c1 making membrane 0 to separate.
At the second step, if membrane m2 includes an object A, then it will separate
into membranes m′

2 including A and m′′
2 including the auxiliary object c2. If

A existed, then the computation never stop. At the same time, objects X and
c1 take place in the membranes m′

1 and m′′
1 , respectively. In the third step, X

evolves to Y , and if membrane m2 is still present, then membrane m′′
1 merges

with it, creating a new membrane m′′′
2 . Finally, membranes m′

1 and m′′′
2 are

merged into membrane 0 including all correct objects and the system returns to
a configuration as the starting one.

The simulation of a matrix m : (X → λ, A → x), with X ∈ N1, A ∈ N2, and
x ∈ T ∗, |x| ≤ 2, is done in six steps, using the following rules:

step (X → f, A→ x)
1. [O]0 → [{X}]m1

[¬{X}]m2
—

2. [X → f]m1
[O]m2

→ [{c, A}]m′
2
[¬{A}]m′′

2
, or

[c1 → #]m2
, [#→ #]m2

3. []m1
[]m′′

2
→ []m′

1
[cA→ cx]m′

2

4. []m′
1
[]m′

2
→ []0′ —

— [α→ #]m′
1
, α ∈ O [#→ #]m′

1

5. [O]0′ → [{f} ∪ T]0[¬({f} ∪ T)]0′′ —
6. [f → λ]0 [Z → #]0′′ , Z ∈ N2

[#→ #]
0′′

We omit here the detailed explanation for the first 4 steps, because they are
the same as in the simulation of matrix m : (X → Y, A → x). At step 5,
membrane 0′ is separated into membranes with labels 0 and 0′′. The former one
includes the terminal objects and the special object f . Object f evolves to λ at
step 6. If there are objects Z from N2 in membrane 0′′, then the rule [Z → #]m′

1

is applied and the computation will never halt. Thus, the simulation is correctly
completed. ��

5 Computational Complexity Results

We present here both uniform and semi-uniform linear time solutions of SAT
based on polarizationless P systems working in the minimally parallel mode.
Three results are given, with the following features (types of rules, label changing,
type of construction):

Minimal Parallelism for Polarizationless P Systems 27

no. evolution division communication label changing construction
1. cooper. elementary move out no semi-uniform
2. non-coop. non-element. move in, out yes uniform
3. cooper. non-element. move in, out no uniform

A rigorous framework for dealing with complexity matters in our area is that
of recognizing P systems, which we introduce here following [12]. First, let us
consider P systems with input, which will allow to input a multiset encoding
a decision problem, in a special membrane. Such a device is a tuple (Π, V, i0),
where:

– Π is a usual P system, with the alphabet of objects O and initial multisets
w1, . . . , wm (associated with membranes labeled by 1, . . . , m, respectively).

– V is an (input) alphabet strictly contained in O and such that w1, . . . , wm

are multisets over O − V .
– i0 ∈ {1, 2, . . . , m} is the label of a distinguished membrane (of input).

If w is a multiset over V , then the initial configuration of (Π, V, i0) with input
w is (μ, w′

1, . . . , w
′
m), where w′

i = wi for i 	= i0, and w′
i0

= wi0 ∪w.
The computations of a P system with input are defined in a natural way,

the only change is that the initial configuration is obtained by adding the input
multiset w over V to the initial configuration of the system Π .

Then, a recognizing P system is a P system with input, (Π, V, i0), such that:

1. The alphabet O of Π contains two distinguished elements, yes, no.
2. All computations of the system halt.
3. If C is a computation of Π , then either the object yes or the object

no (but not both) is sent out to the environment, and only in the
last step of the computation.

We say that C is an accepting (respectively, rejecting) computation if the
object yes (respectively, no) appears in the environment in the halting configu-
ration of C.

To understand what solving a problem in a semi-uniform/uniform way means,
we consider a decision problem X . A family ΠX = (ΠX(1), ΠX(2), . . .) of P
systems (with active membranes in our case) is called semi-uniform (uniform)
if its elements are constructible in polynomial time starting from X(n) (from n,
respectively), where X(n) denotes the instance of size n of X . We say that X
can be solved in polynomial (linear) time by the family ΠX if the system ΠX(n)
will always stop in a polynomial (linear, respectively) number of steps, sending
out the object yes if and only if the instance X(n) has a positive answer. For
more details about complexity classes for P systems see [11,12].

Note that always we have an answer, one of yes and no, but we have said
nothing about the way the computations evolve, the only restriction we impose is
that all of them halt (in a number of steps bounded by a known function). That
is why we say that such systems are confluent (they may be non-deterministic,
but the answer is obtained in a finite time irrespective of the possible branchings
of the computations). The deterministic systems, where no branching is possible,
are a particular case of confluent systems.

28 T.-O. Ishdorj

Theorem 5. P systems constructed in a uniform manner and working in the
minimally parallel mode using rules of types (ncoo, ndiv, in, out′) can solve SAT
in linear time.

Proof. Let us consider a propositional formula in the conjunctive normal form,
α = C1 ∧ · · · ∧ Cm, such that each clause Ci, 1 ≤ i ≤ m, is of the form Ci =
yi,1 ∨ · · · ∨ yi,ki , ki ≥ 1, where yi,j ∈ {xk,¬xk | 1 ≤ k ≤ n}.

The instance α is encoded as a set over

Σ(〈n, m〉) = {xi,j , x
′
i,j | 1 ≤ i ≤ m, 1 ≤ j ≤ n}.

The object xi,j represents the variable xj appearing in the clause Ci without
negation, and object x′

i,j represent the variable xj appearing in the clause Ci

with negation. Thus, the input multiset is

w = {xi,j | xj ∈ {yi,j | 1 ≤ k ≤ li}, 1 ≤ i ≤ m, 1 ≤ j ≤ n}
∪ {x′

i,j | ¬xj ∈ {yi,j | 1 ≤ k ≤ li}, 1 ≤ i ≤ m, 1 ≤ j ≤ n}.

For given (n, m) ∈ N2, we construct a recognizing P system (Π(〈n, m〉),
Σ(〈n, m〉), 0) with:

Π(〈n, m〉) = (O(〈n, m〉), H, μ, (wh)h∈H , (Rh)h∈H), where
O(〈n, m〉) = {xi,j , x

′
i,j , tj,i, fj,i | 1 ≤ i ≤ m, 1 ≤ j ≤ n}

∪ {bi, ci, a
′
i, a

′′
i , a′′′

i | 1 ≤ i ≤ n} ∪ {yes, no, d}
∪ {l′i | 0 ≤ i ≤ n} ∪ {li, ei, | 1 ≤ i ≤ m}
∪ {ai | 0 ≤ i ≤ n + 2} ∪ {di | 0 ≤ i ≤ 6n + m + 7},

μ = [[[[]m . . . []2[]1]0]a[]d]s,

wa = a0, wd = d0, w0 = l′0, ws = wi = λ, 1 ≤ i ≤ m,

H = {s, a, b, d, y, n} ∪ {i | 0 ≤ i ≤ m} ∪ {i′, i′′ | 0 ≤ i′, i′′ ≤ n},

and the following rules (we also give explanations about their use):

1. [di → di+1]d, 0 ≤ i ≤ 6n + m + 5.

Object di counts the computation steps in membrane d.

Initialization phase:

2. xi,j [] i → [xi,j] i,
x′

i,j [] i → [x′
i,j] i, 1 ≤ i ≤ m, 1 ≤ j ≤ n.

We re-encode the problem α into m membranes in n steps.

3. [ai → ai+1]a, 0 ≤ i ≤ n + 2.
4. [l′i → l′i+1]0, 0 ≤ i ≤ n− 1.

Minimal Parallelism for Polarizationless P Systems 29

Simultaneously with the use of rule 2, the evolution rules 3 and 4 are applied in
membranes a and 0, respectively.

5. [l′n → l1l2 . . . lm]0.
6. li[]j → [li]j , 1 ≤ i, j ≤ m.
7. [li] j → []0′d, 1 ≤ i, j ≤ m.
8. an+2[]0 → [a1]0.

At step n+1, object l′n evolves to l1, l2, . . . , lm. Consequently, in order to change
the membrane labels j, 1 ≤ j ≤ m, by 0′, those objects enter into and are sent
out of membranes in two steps, by means rules 6 and 7. Meanwhile, object an+2

evolves to a1 and enters into membrane 0, by rule 8. Thus, the initialization
phase has been completed in n + 3 steps.

Checking phase:

9. [ai]0 → [bi]0[ci]0, 1 ≤ i ≤ n.
10. [bi → t1,it2,i . . . tm,ia

′
i]0,

[ci → f1,if2,i . . . fm,ia
′
i]0, 1 ≤ i ≤ n.

We generate 2n membranes with label 0 by using non-elementary membrane
division rule 9. In each step, bi and ci correspond to the truth values true and
false, respectively, for variable xi. By rule 10, objects bi and ci evolve. Rules 9
and 10 are performed in 2 steps.

11. ti,j [] (j−1)′ → [ti,j] (j−1)′ , or
ti,j [] (j−1)′′ → [ti,j] (j−1)′′ ,
fi,j [] (j−1)′ → [fi,j] (j−1)′ , or
fi,j [] (j−1)′′ → [fi,j] (j−1)′′ , 1 ≤ i ≤ m, 1 ≤ j ≤ n.

12. [a′
j → a′′

j]0.

The groups of objects t1,j , t2,j , . . . , tm,j and f1,j, f2,j , . . . , fm,j , corresponding to
variable xj , are introduced into inner membranes with labels (j − 1)′ or (j − 1)′′

by rule 11, and object a′
j is evolved to a′′

j by rule 12. These two rules are applied
simultaneously.

13. [ti,j] (j−1)′ → [] j′d, [ti,j] (j−1)′′ → [] j′d,
[fi,j] (j−1)′ → []j′′d, [fi,j] (j−1)′′ → []j′′d, 1 ≤ i ≤ m, 1 ≤ j ≤ n.

14. [a′′
j → a′′′

j]0.

By using rule 13, objects ti,j and fi,j (corresponding to the truth value true
and false for variable xj of a clause Ci) leave membranes with labels (j − 1)′ or
(j − 1)′′ and change the labels to j′ and j′′, respectively. Object a′′′

j is produced
in membrane 0 by rule 14. Now (using rules 15) we will check which clauses are
satisfied by truth values.

15. [xi,j → ei]j′ ,

30 T.-O. Ishdorj

[x′
i,j → ei]j′′ , 1 ≤ i ≤ m, 1 ≤ j ≤ n.

16. [a′′′
j → aj+1]0.

We remind that single and double primes of the labels j′ and j′′ indicate true
and false values, respectively. By rule 15, object xi,j in membrane j′ and object
x′

i,j in membrane j′′ evolve to ei. More precisely, the object without negation
has to evolve to object el, because the membrane label k′ has a single prime
and this indicates the true value, and the subscript of el must be the same with
the first subscript of the object xl,k. Similarly, the object with negation has to
evolve to el because of k′′ which is double-primed and indicates the value false.

In the membranes 0, the objects a′′′
i lose their primes and increase the sub-

script ai+1. We continue in this way the operations of membrane division and
construction of truth assignments corresponding to the next variable xi+1 (rules
9-16). Between two divisions 5 steps are performed. For having all possible 2n

truth assignments, we need 5n division processes. In this way, we check the
satisfiability of all clauses and this process ends at the 6n+3th step of the com-
putation. At that step, objects an+1 are removed from membrane 0 changing its
label to 1, by means of rule 17.

17. [an+1]0 → []1d.

Recognizing phase:

After the 6n+3 steps, there are 2n membranes with label 1 and each of them
contains m membranes labeled by n′ or n′′.

18. [ei]n′ → []nei,
[ei]n′′ → []nei, 1 ≤ i ≤ m.

By rule 18, objects ei, 1 ≤ i ≤ m, are introduced into membrane 1 changing the
former membrane labels from n′ and n′′ to n. If all objects e1, e2, . . . , em are
present in a membrane with label 1, that means that all clauses C1, C2, . . . , Cm

are satisfied.

19. [ei] i → [] i+1ei, 1 ≤ i ≤ m.

Objects ei, 1 ≤ i ≤ n, leave membrane i one by one increasing the label. In m
steps, we can get objects em to appear in membrane a. One of them is non-
deterministically chosen and expelled out of membrane a, which changes the
label to b, by means of rule 20.

20. [em]a → []bem.
21. [em → yes]s.
22. [yes]s → []yyes.

If an object em had appeared in the skin membrane, then it will evolve to yes;
this object will be sent to the environment, changing the skin membrane label
to y by using rules 21, 22, in the 6n + m + 7th step of the computation.

Minimal Parallelism for Polarizationless P Systems 31

23. [d6n+m+6]d
→ []

d
d6n+m+7.

24. [d6n+m+7]s → []nno.

If the formula is not satisfiable, the object no is sent to environment in the step
6n + m + 8 by rule 24.

Thus, the problem is solved in a uniform manner, in a linear time, with the
system working in both the minimally parallel and the maximally parallel modes.

��
Due to space restriction, we again give next theorems without the proofs. The
proof ideas are the same as for Theorem 5, that is, we re-encode the input multi-
set in m membranes, and in this way we avoid the maximal parallel applications
of rules in the same membrane.

Theorem 6. P systems constructed in a uniform manner, working in the mini-
mally parallel mode using rules of types (coo, ndiv, in, out) can solve SAT in linear
time.

Theorem 7. P systems working in the minimally parallel mode with rules of
types (coo, ediv, out) and constructed in a semi-uniform manner can solve SAT
in linear time with respect to the number of the variables and the number of
clauses.

6 Final Remarks

The main contribution of this paper is the use of the minimal parallelism in the
framework of P systems with active membranes, without using membrane polar-
izations. Both universality and efficiency results were proved in this framework,
for various combinations of types of rules.

Besides possible improvements of the previous theorems, it also remains to in-
vestigate the possibility of obtaining similar universality and efficiency results for
other classes of P systems working in the minimally parallel mode, in particular,
for the case of using rules of the forms ncoo, out, sep.

Acknowledgment. The work of the author is supported by the Center for
International Mobility (CIMO) Finland, grant TM-06-4036.

References

1. A. Alhazov, T.-O. Ishdorj, Membrane Operations in P Systems with Active
Membranes. In:Gh. Păun, et al. (eds.) Second Brainstorming Week on Membrane
Computing, Sevilla, 2-7 February, 2004, TR 01/2004, University of Sevilla, 37–44.

2. A. Alhazov, L. Pan, Gh. Păun, Trading Polarizations for Labels in P Systems
with Active Membranes, Acta Informaticae, 41, 2-3 (2004), 111–144.

3. G. Ciobanu, L. Pan, Gh. Păun, M. J. Pérez-Jiménez, P Systems with Minimal
Parallelism. Submitted 2005.

32 T.-O. Ishdorj

4. J. Dassow, Gh. Păun, Regulated Rewriting in Formal Language Theory. Springer-
Verlag, Berlin, 1989.

5. J. E. Hopcroft, J. D. Ullman, Introduction to Automata Theory, Languages,
and Computation. Addison-Wesley, Reading, MA, 1979.

6. M. L. Minsky, Finite and Infinite Machines. Prentice Hall, Englewood Cliffs, 1967.
7. L. Pan, A. Alhazov, T.-O. Ishdorj, Further Remarks on P Systems with Active

Membranes, Separation, Merging and Release Rules. Soft Computing, 8 (2004), 1–
5.

8. L. Pan, T.-O. Ishdorj, P Systems with Active Membranes and Separation Rules.
Journal of Universal Computer Science, 10, 5 (2004), 630–649.

9. Ch. P. Papadimitriou, Computational Complexity. Addison-Wesley, Reading,
MA, 1994.

10. Gh. Păun, P Systems with Active Membranes: Attacking NP-Complete Problems.
Journal of Automata, Languages and Combinatorics, 6, 1 (2001), 75–90.

11. Gh. Păun, Membrane Computing: An Introduction. Springer-Verlag, Berlin, 2002.
12. M. J. Pérez-Jiménez, A. Romero-Jiménez, F. Sancho-Caparrini, Complexity

Classes in Models of Cellular Computation with Membranes. Natural Computing,
2, 3 (2003), 265–285.

P Systems with Active Membranes Characterize
PSPACE

Petr Sośık1,2 and Alfonso Rodŕıguez-Patón1

1 Universidad Politécnica de Madrid – UPM, Facultad de Informática
Campus de Montegancedo s/n, Boadilla del Monte, 28660 Madrid, Spain

arpaton@fi.upm.es
2 Institute of Computer Science, Silesian University

74601 Opava, Czech Republic
petr.sosik@fpf.slu.cz

Abstract. A P system is a natural computing model inspired by in-
formation processes in cells and a control role of cellular membranes.
We show that uniform families of P systems with active membranes are
able to solve, in polynomial time, exactly the class of decisional prob-
lems PSPACE. Similar results were achieved also with other models of
bio-inspired computers, such as DNA computing. Together they suggest
that PSPACE naturally characterizes the computational potential of
biological information processing.

1 Introduction

Membrane systems, called also P systems, are bio-inspired computing models
trying to capture the computational aspects of cell metabolism and information
interchange. P systems are focusing on, among other things, molecular synthe-
sis within cells, selective particle recognition by membranes, controlled transport
through protein channels, or membrane division and dissolution. These processes
are modeled in P systems by means of multiset processing in separate cell-like
regions. The aim of these models is to identify operations which give to cellu-
lar systems their information-processing strength, and to prepare their possible
implementation in vitro or in silico. The bibliography of P systems started with
seminal paper [1]. For an introduction and overview of P systems, we refer the
reader to [2], while a complete and up-to-date bibliography can be found online
at the url [3].

Here we investigate the family of P systems with active membranes, intro-
duced in [4]. Until now, a sequence of research papers studied the class of
problems solvable by this family of P systems in polynomial time. We cite e.g.
[5,6,7,8,9,10,11,12], to name a few. The main ingredients of this model of mem-
brane computer are the polarization, division and dissolution of membranes.
Rather surprisingly, by imposing restrictions on these operations one obtains
a scale of computational power corresponding to the complexity classes P, NP
and coNP just by tuning simple parameters of the P system. We refer the reader
to Section 3 for exact specification of these results.

C. Mao and T. Yokomori (Eds.): DNA12, LNCS 4287, pp. 33–46, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

34 P. Sośık and A. Rodŕıguez-Patón

In this paper, an upper bound on the power of unrestricted P systems with
active membranes is given. We show that the class of problems they compute in
polynomial time is equal to PSPACE. The same property is possessed by the
class of standard parallel computational models as alternating Turing machine,
SIMDAG (also known as SIMD PRAM) and others [13].

This result is related to properties of other natural computing models. For
example, in the field of DNA computing a similar result was first given in [14].
Later, in [15] another, more robust DNA computing model capturing PSPACE
in polynomial time was presented. Also, when focusing on the operation of ge-
netic crossing-over, one obtains an equally powerful model called genetic Turing
machine [16]. Altogether, these studies suggest that PSPACE is indeed the
limiting class of power of the natural computing machinery.

2 Definitions

In this section we give a brief description of P systems with active membranes
due to [4] or [2], where more details can also be found. A membrane structure is
represented by a Venn diagram (or a rooted tree) and is identified by a string
of correctly matching parentheses, with a unique external pair of parentheses
corresponding to the external membrane, called the skin. A membrane without
any other membrane inside is said to be elementary. The following example from
[4] illustrates the situation: the membrane structure in Figure 1 is identified by
the string

μ = [1[2[5]5[6]6]2[3]3[4[7[8]8]7]4]1.

�

�

�

�

�
�

�
�

�
�

�
�

�

�

�

�

�

�

�

�

�
�

�
�

1

2
3

4
5

6

7

8

�
%

%
%

�
�

����
&

&
&

�
�

�� ���
�

1

2 3 4

5 6
7

8

Fig. 1. A membrane structure and its associated tree

In what follows, we occasionally refer to membranes as nodes in the associ-
ated tree. The membranes can be further marked with +, − or 0, and this is
interpreted as an “electrical charge”. We will write [i]+i , [i]−i , [i]0i in the three
cases, respectively.

The membranes delimit regions, precisely identified by the membranes. In
these regions we place objects which are represented by symbols of an alphabet.

P Systems with Active Membranes Characterize PSPACE 35

Several copies of the same object can be present in a region, so we work with
multisets of objects. A multiset over an alphabet V can be represented by a
string x ∈ V ∗ (by V ∗ we denote the free monoid generated by V with respect to
the concatenation and the identity λ). For a string x ∈ V ∗ we denote by m(x)
its associated multiset over V.

A P system with active membranes is a construct

Π = (V, H, μ, w1, . . . , wm, R),

where:

(i) m ≥ 1;
(ii) V is an alphabet;
(iii) H is a finite set of labels for membranes;
(iv) μ is a membrane structure, consisting of m membranes, labelled (not nec-

essarily in a one-to-one manner) with elements of H ; all membranes in μ
are supposed to be neutral;

(v) w1, . . . , wm are strings over V , describing the multisets of objects placed in
the regions of μ;

(vi) R is a finite set of developmental rules, of the following forms:
(a) [ha→ v]αh , for h ∈ H, α ∈ {+,−, 0}, a ∈ V, v ∈ V ∗

(object evolution rules);
(b) a[h]α1

h → [hb]α2
h , for h ∈ H, α1, α2 ∈ {+,−, 0}, a, b ∈ V

(communication rules);
(c) [ha]α1

h → [h]α2
h b, for h ∈ H, α1, α2 ∈ {+,−, 0}, a, b ∈ V

(communication rules);
(d) [ha]αh → b, for h ∈ H, α ∈ {+,−, 0}, a, b ∈ V

(dissolving rules);
(e) [ha]α1

h → [hb]α2
h [hc]α3

h , for h ∈ H, α1, α2, α3 ∈ {+,−, 0}, a, b, c ∈ V
(division rules for elementary membranes);

(f) [
h0

[
h1

]+
h1

. . . [
hk

]+
hk

[
hk+1

]−
hk+1

. . . [
hn

]−
hn

]α2
h0

→ [h0
[h1

]α3
h1

. . . [hk
]α3
hk

]α5
h0

[h0
[hk+1

]α4
hk+1

. . . [hn
]α4
hn

]α6
h0

,
for n > k ≥ 1, hi ∈ H, 0 ≤ i ≤ n, and α2, . . . , α6 ∈ {+,−, 0};
(division of non-elementary membranes);

At each computational step, first the rules are assigned in a maximally parallel
way to objects and membranes. At one step, an object a can be subject to only one
rule of type (a)–(e) and a membrane h can be subject to only one rule of type (b)–
(f). In the case of type (f) rules this means that none of the membranes labelled
h0, . . . , hn listed in the rule can be simultaneously subject to another rule of type
(b)–(f). The membrane to which a (c), (d) or (e)-type rule is assigned may contain
also other objects than a which may simultaneously evolve by rules of type (a).

Then all the rules are applied in parallel. In the case of rules (d) the results
of evolution of all objects are released to the parent membrane of h. In the
case of rules (e) the results of evolution of all objects except a contained in
the membrane h are copied to both resulting copies of h. In the case of rules
(f) the membrane h0 can contain also other membranes than h1, . . . , hn, which

36 P. Sośık and A. Rodŕıguez-Patón

must have polarization 0. The results of evolution of all these membranes and
all objects contained in the membrane h0 are copied to both resulting copies of
h0. We refer the reader to [4] for a more detailed description.

The membrane structure of Π at a given moment, together with all multisets
of objects contained in its regions, form the configuration of the system. The
(m + 1)-tuple (μ, w1, . . . , wm) is the initial configuration. We can pass from one
configuration to another by using the rules from R according to the principles
given above. The computation stops when there is no rule which can be applied to
objects and membranes in the last configuration. The result of the computation
is the collection of objects expelled from the skin membrane during the whole
computation. In such a way P systems with active membranes can generate any
recursively enumerable set [4].

An accepting variant of P systems also exists which solves decision problems.
A distinguished region contains, at the beginning of the computation, an input
– a description of an instance of a problem. The result of the computation (a
solution to the instance) is “yes” if a distinguished object yes is expelled during
the computation, otherwise the result is “no.”

A P system is called deterministic if for each input a unique sequence of con-
figurations exists which it can pass through. Each problem decidable by Turing
machines is also decidable by deterministic P systems with active membranes
[5]. A P system is called confluent if it always halts and, starting from the same
initial configuration, it always returns the same result “yes” or “no”. Therefore,
given a fixed initial configuration, a confluent P system can non-deterministically
choose from various sequences of configurations, but all of them must lead to
the same result.

3 Complexity Classes of P Systems

Consider a decision problem X, i.e. a set of instances {x1, x2, . . .} such that to
each xi there is uniquely assigned an answer “yes” or “no”. A typical situation
in many biocomputing models is that each “machine” (e.g. a system of DNA
molecules and reactions, or a P system) can solve only a limited number of
instances. However, the problem X can still be solvable by a given class of
biocomputing systems in such a sense that each instance is solved by some
member of the class. Hence it is more natural to consider families of P systems
for solving computational problems [10].

We denote by |xi| the size of an instance xi of a problem X. In a usual
representation xi, i = 1, 2, . . . , are words over a fixed finite alphabet and |xi| is
the length of xi.

Definition 1. Let D be a class of P systems and let f : N −→ N be a total
function. The class of problems solved by uniform families of P systems of type
D in time f, denoted by MCD(f), contains all problems X such that:

1. there exists a uniform family of P systems ΠX = (ΠX(1); ΠX(2); . . .) of type
D : each ΠX(n) can be constructed by a deterministic Turing machine with
input n in time polynomial to n.

P Systems with Active Membranes Characterize PSPACE 37

2. Each ΠX(n) is sound: there exists a distinguished object yes such that ΠX(n)
starting with a (properly encoded) input x ∈ X of size n expels out object
yes if and only if the answer to x is “yes”.

3. Each ΠX(n) is confluent: all computations of ΠX(n) with the same input x
of size n give the same result: “yes” or “no”.

4. ΠX is f -efficient: ΠX(n) always halts in at most f(n) steps.

Alternatively we can consider semi-uniform families of P systems ΠX = (ΠX

(x1); ΠX(x2); . . .) whose members ΠX(xn) can be constructed by a deterministic
Turing machine with input xn in a polynomial time w.r.t. |xn|. In this case, for
each instance of X we have a special P system which therefore does not need
an input. The resulting class of problems is denoted by MCS

D(f). Obviously,
MCD(f) ⊆MCS

D(f) for a given class D and a constructible function f.
Particularly, we denote by

PMCD =
⋃
k∈N

MCD(O(nk)), PMCS
D =

⋃
k∈N

MCS
D(O(nk)),

the classes of problems solvable by uniform (semi-uniform, respectively) families
of P systems in polynomial time.

We also denote by AM (EAM, NAM) the classes of P systems with active
membranes (with elementary membrane division only and without membrane
division, respectively). The following relations are known [6,8,10,11,12]:

P = PMCNAM, (1)
P = PMCAM,nδ,nπ, (2)

NP ∪ coNP ⊆ PMCEAM, (3)
PSPACE ⊆ PMCAM ⊆ PMCS

AM, (4)

where in (2) we denote byAM, nδ, nπ P systems with active membranes, without
membrane dissolution and polarization.

4 The Characterization of PSPACE

In this section we show that the inclusions reverse to (4) hold as well. To demon-
strate that a result of any f(n) time-bounded computation of an accepting P
system with active membranes can be found in a space polynomial to f(n), we
employ the technique of reverse-time simulation. Instead of simulating a compu-
tation of a P system from its initial configuration onwards (which would require
an exponential space for storing configurations), we create a recursive function
which returns the state of any membrane h after a given number of steps. The
recursive calls evaluate contents of the membranes interacting with h in a reverse
time order (towards the initial configuration). In such a manner we do not need
to store a state of any membrane, but instead we calculate it recursively when-
ever it is needed. The simulation algorithm is described in a high-level language;
in principle, however, it could be performed by a Turing machine, too.

38 P. Sośık and A. Rodŕıguez-Patón

Notice also that the simulated P system is confluent, but the simulation is
done in a deterministic way. As the rules in membranes are simulated always
in the same order, we simulate only one possible sequence of configurations of
the P system. This corresponds to introducing a weak priority between rules: (i)
bottom-up priority between rules associated to different membranes, (ii) priority
between rules in the same membrane, given by the order in which they are listed,
including the priority between types (a), (b), (c), (d), (e), (f), in this order. The
confluency condition ensures that such a simulation leads always to a correct
result.

Theorem 1. PMCS
AM ⊆ PSPACE.

Proof. Consider a confluent P system Π = (V, H, μ, w1, . . . , wm, R) with active
membranes. For any membrane h of Π, we define its state S = (M, p), where M is
the multiset characterizing the contents of membrane h and p is its polarization.
We use the notation S.M and S.p to refer to these two components of state.

A crucial element of our construction is the function State(h, n) which com-
putes the state (M, p) of any membrane h of Π after n steps of computation.
Its construction is based on the observation that State(h, n) depends solely on
State(h, n− 1), on the state of its parent membrane and on the states of all its
embedded membranes (at all the lower levels of the membrane structure tree)
after n− 1 steps.

Simplified simulation without non-elementary membrane division

We can assume that the original labeling of membranes of Π in μ is one-to-one
and the labels identify the membranes uniquely. However, during the compu-
tation of Π the membranes may be divided, keeping their original labels. To
identify membranes uniquely, we add an index to each membrane label. In the
initial configuration, each index is an empty string. If a membrane is not divided
in a computational step, the digit 1 is added to its index. If it is divided using a
rule of type (e), the resulting membranes have added the digits 1 or 2, respec-
tively, to their indices. Hence, after n steps of computation the index of each
membrane is an n-tuple of digits from {1, 2}.

We construct the function State(hi1i2...in , n) which computes the state of a
membrane hi1i2...in after n computational steps of Π. (The second argument of
the function is redundant but it adds clarity to the further description.) If the
membrane h has been dissolved, the returned value is dissolved. If it does not
exist after n steps, the returned value is nil. Observe that our indexing system
allows us to denote all membranes which could exist when all the elementary
membranes divide at every step. In a particular computation of Π this need not
hold, and hence some indices may denote non-existing membranes.

Function State

Parameters (in all the functions passed by reference): hi1i2...in , n

Local variables: S, S′, X, X ′, Elementary

P Systems with Active Membranes Characterize PSPACE 39

1. If n = 0 then return the state of membrane h in the initial configuration and
exit.

2. S ← State(hi1...in−1 , n− 1)

3. If S = nil then return nil and exit.
/* If membrane hi1...in−1 did not exist after (n− 1) steps, then after n steps
its successor hi1i2...in cannot exist as well. */

4. If S = dissolved then:
if in = 2 then return nil, else return dissolved, and exit.
/* If membrane hi1...in−1 has been dissolved during the first (n− 1) steps of
Π, then it cannot divide during step n. */

5. S′.M ← ∅, S′.p← S.p, Elementary ← false
/* S′ will contain the final state of membrane h after the n-th step of Π*/

6. /* We calculate the contribution to the state of hi1...in from membranes
embedded in hi1...in−1 due to possible application of rules (b), (c), (d) in
these membranes. */
Contribution from children(hi1...in−1 , S, S′,Elementary)

7. X.M ← ∅, X ′.M ← ∅, X.p← 0, X ′.p← 0

8. /* We calculate the state of the parent membrane of h. */
If h is not the skin membrane, then X ← State(Parent(hi1...in−1), n− 1)

9. /* Now we simulate evolution of membrane hi1...in−1 at step n. */
(a) Try rules a(h, S, S′, X)

(b) Try rules b(h, S, S′, X); if any rule was applied, go to step 10.

(c) Try rules c(h, S, S′, X); if any rule was applied, go to step 10.

(d) Try rules d(h, S, S′, X); if any rule was applied, go to step 10.

(e) If Elementary then:
if in = 1, then Try rules e(h, S, S′, X), else Try rules e(h, S, X, S′)

10. If in = 2 and a rule of type (e) was not applied, then S′ ← nil
/* If in = 2, then membrane hi1i2...in could only be created by an application
of an (e)-type rule at the n-th step. */

11. If S′ 	= nil and S′ 	= dissolved then S′.M ← S′.M ∪ S.M

12. Return S′ and exit.

Procedures Try rules a – Try rules e are implemented as follows:

Parameters:
h – label of the membrane processed
S – original state of the membrane
S′– final state of the membrane
T – state of another membrane eventually acting at the operation

40 P. Sośık and A. Rodŕıguez-Patón

(a) For each rule [ha→ v]αh in R such that S.p = α :
– remove all the occurrences of a from S.M
– add to S′.M the same number of occurrences of m(v).

(b) For each rule a[h]α1
h → [hb]α2

h in R : if S.p = α1 and a ∈ T.M then:
T.M ← T.M \ {a}, S′.M ← S′.M ∪ {b}, S′.p ← α2, and skip all other
applicable rules.

(c) For each rule [ha]α1
h → [h]α2

h b in R : if S.p = α1 and a ∈ S.M then:
S.M ← S.M \ {a}, T.M ← T.M ∪ {b}, S′.p ← α2, and skip all other
applicable rules.

(d) For each rule [ha]αh → b in R : if S.p = α and a ∈ S.M then:
S.M ← S.M \ {a}, S′.M ← S′.M ∪ {b}, T.M ← T.M ∪ S.M ∪ S′.M,
S′ ←dissolved, and skip all other applicable rules.

(e) For each rule [ha]α1
h → [hb]α2

h [hc]α3
h in R : if S.p = α1 and a ∈ S.M then:

S.M ← S.M \ {a},
S′.M ← S′.M ∪ {b}, S′.p← α2,
T.M ← T.M ∪ {c}, T.p← α3,
and skip all other applicable rules.

Observe that, with the aid of the function State, we can uniquely determine
the parent and the children (in terms of the membrane structure tree) of a given
membrane hi1i2...in , without actually storing the membrane structure of Π after
the n-th step.

Function Parent

Parameters:
hi1i2...in – a membrane whose parent is searched for

1. Let g be the parent membrane of h in the initial membrane structure μ.

2. If State(g1...1, n) = dissolved then return Parent(g1...1, n), else return g1...1.

Procedure Contribution from children calculates the interaction of a mem-
brane with its children membranes in a given step, by:
– sending objects into children membranes by rules of type (b),
– receiving objects from children membranes by rules of type (c),
– receiving contents of children membranes by rules of type (d).
Furthermore, it tests whether the membrane is elementary.

Parameters:
hi1...in – a membrane to which its children contribute
S – set of objects in h which have not been yet subject to any rule
S′ – set of objects which are produced in h as a result of rule applications
Elementary – a logical variable to be set to true if hi1...in is an elementary mem-
brane

P Systems with Active Membranes Characterize PSPACE 41

Local variables: X, X ′, g, Elementary ′

Initialize Elementary ← true. For each children membrane g of h in the ini-
tial membrane structure μ, and for each index j1 . . . jn such that ji ∈ {1, 2},
1 ≤ i ≤ n, repeat:

1. X ← State(gj1...jn , n), X ′ ← (∅, 0)

2. If X = nil then skip the remaining steps.

3. If X = dissolved then:
Contribution from children(gj1...jn , S, S′,Elementary′),
Elementary ← Elementary and Elementary ′,
skip the remaining steps.
/* If membrane gj1...jn is dissolved, then its children are actually children of
hi1...in . */

4. Elementary ← false

5. Contribution from children(gj1...jn , X, X ′,Elementary′)
/* We need this for the case that gj1...jn is dissolved at the n-th step and
releases its contents to hi1...in . */

6. Try rules a(g, X, X ′, X ′)

7. Try rules b(g, X, X ′, S); if any rule was applied, skip remaining steps.

8. Try rules c(g, X, X ′, S′); if any rule was applied, skip remaining steps.

9. Try rules d(g, X, X ′, S′)
/* If gj1...jn is dissolved, then its recursively calculated contents (including
the contents of eventual lower-level dissolved membranes) is added to S′. */

Observe that the recursive function State was defined correctly because all
its recursive calls during the computation of State(hi1i2...in , n) were of the form
State(gj1j2...jn−1 , n − 1), i.e. referring to a state of (another) membrane at the
previous step. The same holds for the recursive calls of State in procedures
Parent and Contribution from children.

Adding the non-elementary membrane division

When the division of non-elementary membranes is allowed, a division may si-
multaneously take place at various levels of the membrane structure tree. There-
fore, the existence of a membrane hi1...in does not depend solely on the exis-
tence of its parent membrane gi1...i(n−1) as before. Instead, one has to take into
the account the potential divisions of all the upper-level membranes contain-
ing h. As a consequence, the above described procedures State, Parent, and
Contribution from children have to be extended substantially. Due to page
restriction we give here only a brief description of these extensions.

– A more sophisticated indexing of membranes is used, taking into the account
not only a particular step n of the system but also a depth k of the membrane.

42 P. Sośık and A. Rodŕıguez-Patón

The compound index has the form i11 . . . i1n, i21 . . . i2n, . . . , ik1 . . . ikn and
contains implicitly the values of n and k. However, these two parameters
determine the computational complexity of the functions State, Parent and
Contribution from children. Hence, in the following description we use
simplified notation of these functions with the parameters n and k only.

– The function State tests at the beginning the existence of the membrane
specified by its parameter. If in the previous step any of the parents of this
membrane was divided, then some children (together with all their objects
and embedded membranes) of that parent were moved into only one of the
resulting two copies and some might be copied to both. Hence this existence
test results in mutual recursive calls of procedures Parent and State on
decreasing levels of the membrane structure tree up to the skin membrane.

– The remaining procedures are in principle similar as in the previous section,
with the exception that one must deal with possible application of (f)-type
rules. These rules set polarization of membranes in two adjacent levels and
change the position of all their membrane subtrees.

– The resulting structure of the recursive calls is the following:
• State(n, k) calls State(n−1, k), Contribution from children(n−1, k),
Parent(n− 1, k) and Parent(n, k),

• Parent(n, k) calls State(n, k − 1), and Parent(n, k− 1),
• Contribution from children(n, k) calls Contribution from chi-
ldren (n, k + 1) and State(n, k + 1).

Space complexity of the simulation

A result of any computation of a confluent P system Π with active membranes
can be calculated with the aid of function State. Let h0 be the skin membrane of
Π. One can subsequently calculate State(h0, n), until the object yes is expelled
using the rule of type (c), or until the computation halts. Halting can be tested
by computing State(h, n) for all the membranes h which could potentially exist
after n steps, n = 1, 2, 3, . . . , until no rule can be applied in any of them.

We determine the space complexity of the function State(h, n) which can
simulate n steps of a P system Π = (V, H, μ, w1, . . . , wm, R) of size nO(1). Let

d be the depth of the initial membrane structure tree μ,
p = max{|v|; (a→ v) ∈ R},
q = card(V),
on denote the number of objects within the system after n steps. Hence,
o0 = |w1|+ . . . + |wm|.

By assumption, the values d, p, q and o0 are bounded from above by nO(1). In
the rest of the proof we treat them as constants as they are fixed for a given
Π. For on one can write that, due to possible membrane division and object
multiplication,

on ≤ o0m(p 2d)n.

The value of on is also a sufficient upper bound for the number of objects in a
single membrane after n steps. Then the number of bits sufficient to store the
contents of an arbitrary membrane is

P Systems with Active Membranes Characterize PSPACE 43

sn ≤ q�log on� ≤ q�log(o0m)�+ nq(�log p�+ d) = c0 + c1n (5)

for positive constants c0 and c1 of size nO(1).
Denote by S(n, k) (P (n, k), C(n, k)) the space complexity of the functions

State (Parent, Contribution from children, respectively) with a parameter
hI , where the I is a compound index referring to n-th computational step of a
membrane h located at a level k of the membrane structure tree. These proce-
dures store in local variables contents of the manipulated membranes requiring
sn bits. Another kn bits are needed to store identification (i.e., compound in-
dices) of membranes, plus there are also some other variables of a constant size.
The structure of these procedures correspond to the following recurrences:

S(0, k) = s0, 0 ≤ k ≤ d (6)
S(n, 0) = C(n− 1, 1) + 4sn + c, n ≥ 1 (7)
S(n, k) = max{P (n, k), P (n− 1, k), C(n− 1, k), S(n− 1, k)}

+4sn + kn + c, n ≥ 1, 1 ≤ k ≤ d (8)

C(n, d) = 0 (9)
C(n, k) ≤ max{C(n, k + 1) + 3sn + c, S(n, k + 1)}+ n(k + 1),

0 ≤ k < d, n ≥ 0 (10)

P (n, 0) = S(n, 0) (11)
P (n, k) ≤ max{P (n, k − 1), S(n, k − 1)}+ n(k − 1) + c,

1 ≤ k ≤ d, n ≥ 0. (12)

By expanding (10) to a series for k, k + 1, . . . , d we obtain

C(n, k) ≤ max{S(n, i) | k < i ≤ d} +O(d2n + dsn) (13)

for 0 ≤ k ≤ d, n ≥ 0. Let us define

S(n) = max{S(n, k) | 0 ≤ k ≤ d}. (14)

Observe that one can omit P (n− 1, k) in (8) as obviously P (n− 1, k) ≤ P (n, k).
By (13) and (14) we can rewrite (8) in the form

S(n, k) ≤ max{P (n, k), S(n− 1) +O(d2n + dsn)}+O(sn + kn),
n ≥ 1, 1 ≤ k ≤ d (15)

By substituting P (n, i), i = k, k−1, . . . with (12), and S(n, i), i = k−1, k−2, . . .
with (15), we can expand (15) as follows:

S(n, k) ≤ max{P (n, k−1), S(n, k−1), S(n−1)+O(d2n+dsn)}+2O(sn + kn)
≤ max{P (n, k−2), S(n, k−2), S(n−1)+O(d2n+dsn)}+3O(sn + kn)

44 P. Sośık and A. Rodŕıguez-Patón

...
≤ max{P (n, 0), S(n, 0), S(n− 1) +O(d2n + dsn)} + (k + 1)O(sn + kn)
≤ max{C(n− 1, 1) + 4sn + c, S(n− 1) +O(d2n + dsn)}+

+(k + 1)O(sn + kn)
≤ S(n− 1) +O(d2n + dsn).

The next-to-last step was done by substituting P (n, 0) and S(n, 0) with (11)
and (7), respectively. In the last step we substituted C(n − 1, 1) with (13) and
(14). Therefore, the recurrence (6)–(8) can be rewritten with the aid of (14) as
follows:

S(0) = s0

S(n) ≤ S(n− 1) +O(d2n + dsn)

A solution to this recurrence is S(n) = O(d2n2 + ndsn), and by (5) one gets
S(n) = nO(1). Therefore, a nO(1) time-bounded computation of Π can be indeed
simulated in space nO(1) which concludes the proof. �

Corollary 1. PMCAM = PMCS
AM = PSPACE.

5 Discussion

The results presented in this paper establish a theoretical upper bound on the
power of confluent P systems with active membranes. We note that the charac-
terization of power of non-confluent P systems with active membranes remains
open. The presented proof cannot be simply adapted to this case by using a
non-deterministic Turing machine for simulation. Observe that in our recursive
algorithm the same configuration of the P system can be re-calculated many
times during one simulation run. If the simulation was non-deterministic, we
could obtain different results for the same configuration which would make the
simulation non-consistent.

Other variants of P systems with active membranes exist. For example, in
[7] the non-elementary membrane division is controlled by rules of the form
[ha]α1

h → [hb]α2
h [hc]α3

h . Eventual simulation of this variant of P systems with
active membranes would be almost the same as the first part of our proof de-
scribing the simplified simulation. Therefore, we claim that Theorem 1 also holds
for this variant of membrane systems. Another idea in [7] is the use of minimal
parallelism (in contrast to maximal parallelism employed here – all objects that
can evolve also should evolve). As long as the P system remained confluent, the
presented result would remain valid in the case of minimal paralelism.

Finally, one could consider further variants or extension originally designed
for other models of P systems. The presented simulation algorithm could be
easily adapted to many of them. For example, consider a P system with input
computing optimization problems. Such a P system would output a sequence

P Systems with Active Membranes Characterize PSPACE 45

of objects (corresponding to a word or a number). One could also introduce
cooperative rules (involving more than one object) or priorities among rules.
The number of possible polarizations may be increased from three (0, +,−) to
a larger set, other features like promoters, inhibitors, impermeable membranes
etc. may be used.

Acknowledgements

Research was supported by the Czech Science Foundation, grants 201/06/0567,
201/04/0528, and by the Programa Ramón y Cajal, Ministerio de Ciencia y
Tecnoloǵıa, Spain. We thank G. Păun and anonymous referees for valuable com-
ments helping to improve the paper.

References

1. Gh. Păun, Computing with Membranes, J. Comput. System Sci., 61 (2000), 108–
143.

2. Gh. Păun, Membrane Computing: an Introduction, Springer-Verlag, Berlin, 2002.
3. The P Systems Web Page at http://psystems.disco.unimib.it

4. Gh. Păun, P systems with active membranes: attacking NP complete problems, J.
Automata, Languages and Combinatorics, 6, 1 (2001), 75–90.

5. A. Alhazov, R. Freund, A. Riscos-Núñez, One and two polarizations, membrane
creation and objects complexity in P systems, in: G. Ciobanu, Gh. Păun (Eds.),
First Int. Workshop on Theory and Application of P Systems (TAPS), Timişoara,
Romania, 2005, pp. 9–18.

6. A. Alhazov, C. Martin-Vide, L. Pan, Solving a PSPACE-complete problem by P
systems with restricted active membranes, Fundamenta Informaticae, 58, 2 (2003),
67–77.

7. G. Ciobanu, L. Pan, G. Păun, M.J. Pérez-Jiménez, P Systems with Minimal Par-
allelism, submitted.

8. M.A. Gutiérrez-Naranjo, M.J. Pérez-Jiménez, A. Riscos-Núñez, F.J. Romero-
Campero, On the power of dissolution in P systems with active membranes, in: R.
Freund et al. (Eds.), Membrane Computing, 6th International Workshop, WMC
2005, Berlin, Springer-Verlag, LNCS 3850 (2006), pp. 224–240.

9. M.A. Gutiérrez-Naranjo, M.J. Pérez-Jiménez, A. Riscos-Núñez, F.J. Romero-
Campero, Characterizing standard tractability by cell-like membrane systems, in:
K.G. Subramanian (Ed.), Formal Models, Languages and Applications, World Sci-
entific, 2006, in press.

10. M.J. Pérez-Jiménez, A.R. Jiménez, F. Sancho-Caparrini, Complexity classes in
models of cellular computing with membranes, Natural Computing, 2 (2003), 265–
285 .

11. P. Sośık, The computational power of cell division: beating down parallel comput-
ers? Natural Computing, 2–3 (2003), 287–298.

12. C. Zandron, C. Ferretti, G. Mauri, Solving NP-complete problems using P systems
with active membranes, in: I. Antoniou, C.S. Calude, M.J. Dinneen (Eds.), Uncon-
ventional Models of Computation, Springer-Verlag, London, 2000, pp. 289–301.

13. J.L. Balcazar, J. Diaz, J. Gabarro, Structural Complexity II, Springer-Verlag,
Berlin, 1991.

46 P. Sośık and A. Rodŕıguez-Patón

14. D. Beaver, A universal molecular computer, in: R.J. Lipton, E.B. Baum (Eds.),
DNA Based Computers, vol. 27 of DIMACS: Series in Discrete Mathematics and
Theoretical Computer Science, American Mathematical Society, 1995, pp. 29–36.

15. E. Dantsin, A. Wolpert, A robust DNA computation model that captures PSPACE.
Int. J. Foundations Comp. Sci., 14(5) (2003), 933–951.

16. P. Pudlák, Complexity theory and genetics: The computational power of crossing-
over. Information and Computation, 171 (2001), 201–223.

All NP-Problems Can Be Solved in Polynomial
Time by Accepting Networks of Splicing

Processors of Constant Size

Florin Manea1, Carlos Mart́ın-Vide2, and Victor Mitrana1,2

1 Faculty of Mathematics and Computer Science, University of Bucharest
Str. Academiei 14, 70109, Bucharest, Romania

flmanea@funinf.cs.unibuc.ro
2 Research Group in Mathematical Linguistics, Rovira i Virgili University

Pça. Imperial Tarraco 1, 43005, Tarragona, Spain
{carlos.martin, vmi}@urv.cat

Abstract. In this paper, we present two new results regarding ANSPs.
The first one states that every recursively enumerable language can be
accepted by an ANSP of size 7 out of which 6 do not depend on the
given language. Then we propose a method for constructing, given an
NP-language, an ANSP of size 7 accepting that language in polynomial
time. Unlike the previous case, all nodes of this ANSP depend on the
given language. Since each ANSP may be viewed as a problem solver as
shown in [6], the later result may be interpreted as a method for solving
every NP-problem in polynomial time by an ANSP of size 7.

1 Introduction

The origin of networks of evolutionary processors (NEP for short) is a basic archi-
tecture for parallel and distributed symbolic processing, related to the Connection
Machine [5] as well as the Logic Flow paradigm [2], which consists of several pro-
cessors, each of them being placed in a node of a virtual complete graph, which
are able to handle data associated with the respective node. Each node processor
acts on the local data in accordance with some predefined rules, and then local
data becomes a mobile agent which can navigate in the network following a given
protocol. Only such data can be communicated which can pass a filtering process.
This filtering process may require to satisfy some conditions imposed by the send-
ing processor, by the receiving processor or by both of them. All the nodes send
simultaneously their data and the receiving nodes handle also simultaneously all
the arriving messages, according to some strategies, see, e.g., [3, 5].

In a series of papers (see [7] for a survey) we considered that each node may
be viewed as a cell having genetic information encoded in DNA sequences which
may evolve by local evolutionary events, that is point mutations. Each node is
specialized just for one of these evolutionary operations. Furthermore, the data
in each node is organized in the form of multisets of words (each word appears
in an arbitrarily large number of copies), and all the copies are processed in

C. Mao and T. Yokomori (Eds.): DNA12, LNCS 4287, pp. 47–57, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

48 F. Manea, C. Mart́ın-Vide, and V. Mitrana

parallel such that all the possible events that can take place do actually take
place. Obviously, the computational process just described is not exactly an
evolutionary process in the Darwinian sense. But the rewriting operations we
have considered might be interpreted as mutations and the filtering process
might be viewed as a selection process. Recombination is missing but it was
asserted that evolutionary and functional relationships between genes can be
captured by taking only local mutations into consideration [10].

In [6] we replaced the point mutations associated with each node by the
missing operation mentioned above, that of splicing. This new processor was
called splicing processor. This computing model, called accepting network of
splicing processors (shortly ANSP), is similar to some extent to the test tube
distributed systems based on splicing introduced in [1] and further explored in
[9]. However, there are several differences: first, the model proposed in [1] is a
language generating mechanism while ours is an accepting one; second, we use a
single splicing step, while every splicing step in [1] is actually an infinite process
consisting of iterated splicing steps; third, each splicing step in our model is
reflexive; fourth, the filters of our model are based on random context conditions
while those considered in [1] are based on membership conditions; fifth, at every
splicing step a set of auxiliary words, always the same and proper to every
node, is available for splicing. We want to stress from the very beginning that
the splicing processor we discuss here is a mathematical object only and the
biological hints presented above are intended to explain in an informal way
how some biological phenomena are sources of inspiration for our mathematical
computing model.

In [6] we presented a characterization of the complexity class NP based on
ANSP and discussed how these networks can be considered as problem solvers.
Along these lines we presented a uniform linear time solution to SAT. In this
paper, we present two new results regarding ANSPs:

1. Every recursively enumerable language can be accepted by an ANSP of size
7. It has 6 fixed nodes which do not depend on the given language and one node
only, the input one, which depends on the given language.

2. A method for constructing, given an NP-language, an ANSP of size 7
accepting that language in polynomial time. Unlike the previous case, all nodes
of this ANSP depend on the given language. Since each ANSP may be viewed as
a problem solver as shown in [6], the later result may be interpreted as a method
for solving every NP-problem in polynomial time by an ANSP of size 7. The
fact that all NP-problems can be solved in polynomial time by ANSPs actually
follows from the linear solution to SAT presented in [6], but the novelty here is
given by the constant size of the networks solving these problems.

2 Basic Definitions

We start by summarizing the notions used throughout the paper. An alphabet is
a finite and nonempty set of symbols. The cardinality of a finite set A is written
card(A). Any finite sequence of symbols from an alphabet V is called word over V .

All NP-Problems Can Be Solved in Polynomial Time 49

The set of all words over V is denoted by V ∗ and the empty word is denoted by ε.
The length of awordx is denotedby |x|whilealph(x) denotes theminimal alphabet
W such that x ∈W ∗.

A splicing rule over the alphabet V is a quadruple written in the form σ =
[(x, y); (u, v)], where x, y, u, v are words over V . Given a splicing rule σ over V as
above and a pair of words (w, z) over the same alphabet V we define the action
of σ on (w, z) by:

σ(w, z) =

⎧⎨
⎩
{t | w = αxyβ, z = γuvδ for some words α, β, γ, δ over V

and t = αxvδ or t = γuyβ}
{w} ∪ {z}, if the set above is empty.

This action on pair of words can be naturally extended to a language L by
σ(L) =

⋃
w,z∈L

σ(w, z). Furthermore, if M is a finite set of splicing rules over V ,

then we set M(L) =
⋃

σ∈M

σ(L).

For two disjoint subsets P and F of an alphabet V and a word x over V , we
define the predicates

ϕs(x; P, F) ≡ P ⊆ alph(x) ∧ F ∩ alph(x) = ∅
ϕw(x; P, F) ≡ alph(x) ∩ P 	= ∅ ∧ F ∩ alph(x) = ∅.

The construction of these predicates is based on random-context conditions
defined by the two sets P (permitting contexts/symbols) and F (forbidding con-
texts/symbols). Informally, the former condition requires (s stands for strong)
that all permitting symbols are present and no forbidding symbol is present in
x, while the latter (w stands for weak) is a weaker variant such that at least one
permitting symbol appears in x but still no forbidding symbol is present in x.

For every language L ⊆ V ∗ and β ∈ {s, w}, we define:

ϕβ(L, P, F) = {x ∈ L | ϕβ(x; P, F)}.

A splicing processor over V is a 6-tuple (S, A, PI, FI, PO, FO), where:

– S is a finite set of splicing rules over V .
– A is a finite set of auxiliary words over V . These auxiliary words are to be

used by this splicing processor for splicing.
– PI, FI ⊆ V are the input permitting/forbidding contexts of the proces-

sor, while PO, FO ⊆ V are the output permitting/forbidding contexts of the
processor (with PI ∩ FI = ∅ and PO ∩ FO = ∅).

We denote the set of splicing processors over V by SPV .
An accepting network of splicing processors (ANSP for short) is a 9-tuple

Γ = (V, U, 〈, 〉, G, N , α, xI , xO), where:

• V and U are the input and network alphabet, respectively, V ⊆ U , and, also,
〈, 〉 ∈ U \ V are two special symbols.

50 F. Manea, C. Mart́ın-Vide, and V. Mitrana

• G = (XG, EG) is an undirected graph without loops with the set of nodes
XG and the set of edges EG. Each edge is given in the form of a binary set.
G is called the underlying graph of the network.

• N : XG −→ SPU is a mapping which associates with each node x ∈ XG the
splicing processor N (x) = (Sx, Ax, P Ix, F Ix, POx, FOx).

• α : XG −→ {s, w} defines the type of the input/output filters of a node.
More precisely, for every node, x ∈ XG, the following filters are defined:

input filter: ρx(·) = ϕα(x)(·; PIx, F Ix),
output filter: τx(·) = ϕα(x)(·; POx, FOx).

That is, ρx(z) (resp. τx) indicates whether or not the word z can pass the
input (resp. output) filter of x. More generally, ρx(L) (resp. τx(L)) is the set
of words of L that can pass the input (resp. output) filter of x.

• xI , xO ∈ XG are the input and the output node of Γ , respectively.

We say that card(XG) is the size of Γ . We focus here on complete ANSPs, i.e.,
ANSPs having a complete underlying graph (every two nodes are connected)
denoted by Kn, where n is the number of nodes.

A configuration of a ANSP Γ as above is a mapping C : XG −→ 2U∗
which

associates a set of words with every node of the graph. A configuration may
be understood as the sets of words which are present in any node at a given
moment. Given a word z ∈ V ∗, the initial configuration of Γ on z is defined by
C

(z)
0 (xI) = {〈z〉} and C

(z)
0 (x) = ∅ for all x ∈ XG\{xI}. Notice that the auxiliary

words do not appear in any configuration.
A configuration can change either by a splicing step or by a communication

step. When changing by a splicing step, each component C(x) of the configu-
ration C is changed in accordance with the set of splicing rules Mx associated
with the node x and the set Ax. Formally, we say that the configuration C′ is
obtained in one splicing step from the configuration C, written as C =⇒ C′, iff

C′(x) = Sx(C(x) ∪Ax) for all x ∈ XG.

Since each word present in a node, as well as each auxiliary word, appears in
an arbitrarily large number of identical copies, all possible splicings are assumed
to be done in one splicing step.

When changing by a communication step, each node processor x ∈ XG sends
one copy of each word it has, which is able to pass the output filter of x, to all
the node processors connected to x and receives all the words sent by any node
processor connected with x providing that they can pass its input filter.

Formally, we say that the configuration C′ is obtained in one communication
step from configuration C, written as C � C′, iff

C′(x) = (C(x) \ τx(C(x))) ∪
⋃

{x,y}∈EG

(τy(C(y)) ∩ ρx(C(y))) for all x ∈ XG.

Notice that, according to this definition, all the words that can go out of a
node go out even if they cannot pass any input filter (so they are “lost”).

All NP-Problems Can Be Solved in Polynomial Time 51

Let Γ be an ANSP, the computation of Γ on the input word z ∈ V ∗ is a
sequence of configurations C

(z)
0 , C

(z)
1 , C

(z)
2 , . . . , where C

(z)
0 is the initial configu-

ration of Γ on z, C
(z)
2i =⇒ C

(z)
2i+1 and C

(z)
2i+1 � C

(z)
2i+2, for all i ≥ 0. By the previous

definitions, each configuration C
(z)
i is uniquely determined by the configuration

C
(z)
i−1. In other words, each computation in an ANSP is deterministic. A com-

putation halts (and it is said to be finite) if one of the following two conditions
holds:

(i) There exists a configuration in which the set of words existing the output
node xO is non-empty. In this case, the computation is said to be an accepting
computation.

(ii) There exist two consecutive identical configurations.

The language accepted by Γ is

La(Γ) = {z ∈ V ∗ | the computation of Γ on z is an accepting one}.
We say that an ANSP Γ decides the language L ⊆ V ∗, and write L(Γ) = L iff
La(Γ) = L and the computation of Γ on every z ∈ V ∗ halts.

3 Encoding Complete ANSPs

In this section we describe a straightforward way of encoding an arbitrary com-
plete ANSP using the fixed alphabet:

A = {$, #, ∗, s, w, 0, 1,♠, •}.
Let Γ = (V, U, 〈, 〉, G,N , α, xI , xO) be an ANSP, where

– V = {a1, a2, . . . , am}, and U = {a1, a2, . . . , ap}, p ≥ m,
– the nodes of Kn are x1, x2, . . . , xn, with x1 = xI and x2 = xO.

We encode every symbol ai of U , and denote this encoding by code(ai), in the
following way:

code(ai) =
{

10i, 1 ≤ i ≤ m
♠0i, m + 1 ≤ i ≤ p

We assume that code(〈) = ♠0m+1 and code(〉) = ♠0m+2. Given z, a word over
U as above, we define its encoding code(z) as follows:

code(ε) = 1, code(b1b2 . . . bk) = code(b1)code(b2) . . . code(bk),

k ≥ 1, bi ∈ U, 1 ≤ i ≤ k. Let L ⊆ U∗ be a finite language, L = {z1, . . . , zk}. We
encode this language by the word code(L) = •code(z1)•code(z2)• . . .•code(zk)• .
The empty language is encoded by code(∅) = •.

As a direct consequence of the above considerations, the splicing rule r =
[(x, y); (u, v)] is encoded as: code(r) = ∗code(x) ∗ code(y) ∗ code(u) ∗ code(v)∗. A
set of splicing rules R = {r1, . . . , rm} is encoded:

code(R) = •code(r1) • code(r2) • . . . • code(rm) • .

52 F. Manea, C. Mart́ın-Vide, and V. Mitrana

For each node x, code(N (x)) is

#code(Sx)#code(Ax)#code(PIx)#code(FIx)#code(POx)#code(FOx)#,

and code(x) = #code(N (x))α(x)#. We now describe the way Γ is encoded. This
is:

code(Γ) = $code(Kn)$code(x1)$code(x2)$. . . $code(xn)$,

where code(Kn) = ♠n.
Note that a similar encoding of an ANSP can be accomplish using the binary

alphabet A = {0, 1} only. However, in order to make the further exposure more
readable we do not use this binary encoding, though the results we present in
the sequel can be easily carried over this setting.

4 How to Decide All Recursively Enumerable Languages
with ANSPs of Constant Size

In this section we prove that there exists an ANSP ΓU , such that if the input
word of ΓU is code(Γ)code(z), for some ANSP Γ and word z the followings hold:
• ΓU halts on the input code(Γ)code(z) if and only if Γ halts on the input z.
• code(Γ)code(z) is accepted by ΓU if and only if z is accepted by Γ .

The first step of this construction is to define a Turing machine that behaves as
described in the next theorem.

Theorem 1. There exists a Turing machine TU , with the input alphabet A,
satisfying the following conditions on any input code(Γ)code(z), where Γ = (V,
U, 〈, 〉, G, N , α, xI , xO) is an arbitrary ANSP and z is a word over the input
alphabet of Γ :

(i) TU halts on the input code(Γ)code(z) if and only if Γ halts on the
input z.

(ii) code(Γ)code(z) is accepted by TU if and only if z is accepted by Γ .

Proof. We briefly describe the way TU is obtained. Let T ′
U be a 4-tapes Turing

Machine, with the tapes labeled W, X, Y, Z. The algorithm that this machine
implements is the following:

1. On tape W it is found the input word: code(Γ)code(z). We assume
that Γ = (V, U, 〈, 〉, G, N , α, xI , xO), the nodes of Kn being x1, x2, . . . , xn,
with x1 = xI and x2 = xO. We copy on tape X the encoding of the graph Kn

by copying the part of code(Γ) between the first and the second occurrence of
$. Each symbol ♠ on this tape will be used to keep track of the node that is
processed at a given moment. On tape Y we construct the initial configuration
of Γ . Then, our strategy is the following one.

2. The encoding of the configuration of the i-th node will be memorized
between the i-th and (i + 1)-th occurrences of symbol $ on tape Y .

3. Tapes Y and Z, the latter containing initially n + 1 symbols $, will be
used in the simulation of both splicing and communication steps which run alter-
natively one after another each being preceded by the the following acceptance

All NP-Problems Can Be Solved in Polynomial Time 53

phase: If the configuration associated with xO after a splicing or communica-
tion step is not empty, then the computation stops and our machine accepts the
input word. Otherwise, if, before a splicing or communication step, the words
from tapes Y and Z are identical, then the computation also stops, but the input
word is not accepted.

Clearly, this strategy can be formally implemented by a Turing machine. We
obtain that T ′

U implements the desired behavior. From a classical result, it follows
that there exist a 1-tape Turing Machine, TU , with the same behavior as T ′

U .
This concludes the proof of the theorem. �

The final step of the construction of a universal ANSP is based on the following
theorem:

Theorem 2. [6] For any recursively enumerable language L, accepted by the
Turing machine M = (Q, V, U, δ, q0, B, F), there exists an ANSP Γ such that
L(Γ) = L and size(Γ) = 2card(U) + 2.

From the proof of Theorem 2, as presented in [6], it follows that the ANSP Γ
halts on exactly the same input words as M does. Consequently, we can construct
an ANSP ΓU , that implements the same behavior as TU , which is the universal
ANSP. Therefore, we have shown:

Theorem 3. There exists an ANSP ΓU , with the input alphabet A, satisfying
the following conditions on any input code(Γ)code(z), where Γ is an arbitrary
ANSP and z is a word over the input alphabet of Γ :

(i) ΓU halts on the input code(Γ)code(z) if and only if Γ halts on the
input z.

(ii) code(Γ)code(z) is accepted by ΓU if and only if z is accepted by Γ .
Moreover, size(ΓU) = 2card(A) + 2.

Recall that A can be reduced to a binary alphabet, hence the size of ΓU can be
reduced to 6.

We can now prove the main result of this section:

Theorem 4. For every recursively enumerable language L there exists an ANSP
Γ such that L(Γ) = L and size(Γ) = 2card(A) + 3.

Proof. Let ΓU = (A, WU , 〈, 〉, K2card(A)+2, N , αU , x
(U)
I , x

(U)
O). We may assume

without loss of generality that the language L is over an alphabet V , which
has no common symbol with the working alphabet of the universal ANSP ΓU ,
namely WU . Since L is recursively enumerable, due to Theorem 2, there exists an
ANSP Π such that L(Π) = L. The following statements are immediate: z ∈ L
iff z ∈ L(Π), hence, z ∈ L iff code(Π)code(z) ∈ L(ΓU). From these remarks we
can proceed with the construction of the ANSP

Γ = (V, W, 〈, 〉, K2card(A)+3, N , α, In, x
(U)
O).

as follows. Let V = {a1, a2, . . . , an}. We first define the working alphabet of Γ :
W = V ∪WU ∪ {#′, #′′}.

The nodes of the network Γ consist of the input node In and the nodes of the
universal ANSP ΓU . Hence, we should only give the definitions for the node In:

54 F. Manea, C. Mart́ın-Vide, and V. Mitrana

– S(In) = {[(〈, a), (〈code(Π), #′)] | a ∈ V ∪ {〉}} ∪
{[(code(Π), a), (#′′, code(a)#′)] | a ∈ V } ∪
{[(code(b), a), (#′′, code(a)#′)] | b, a ∈ V } ∪
{[(d code(a), #′)(#′′a, b)] | a ∈ V, b ∈ V ∪ {〉}, d ∈WU},

– A(In) = {〈code(Π)#′} ∪ {#′′code(a)#′ | a ∈ V },
–
{

PI(In) = ∅ FI(In) = WU

PO(In) = A ∪ {〈, 〉} FO(In) = V ∪ {#′, #′′}
– α(In) = w.

For the rest of the nodes x of the network, those of ΓU , we assume that α(x) =
αU (x). We modify only the input filters of the node x

(U)
I of ΓU by allowing to

enter the words containing only the symbols in A ∪ {〈, 〉}. Note that the output
node of Γ is the output node of ΓU . We mention also that, due to the form of
the input filters of the nodes of ΓU , any word leaving In can enter only x

(U)
I .

In the following we describe the way Γ works. Let us assume that z = z1 . . . zk

is the input word. Hence, at the beginning of the computation, the only not-void
configuration will be that associated with the node In: C

(z)
0 (In) = {〈z〉}.

It can be shown by induction on i that:

(i) After 2i + 1, 0 ≤ i ≤ k, splicing steps all the sets associated with nodes
different from In will be empty, and:
C

(z)
2i+1(In) = {〈code(Π)code(z1) . . . code(zi)zi+1 . . . zk〉} ∪ {#′′zj#′ | 0 ≤ j ≤ i}
∪
{〈#′} ∪ {#′′code(a)#′ | a ∈ V } ∪ {〈code(Π)#′}.
No word from this set can leave the node In until i = k.

(ii) After 2i, 1 ≤ i ≤ k, splicing steps all the sets associate with nodes different
from In will be empty, and:
C

(z)
2i (In) = {〈code(Π)code(z1) . . . code(zi)#′} ∪ {#′′zj#′ | 1 ≤ j < i} ∪ {〈#′}
∪
{#′′code(a)#′ | a ∈ V \ {xi}} ∪ {〈code(Π)#′}.
No word from this set can leave the node In.

After 2k + 1 splicing steps, only 〈code(Π)code(z1) . . . code(zk)〉 will leave In

in the next communication step entering x
(U)
I , while the other words in In will

remain unchanged in this node until the end of computation. No other words that
might leave In will ever appear in this node, since no further word can enter this
node. Hence, this node will not affect the rest of computation which consists in
the steps performed by the universal ANSP ΓU on the input 〈code(Π)code(z)〉.

From the considerations above it follows that the word z is accepted by Γ if,
and only if, z ∈ L(Π) = L. �

We make several remarks regarding the construction above. Only the rules in
the node In depend on the language L, and the encoding that we use for its
symbols. The parameters of the other nodes do not depend in any way on the
language L, on the encoding of the ANSP Π , or on the symbols of V . Finally,
by the considerations on the cardinality of A in Section 3, the size of the ANSP
Γ proposed in the proof of the last theorem can be decreased to 7.

All NP-Problems Can Be Solved in Polynomial Time 55

5 How to Decide NP-Languages in Polynomial Time
with ANSPs of Constant Size

In this section we approach the problem of finding a constant-size ANSP for
every recursively enumerable language in a different manner: we try to find an
architecture that is both descriptive and computational efficient for a given lan-
guage, even if this means to obtain a construction in which every node depends
effectively on the language that it accepts. We recall from [6] the following defi-
nitions. We consider an ANSP Γ with the input alphabet V that halts on every
input. The time complexity of the finite computation C

(x)
0 , C

(x)
1 , C

(x)
2 , . . . C

(x)
m

of Γ on x ∈ V ∗ is denoted by T imeΓ (x) and equals m. The time complexity of
Γ is the partial function from IN to IN :

T imeΓ (n) = max{T imeΓ (x) | x ∈ V ∗, |x| = n}.

Theorem 5. For every language L in NP, there exists an ANSP of size 7 that
decides L in polynomial time.

Proof. Assume that we are given a language L, recognized in polynomial time
by a non-deterministic Turing machine M = (Q, V, U, δ, q0, B, F). Let U =
{x1, . . . , xk}; we construct the morphism h : U → {0, 1}∗ defined by h(xi) =
0i−110k−i. It is not hard to construct a Turing machine M ′, with working al-
phabet {0, 1}, that accepts h(L) in polynomial time. From theorem 2 it follows
that there exists an ANSP ΓL = ({0, 1}, {0, 1}, 〈, 〉, K6, N , α, xI , xO) that
accepts h(L) in polynomial ANSP-time.

We construct Γ = (V, {0, 1}, 〈, 〉, K7, α, In, xO), such that the nodes of Γ
are the nodes of ΓL and the new input node In. The processors in the nodes of
ΓL are not modified, except for the node xI , whose input filters are modified in
order to permit the access of the words that have only the symbols: {〈, 〉, 0, 1}.
We should only define the processor placed in the node In:

– S(In) = {[(〈, a), (#′′, h(a)#′)] | a ∈ V } ∪ {[(h(b), a), (#′′, h(a)#′)] |
b, a ∈ V } ∪ {[(c h(a), #′)(#′′a, b)] | a ∈ V, b ∈ V ∪ {〉}, c ∈ {0, 1, 〈}}

– A(In) = {#′′h(a)#′ | a ∈ V }
–
{

PI(In) = ∅ FI(In) = WU

PO(In) = {0, 1, 〈, 〉} FO(In) = V ∪ {#′, #′′}
– α(In) = w.

Note that, due to the form of the input filters of the nodes of ΓU , adjusted as
described above, any word leaving In can enter only xI .

In the following we describe the way Γ works. Let us assume that z = z1 . . . zk

is the input word. It can be proved by induction on i that:

(i) After 2i − 1, 1 ≤ i ≤ k, splicing steps all the sets associate with nodes
different from In will be empty, and:
C

(z)
2i−1(In) = {〈h(z1) . . .h(zi)#′, #′′zi . . . zk〉} ∪ {#′′zj#′ | 1 ≤ j < i} ∪
{#′′h(a)#′ | a ∈ V \ {zi}}.

56 F. Manea, C. Mart́ın-Vide, and V. Mitrana

No word from this set can leave the node In in any of the communication steps,
consequently, all the sets associated with other nodes remain empty.

(ii) After 2i, 1 ≤ i ≤ k, splicing steps all the sets associated with nodes
different from In will be empty, and:
C

(z)
2i (In) = {〈h(z1) . . . h(zi)zi+1 . . . zk〉} ∪ {#′′zj#′ | 1 ≤ j ≤ i} ∪
{#′′h(a)#′ | a ∈ V \ {zi}}.
No word from this set can leave the node In in any of the communication steps,
until i = k, when only 〈h(z1) . . . h(zk)〉 will leave In in the next communication
step and enter xI , while the other words will remain unchanged in this node
until the end of computation. No other words that can leave In will ever appear
in this node, since no word can enter this node. Hence, this node will not affect
the further computation. The rest of the computation consists on the steps
performed by the ANSP ΓL on the input 〈h(z)〉. From the considerations above
it is straightforward that the word z is accepted by Γ if, and only if, h(z) ∈
L(ΓL) = h(L), which is equivalent to z ∈ L.

We assume now that T imeΓL(n) ≤ P (n), for all n ∈ IN , where P is a polyno-
mial function. Such an assumption holds as L ∈ NP, and NP equals the class of
all languages decided by ANSPs in polynomial time [6]. According to the facts
already presented, it is clear that the number of steps performed by the ANSP
Γ on an input word z is bounded by 4|z|+ P (|z|), hence it is polynomial in the
length of z. This concludes the proof. �

We discuss briefly and informally how ANSPs could be used as problem solvers.
A possible correspondence between decision problems and languages can be done
via an encoding function which transforms an instance of a given decision prob-
lem into a word, see, e.g., [4]. We say that a decision problem P is solved in time
O(f(n)) by ANSPs if there exists a family A of ANSPs such that the following
conditions are satisfied:

1. The encoding function of any instance p of P having size n can be computed
by a deterministic Turing machine in time O(f(n)).

2. For each instance p of size n of the problem one can effectively construct, in
time O(f(n)), an ANSP Γ (p) ∈ A which decides, again in time O(f(n)), the
word encoding the given instance. This means that the word is accepted if
and only if the solution to the given instance of the problem is “YES”. This
effective construction is called an O(f(n)) time solution to the considered
problem.

If an ANSP Γ ∈ A, constructed as above, decides the language of words encoding
all instances of the same size n, then the construction of A is called a uniform
solution. Intuitively, a solution is uniform if for problem size n, we can construct
a unique ANSP solving all instances of size n taking the (reasonable) encoding
of instance as “input”. This view of ANSPs as problem solvers is consistent for,
as shown in [6], each language decided by a Turing machine (deterministic or
not) in time O(f(n)) is decided by an ANSP in time O(f(n)). Consequently,
the last result may be interpreted as a method for solving every NP-problem in
polynomial time by an ANSP of size 7.

All NP-Problems Can Be Solved in Polynomial Time 57

6 Final Remarks

We briefly discuss here a few stimulating problems, in our view, that remained
unsolved in this work. First, we consider that further research might be aimed at
investigating whether the constant size we proposed here is optimal. Second, the
problem of minimal number of nodes of an ANSP deciding an NP-language that
necessarily depend on the language appears rather difficult and quite attractive
to us. It might be the case that if one allowed a bigger size than 7, then some
nodes would be independent of the language, that is we may have a sort of
“trade-off” between the size and the independent nodes.

References

[1] E. Csuhaj-Varjú, L. Kari, G. Păun, Test tube distributed systems based on splicing,
Computers and AI, 15 (1996), 211–232.

[2] L. Errico, C. Jesshope, Towards a new architecture for symbolic processing, in
Artificial Intelligence and Information-Control Systems of Robots ’94, World Sci.
Publ., Singapore, 31–40, 1994.

[3] S. E. Fahlman, G. E. Hinton, T. J. Seijnowski, Massively parallel architectures for
AI: NETL, THISTLE and Boltzmann machines, in Proc. AAAI National Conf.
on AI, William Kaufman, Los Altos, 109–113, 1983.

[4] M. Garey, D. Johnson, Computers and Intractability. A Guide to the Theory of
NP-completeness, Freeman, San Francisco, CA, 1979.

[5] W. D. Hillis, The Connection Machine, MIT Press, Cambridge, 1985.
[6] F. Manea, C. Mart́ın-Vide, V. Mitrana, Accepting networks of splicing processors:

complexity results, Theoretical Computer Science, to appear.
[7] C. Mart́ın-Vide, V. Mitrana, Networks of evolutionary processors: results and

perspectives, chapter in Molecular Computational Models: Unconventional Ap-
proaches, Idea Group Publishing, Hershey, 78–114, 2005.

[8] G. Păun, G. Rozenberg, A. Salomaa, DNA Computing. New Computing
Paradigms, Springer-Verlag, Berlin, 1998.

[9] G. Păun, Distributed architectures in DNA computing based on splicing: Limit-
ing the size of components, in Unconventional Models of Computation, Springer-
Verlag, Berlin, 323–335, 1998.

[10] D. Sankoff et al. Gene order comparisons for phylogenetic inference:Evolution of
the mitochondrial genome, Proc. Natl. Acad. Sci. USA, 89 (1992), 6575–6579.

Length-Separating Test Tube Systems

Erzsébet Csuhaj-Varjú1 and Sergey Verlan
2

1 Computer and Automation Research Institute,
Hungarian Academy of Sciences

H-1111 Budapest, Kende u. 13-17.
2 Department of Algorithms and Their Applications,

Faculty of Informatics, Eötvös Loránd University,
H-1117, Budapest, Pázmány Péter sétány 1/c.

csuhaj@sztaki.hu
3 LACL, Département Informatique, Université Paris 12,

61, av. Général de Gaulle, 94010 Créteil, France
verlan@univ-paris12.fr

Abstract. In this article we propose a formalization of protocols simu-
lating the separation of molecules by gel electrophoresis. In our model,
we introduce a new concept, namely, filtering by length – a direct for-
malization of the gel electrophoresis action. We also define a distributed
computational model based on this action and on the splicing operation,
called length-separating splicing test tube systems. We prove that these
constructs, even with restricted size parameters, can simulate the Turing
machines. We also discuss different natural restrictions and generaliza-
tions of the model which may be used to find efficient ways to realize
DNA transformations in the laboratory.

1 Introduction

Gel electrophoresis is a technique for separation of molecules which is widely
used in the laboratory. It is usually performed for analytical purposes at the final
stage of the experiment. However, gel electrophoresis can be used for extracting
molecules having a particular length from the solution. This property makes it
attractive to use for transformation of molecules. For example, a molecule may
be cut off by a restriction enzyme and after that the gel may be used to find
one of the parts that was cut off. This part may be recuperated and ligated in
another test tube with another molecule. Finally, the transformed molecule may
be extracted from a new gel.

In a more general sense, the above property can be used for designing a com-
putational model where gel electrophoresis is used as a filtering device which
provides the possibility to perform branching in the computation. The model can
also be considered as a transducer, i.e., receiving an amount of DNA molecules as
input, it will transform these molecules in a desired way. Thus, it would be the-
oretically possible to design experiments that will do necessary transformations
in laboratory.

C. Mao and T. Yokomori (Eds.): DNA12, LNCS 4287, pp. 58–70, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Length-Separating Test Tube Systems 59

In this article, we investigate a formalization of protocols based on operations
simulating the gel electrophoresis filtering. In an informal way, our model cor-
responds to the following experiment. Let us suppose that there is a set of test
tubes. Each of these test tubes may transform DNA molecules (cut, ligate, mul-
tiply etc). The tubes are selective and they can do their transformations only on
specific molecules (for example, in a tube DNA molecules may be cut with a spe-
cific enzyme, hence only molecules having a corresponding site will be modified).
Taking a tube, we may put some amount of DNA molecules into it. After the
transformation, all molecules from a tube are put in a gel electrophoresis. After
the separation, the gel is cut at some points corresponding to some molecular
lengths. Hence, molecules will be grouped by some length intervals. After that,
molecules are extracted from the gel and distributed among other test tubes
depending on their molecular length interval. All tubes are organized in a net-
work. Initial DNA molecules are put in some fixed tube, and the transformed
molecules are collected in the output tube.

We remark that the above filtering is not necessarily based on gel electrophore-
sis. Indeed, there exist other methods, like size exclusion chromatography, that
permit to separate molecules depending on their size.

We investigate a model which uses the splicing operation in the test tubes.
The choice of splicing, a notion introduced by T. Head in [2], was directed by a
huge number of theoretical results concerning variants of splicing systems, see [5]
for an overview. The existence of similar models – splicing test tube systems [1]
– helped us to concentrate on the new filtering mechanism offered by the gel
electrophoresis.

Firstly, we show that these constructs, even with very restricted size parame-
ters, are able to simulate Turing machines. This result corresponds to our expec-
tations, due to the nature of the splicing operation. In particular, the discussion
of the relation between splicing, elimination, and universality may be found in [8]
and [9].

Although our construction has the power of Turing machines, this does not
help in efficiently solving practical problems. For example, given a particular
molecule, can we design a system that will perform a particular transformation
on it? Moreover, this transformation should be efficient, i.e., it shall be done in
the smallest possible number of steps, involving the smallest number of high-cost
operations. This problem is difficult to solve. Here we provide only some ideas
that may be useful for its solution. More precisely, we discuss natural restrictions
and extensions of the model which may speed-up the computation and reduce
the number of operations having high costs. We mainly focus on the network
structure and length filtering, the operation-related improvements remain to be
further investigated.

2 Preliminaries

In this section we recall some very basic notions and notations we use throughout
the paper. We assume the reader to be familiar with the basics of formal language
theory. For more details, we refer to [3,6]. The set of non-empty words over an

60 E. Csuhaj-Varjú and S. Verlan

alphabet V is denoted by V +; if the empty word, ε, is included, we use the
notation V ∗. Furthermore, by |w| we denote the length of word w.

In the paper, we consider non-stationary deterministic Turing machines, i.e.,
those ones where at each step of the computation the head moves either to the
left or to the right. These machines are given as M = (Q, T, a0, q0, F, δ), where
Q is the set of states, T is the tape alphabet, a0 ∈ T is the blank symbol, q0 ∈ Q
is the initial state, F ⊆ Q is the set of final (halting) states, and δ denotes
the set of instructions. Each instruction is of the form (qi, ak, D, qj , al) which is
interpreted as follows: if the head of M being in state qi is scanning a cell which
contains ak, then the contents of the scanned cell is replaced by al, the head
moves to the left (D = L) or to the right (D = R) and the state of the machine
changes to qj .

By a configuration of a Turing machine we mean a string w1qw2, where w1 ∈
T ∗, w2 ∈ T + and q ∈ Q. A configuration represents the contents of non-empty
cells of the working tape of the machine and all the blank symbols in between
them, from left to right, (i.e. all other cells to the left and to the right are blank),
its state, and the position of the head on the tape. The machine head is assumed
to read the leftmost letter of w2. Initially all cells on the tape are blank except
finitely many cells.

It is known that non-stationary deterministic Turing machines are as powerful
as the generic (non-restricted) ones.

Now we briefly recall the basic notions concerning the splicing operation and
related constructs [5].

By an (abstract) molecule we mean a word over an alphabet.
A splicing rule (over V) is a 4-tuple (u1, u2, u3, u4) where u1, u2, u3, u4 ∈ V ∗.

It is also written as u1#u2$u3#u4, where $, # /∈ V , or in the form
u1 u2

u3 u4
.

Strings u1u2 and u3u4 are called splicing sites.
We say that a word x matches a splicing rule r if x contains an occurrence

of one of the two sites of r. We also say that x and y are complementary with
respect to a rule r if x contains one site of r and y contains the other one. In
this case we also say that x or y may enter rule r. When x and y enter a rule
r = u1#u2$u3#u4, i.e., we have x = x1u1u2x2 and y = y1u3u4y2, it is possible
to define the application of r to the couple x, y. The result of this application
is w and z where w = x1u1u4y2 and z = y1u3u2x2. We can also say that x
and y are spliced and w and z are the result of this splicing, written as follows:
(x, y) �r (w, z) or

x1u1 u2x2

y1u3 u4y2
�r

x1u1u4y2

y1u3u2x2
.

The pair σ = (V, R), where V is an alphabet and R is a set of splicing rules, is
called a splicing scheme or an H-scheme. For given R′ ⊆ R, σR′ is the restriction
of σ to R′.

For a splicing scheme σ = (V, R) and for a language L ⊆ V ∗ we define:
σ(L) = {w, z ∈ V ∗ | (x, y) �r (w, z), x, y ∈ L, r ∈ R}.

Length-Separating Test Tube Systems 61

The iteration of the application of the splicing operation to L, according to
σ, is defined as follows:

σ0(L) = L,
σi+1(L) = σi(L) ∪ σ(σi(L)), i ≥ 0,
σ∗(L) = ∪i≥0σ

i(L).
It is known, see [5], that iterated splicing preserves the regularity of a language:

For a regular language L ⊆ T ∗ and a splicing scheme σ = (T, R), it holds that
σ∗(L) is a regular language.

3 Length-Separating Splicing Test Tube Systems

In the following we define the notion of length-separating splicing test tube sys-
tems. This notion inherits the distributed architecture and most of the main
features of the known variants of test tube systems based on splicing, but the
communication among the splicing schemes (test tubes) is defined in a signifi-
cantly different manner, based on filtering by length, i.e., using the formalization
of gel electrophoresis action.

Before turning to the model, we need some auxiliary notions. Let V be an
alphabet.

1. Let π=k : V ∗ → {true, false}, k ≥ 1, be a mapping (a predicate) defined by

π=k(w) =
{

true if |w| = k,
false otherwise.

Mappings (predicates) π≤k, π≥k, π>k, π<k, π�=k are defined by modifying
the condition |w| = k to |w| ≤ k, |w| ≥ k, |w| > k, |w| < k, and |w| 	= k,
respectively.

2. For the sake of completeness, we define π≥0 : V ∗ → {true, false} with
π≥0(w) = true for any w in V ∗.

3. Let πmax : V ∗ × 2V ∗ → {true, false} where

πmax(w, L) =
{

true if w ∈ L and |w| ≥ |u|, for any u ∈ L
false otherwise.

4. Let πmin : V ∗ × 2V ∗ → {true, false} where

πmin(w, L) =

{
true if w ∈ L and |w| = min

w′∈L
|w′|

false otherwise.
5. We define π¬max : V ∗ × 2V ∗ → {true, false} and π¬min : V ∗ × 2V ∗ →
{true, false} as the negations of predicates of πmax and πmin, respectively.

If no confusion arises, instead of π≤k, π≥k, π>k, π<k, π=k, π�=k and πmax,
πmin, π¬max, π¬min, we might also use the notations ≤ k, ≥ k, > k, < k, = k, 	= k
and max, ¬max, min, ¬min, respectively.

A length-separating splicing test tube system is the following construct Δ =
(n, V, T, G, A, R, O), where V is an alphabet, T ⊆ V is the terminal alphabet, G is
a labelled graph, called the communication graph of Δ, whose nodes are also called
test tubes (tubes for short), n is the size of the graph G, and O is a subset of nodes
of G, called the set of output nodes. A = (A1, . . . , An) is the initial configuration

62 E. Csuhaj-Varjú and S. Verlan

of Δ, where Ai is a finite subset of V ∗, for 1 ≤ i ≤ n, called the set of axioms at
node i, and R = (R1, . . . , Rn), where each Ri, 1 ≤ i ≤ n, is a finite set of splicing
rules over V ∗, i.e., the set of rules associated to node i of G.

Each edge from node i to node j of G, for 1 ≤ i, j ≤ n, denoted by (i, j),
is labelled by a mapping pi,j from the set {π≤k, π≥k, π>k, π<k, π=k, π�=k | k ≥
1} ∪ {π≥0, πmax, π¬max, πmin, π¬min}.

Furthermore, we require the labels of the edges going out from the same node
to be non-contradictory, i.e., no word in V ∗ can satisfy more than one predicate
associated to different edges going out from the same node. Thus, the labels
define a subpartition of the set of natural numbers.

The computation in Δ is a sequence of two subsequent steps, a computation
step and a communication step, which are repeated iteratively and change the
configuration of the system.

By a configuration of Δ, above, we mean an n-tuple (L1, . . . , Ln), where Li ∈
V ∗, 1 ≤ i ≤ n. (The initial configuration of Δ is (A1, . . . , An)).

The computation step consists in an iterative application of Ri, σ∗
Ri

, at each
node i of G to molecules found there.

We say that configuration (L′
1, . . . , L

′
n) is obtained from configuration

(L1, . . . , Ln) by a computation step in Δ, denoted by (L1, . . . , Ln) =⇒comp

(L′
1, . . . , L

′
n), if L′

i = σ∗
Ri

(Li) holds for 1 ≤ i ≤ n.
During the communication step, the actual contents of the test tubes, i.e., the

set of molecules found at the nodes, is re-distributed according to the communi-
cation graph G and to the labels of the edges, i.e. to the associated predicates.

In order to define this step more formally, we need an auxiliary notion. Let
(L1, . . . , Ln) be a configuration of Δ. We say that w ∈ Li can be communicated
from node i to node j in Δ, if (i, j) is an edge in G and either

– pi,j(w) is true where pi,j ∈ {π≥0, π≤k, π≥k, π>k, π<k, π=k, π�=k | k ≥ 1}, or
– pi,j(w, Li) is true where pi,j ∈ {πmax, π¬max, πmin, π¬min}.
We say that configuration (L′

1, . . . , L
′
n) is obtained from configuration

(L1, . . . , Ln) by a communication step in Δ, denoted by (L1, . . . , Ln) =⇒comm

(L′
1, . . . , L

′
n), if L′

i consists of all words w ∈ V ∗ which satisfy one of the following
conditions:

– w ∈ Lj and w can be communicated from node j to node i according to pj,i,
– w ∈ Li and there is no edge (i, j), 1 ≤ i, j ≤ n, in G such that w can be

communicated to node j from node i according to pi,j .

Thus, after performing the corresponding iterated splicing, the words are com-
municated to other nodes. Due to the non-contradictoriness of the labels, each
word is sent to exactly one node. For example, if edge (i, j) is labelled ≤ k
(respectively, ≥ k, < k,> k,= k, 	= k), then a word w at node i with |w| ≤ k
(respectively, |w| ≥ k, |w| < k, |w| > k, |w| = k, |w 	= k) is sent to node j.
Predicate pi,j(w, Li) with pi,j = max (respectively, pi,j = ¬max) makes pos-
sible w to be communicated to node j if w is (respectively, is not) a string of
maximal length at node i. Similarly, predicates min (respectively ¬min) are for

Length-Separating Test Tube Systems 63

communicating a string w to node j if w is (respectively, is not) a string of
smallest length at node i.

The result of a computation is the set of strings over the terminal alphabet
collected at the nodes in O after a communication step in Δ, i.e.,

L(Δ) = {w ∈ T ∗ | (A1, . . . , An) =⇒comp (L(1)
1 , . . . , L(1)

n) =⇒comm

(L(2)
1 , . . . , L(2)

n) . . . =⇒comm (L(2s)
1 , . . . , L(2s)

n),

for some s ≥ 0 such that w ∈ L
(2s)
i , i ∈ O}.

We illustrate the above notions by an example.

Example 1. Let us define Δ as follows. Consider the following communication
graph G and predicates associated to the edges. We highlighted a node that has
only incoming edges and we denoted it by X (it corresponds to a trash can).

�������	
������2 ¬max ��

max

���
��

��
��

��
��

��
��

��
��

�
�������	3

max ��

¬max

��

�������	4

max

����
��

��
��

��
��

��
��

��
��

¬max

���
��

��
��

��
��

��
��

��
��

��

X �������	8

≥0

��

�������	5

¬max

��

max

���������	1

max

��

¬max

���������������������� �������	7

=2

��

�=2

		�������������������� �������	6

=3

�=3
��

Let T = {a, b, c}, let the only output node be node 2, and let the axioms to
be given as A1 = {c′ab, cab′}, A6 = {XXZ, ZY Y } ∪ {c′Z, Zb′}, with all other
axioms being empty. Let us define the rule sets associated to the nodes as follows:

R1 =
{

a b′

c′ a

}

R2 =
{

c a
XX Z

,
a b
Z Y Y

}
.

R4 =
{

XX a
c′ Z

,
a Y Y
Z b′

}
.

All other rule sets are empty, thus no operation is performed there.

64 E. Csuhaj-Varjú and S. Verlan

Starting from c′ab and cab′ at node 1, string caab is obtained which is sent to
node 2 (satisfying communication condition max). At node 2, it is transformed
to molecules XXaab, caaY Y and XXaaY Y . Then, XXaaY Y is sent to node X,
and the other strings to node 3. After that, these latter strings arrive at node 4,
since they satisfy condition max. There we obtain molecules c′aab, caab′, XXaab
and caaY Y . As before, we send XXaab and caaY Y to the “trash” node (X),
and then strings c′aab and caab′ via node 5, arrive at node 1. At the same time,
strings XXZ, ZY Y , c′Z and Zb′ return to their original location. The above
procedure can be repeated. Hence, we obtain the language {ca2n

b | n > 0},
which is a well-known context-sensitive language.

4 Computational Completeness

In this section we demonstrate how length-separating splicing test tube systems
simulate Turing machines.

We first define a coding function φ as follows. For any configuration w1qw2 of
a Turing machine M = (Q, T, a0, q0, F, δ), we define φ(w1qw2) = X6w1qw2Y

6,
where X and Y are symbols not in T .

Theorem 1. Let M = (Q, T, a0, s0, F, δ) be a Turing machine and w be an
input of M . Then, we can construct a length-separating splicing test tube system
Δ = (11, V, T ′, G, A, R, {10}) which, given the axiom φ(w) at a distinguished
node, simulates the behavior of M on input w, i.e. in the following sense:

1. for any word w on which M halts in configuration w1qw2, the system Δ
produces a unique output φ(w1qw2).

2. for any word w, on which M does not halt, the system Δ computes the empty
language.

Proof. Let M = (Q, T, a0, q0, F, δ) be a Turing machine. Firstly, we give the
construction of Δ and explain the simulation.

Let T = {a0, . . . , am−1} and Q = {q0, . . . , qn−1}. Throughout the proof, let
a,b, c denote arbitrary letters in T , and let us use the notations d ∈ T ∪ {Y },
q ∈ Q in the same manner. Let a0 be the blank symbol.

Without the loss of generality, we may assume that w1w2 (remember, a con-
figuration is given as w1qw2) does not contain the symbol a0 and that M is not
stationary.

We construct Δ simulating M as follows.
Let V = T ∪ {X, Y, R1, R2, R3, R4, L1, L2, L3, L4, R

′
1, R

′
2, L

′
3, L

′
4, F, Z} and

T ′ = T ∪ {X, Y } ∪ {qf |qf ∈ F}.
The communication graph G is defined as follows:
The sets of axioms are given as A1 = {X6a0q0wY 6} ∪ {R1L1, R2L2, R3L3} ∪

∪ {R4L4, R4L
′
4}, A7 = {FFR′

1alqjZ, FR′
2alqja0Z} ∪ {ZqjaalL

′
3F, Za0qjaalL

′
4}

and A8 = {X6Z, ZY 6}. the other axiom sets are empty.
We define the rules as follows (the first number is the node where the rule is

located).

Length-Separating Test Tube Systems 65

X �������	9

min

��

¬min
�� �������	8

>8
��

=8

�� �������	1
max��

¬max

���������������	10 �������	6

≤2

��

>2 ���������	7

≥6

��

�������	5

≥0

��

�������	4

≤6

��

>6

��

�������	2
¬max�� max ���������	3

≥0

��

I. For any instruction (qi, ak, R, qj , al) ∈ δ there is the following group of rules
in Δ.

1.1 :
a qiakb
R1 L1

; 1.2 :
a qiakY
R2 L2

;

2.1 :
R1qiak b

FFR′
1alqj Z

; 2.2 :
R1qiak Y

FR′
2alqja0 Z

;

2.3 :
FFR′

1 aqb
c L1

; 2.4 :
FR′

2 aqa0Y
c L2

;

II. For any instruction (qi, ak, L, qj, al) ∈ δ there is the following group of
rules in Δ.

1.3 :
abqiakc d

R3 L3
; 1.4 :

Xaqiak d
R4 L4

;

2.5 :
b aqiakL3

Z qjaalL
′
3F

; 2.6 :
X aqiakL4

Z a0qjaalL
′
4

;

2.7 :
bqjaal L′

3F
R3 d

; 2.8 :
Xa0qjaal L′

4

R4 d
;

III. There are also following rules:

8.1 :
Xa0 a
X Z

; 8.2 :
a a0Y
Z Y

;

Any other rule sets, Ri, where i 	= 1, 2, 8 are empty. The part of the tape of
M containing information is encoded in the following way: for any configuration

66 E. Csuhaj-Varjú and S. Verlan

w1qw2 of M, a string X6w1qw2Y
6 is found at node 1 in a configuration of Δ.

Thus, the tape is enclosed by strings X6 and Y 6 and a marker symbol q refers
both to the position of the head and to the current state of the machine.

The construction above is similar to constructions from [4] and [7]. Using max
and ¬max predicates it is possible to filter out strings which do not correspond
to a correct simulation of the Turing machine. Hence, only strings representing
(through encoding) configurations of M will be kept.

Now let us explain the simulation in details.
Suppose that current configuration of M is w1qiakw2 and that M contains

instruction (qi, ak, R, qj , al), i.e., a right move shall be performed. Suppose also
that w2 	= ε (the case w2 = ε is treated analogously).

The configuration of M is represented by the string X6w1qiakw2Y
6 in tube 1.

The configuration of Δ is the following (since there are no edges going out from
node X, we do not show this node):

L1 {X6w1qiakw2Y
6} ∪ {R1L1, R2L2, R3L3, R4L4}

L2, . . . , L6 ∅
L7 {FFR′

1alqjZ, FR′
2alqja0Z} ∪ {ZqjaalL

′
3F, Za0qjaalL

′
4}

L8 {X6Z, ZY 6}
L9, . . . , L10 ∅
By applying rule 1.1 string X6w1qiakw2Y

6 is split in front of qi:

X6w1 qiakw2Y
6

R1 L1
�1.1

X6w1L1

R1qiakw2Y
6 .

The original string, X6w1qiakw2Y
6, is sent to tube 8 during the communica-

tion step, because it is the longest. This string is used in the procedure obtaining
the result. We will discuss its evolution later and we hide for the moment tubes
8, 9 and 10, because they behave independently from the rest of the system. All
other strings are sent to tube 2. Strings from tube 7 also forwarded to tube 2.

The next configuration of Δ is the following:

L1 ∅
L2 {X6w1L1, R1qiakw2Y

6} ∪ {R1L1, R2L2, R3L3, R4L4}∪
{FFR′

1alqjZ, FR′
2alqja0Z} ∪ {ZqjaalL

′
3F, Za0qjaalL

′
4}

L3, . . . , L7 ∅
Now, qiak is replaced by qjal (rule 2.1) and the two parts of the configuration

are joined by rule 2.3:
R1qiak w2Y

6

FFR′
1alqj Z

�2.1
R1qiakZ

FFR′
1alqjw2Y

6 and

FFR′
1 alqjw2Y

6

X6w1 L1
�2.3

FFR′
1L1

X6w1alqjw2Y
6 .

Now, the longest string, X6w1alqjw2Y
6, represents the next configuration of

M . It is sent to tube 3. However, all other strings should not be eliminated (by
sending them to tube X) because it is necessary to recuperate strings which are
used for computation in tubes 1 and 2. It is easy to observe that strings that

Length-Separating Test Tube Systems 67

need to be in tube 1 are of size 2 and strings that need to be sent to tube 2 (via
tube 7) are of size 6.

The next configuration of Δ is the following:

L1, . . . , L2 ∅
L3 {X6w1alqjw2Y

6}
L4 {R1L1, R2L2, R3L3, R4L4} ∪ {FFR′

1alqjZ, FR′
2alqja0Z}∪

{ZqjaalL
′
3F, Za0qjaalL

′
4, X

6w1L1, R1qiakw2Y
6}

L5, . . . , L7 ∅
Now, string X6w1alqjw2Y

6 moves to tube 5, while strings from tube 4 are
redistributed. Strings having length smaller than 6 are sent to tube 6, while the
other strings are forwarded to tube X.

The next configuration of Δ is the following:

L1, . . . , L4 ∅
L5 {X6w1alqjw2Y

6}
L6 {R1L1, R2L2, R3L3, R4L4} ∪ {FFR′

1alqjZ, FR′
2alqja0Z}

L7 ∅
Finally, string X6w1alqjw2Y

6 as well as strings from tube 6 having length 2
move to tube 1. The other strings from tube 6 move to tube 7.

The next configuration of Δ is the following:

L1 {X6w1alqjw2Y
6} ∪ {R1L1, R2L2, R3L3, R4L4}

L2, . . . , L6 ∅
L7 {FFR′

1alqjZ, R′
2alqja0ZZ}

This configuration may be obtained from the first configuration by replacing
string X6w1qiakw2Y

6 with X6w1alqjw2Y
6. Hence, the corresponding instruc-

tion of M is simulated.
If necessary (when w2 = ε), the tape can be extended to the right and rules

1.2, 2.2 and 2.4, which work similarly to rules 1.1, 2.1 and 2.3, take it into
account.

The case of a left move can be treated analogously. Therefore, the system
closely simulates the behavior of M and it will reach a halting configuration
only when M halts.

Now, we discuss the evolution of string of form X6w1qiakw2Y
6 after its arrival

in tube 8. The corresponding configuration of Δ is (we show only tubes 8, 9 and
10, because they behave independently from the rest of the system):

L8 {X6w1qiakw2Y
6} ∪ {X6Z, ZY 6}

L9 ∅
L10 ∅
Firstly, we remark that, due to the rules of our system, the prefix of w1 and

the suffix of w2 may contain symbols a0. By using rules 8.1 and 8.2 these symbols
are removed. Hence, new strings X6ws

1qiakws
2Y

6, containing less symbols a0 will

68 E. Csuhaj-Varjú and S. Verlan

be obtained. There will be also a string X6w′
1qiakw′

2Y
6 where the prefix of w′

1

and the suffix of w′
2 do not contain any symbols a0.

We also remark that at least one a0 is present at the beginning of w1 (the
computation preserves the invariant that there is at least one symbol a0 af-
ter X). Therefore, after the computation step there will certainly be a string
X6w′

1qiakw′
2Y

6 in tube 8 and it will be shorter than the original string. During
the communication step, strings X6a0Z and Za0Y

6 are sent to tube X, while
all other strings, except strings from A8, are sent to node 9. The corresponding
configuration of Δ is:

L8 {X6Z, ZY 6}
L9 {X6w1qiakw2Y

6} ∪ {X6ws
1qiakws

2Y
6} ∪ {X6w′

1qiakw′
2Y

6}
L10 ∅
Now it is clear that X6w′

1qiakw′
2Y

6 is the string with the minimal length,
because it does not contain surrounding symbols a0. Therefore, it will be sent
to tube 10, while all other strings will be discarded by sending them to node X.
The corresponding configuration of Δ is:

L8 {X6Z, ZY 6}
L9 ∅
L10 {X6w′

1qiakw′
2Y

6}
Here, if qi is in F , then this string will be the result (we remind that in this

case, in the remaining of the system no rules can be applied any more).
Now, in order to complete the proof it is sufficient to show that no other

strings of length 2 and 6, except strings from A1 and A7, can be produced in the
”computation” part of the system (tubes 1–7) and that no strings of length 7 can
be produced in the ”result” part of the system (tubes 8–10). Indeed, any splitting
rule (1.x) will produce strings which are at least of length 7. Substitution rules
(2.1, 2.2, 2.5 and 2.6) may generate strings of size 4, 5 and at least 11. Rules 2.3,
2.4 and 2.7 produce strings of size 3,4 and at least 16. Rule 2.8 produces R4L

′
4

of length 2 which is in A1. For the ”result” part it is sufficient to observe that
rules 8.1 and 8.2 produce strings of length 8 and at least 13.

Thus, the theorem is proved.

5 Discussion of the Model

The reader can observe that, in fact, the main ingredient of the presented model
is the communication controlled by the length of the words. Thus, the idea of
a length separating test tube system can also be given in a general form, i.e.,
using an arbitrary operation, γ, defined on words (or sets of words.) Moreover,
we may associate different operations to different test tubes, thus obtaining a
hybrid system. In this way, we need only to change the definition of the computing
step. The study and comparison of length-separating test tube systems based on
different operations would be of interest.

These systems can also be considered as transducers, i.e., having one input
test tube as well as one output tube which are used only for the input and the

Length-Separating Test Tube Systems 69

output. In this case, several systems may be chained one after another and their
action can be combined. From a practical point of view, this also means that
V = T , i.e., because in this case no final filtering of the strings (terminal strings)
is done. Notice, that the distinction of the terminal alphabet is traditionally used
only for selecting some particular strings among the results of the computation
and it is not an inherent property of the construction.

Another important point for the definition of the model is the detection of
a halting configuration. In most of the constructions from DNA computing the
end of the computation is defined by halting. Usually, this condition means
that the system cannot evolve, i.e., there is no applicable rule in the system.
However, from practical point of view, it is difficult to detect the fulfillment of
this condition. Therefore, we propose to use a special acknowledgement test tube.
When anything arrives in this tube, the computation is considered to be finished
and the result is read in the output test tube. It is also possible to combine the
acknowledgement and the output test tubes. In this case the computation stops
when a first molecule arrives in that tube.

6 Practical Optimizations

In this section we discuss some optimizations of the model that can be performed
for practical reasons.

A practical restriction would be the application of only one elementary rule
per test tube. In the splicing case, this would mean that only one restriction
enzyme is used. We think that this restriction may better reflect the reality.

Gel-related operations are time-consuming. It is important to minimize the
number of such operations. In terms of our model, this correspond to the min-
imization of the number of predicates on edges. We also think that min and
max predicates are easier to be implemented in laboratory than the numerical
predicates, since in the first case we need not to wait until the gel operation fully
completes.

Another idea is to permit contradictory predicates. In this case when a molecule
validates several predicates, a copy of it is sent to corresponding tubes. In the
simplest case, when two connections with ≥ 0 predicate are present, this corre-
sponds to the duplication of the contents of the test tube.

Finally, it would be interesting to consider predicates like maxk which denotes
the k-th maximal string. This corresponds to the extraction of the k-th molecule
from the gel electrophoresis lane. From the computational point of view, these
operations are more powerful than the extraction by a fixed length.

7 Conclusions

In this article we formalized the action of an operation commonly used in the
laboratory: the gel electrophoresis. This operation is usually used in combina-
tion with other molecular operations that modify DNA molecules. We proposed
and discussed protocols that use gel electrophoresis for branching during the

70 E. Csuhaj-Varjú and S. Verlan

transformation. We formalized these kinds of protocols as a two-steps procedure
consisting of a transformation (computation) step and a communication step.
During the transformation step, molecules are modified in test tubes, while dur-
ing the communication step molecules are redistributed to other test tubes de-
pending on their length. As an example of a concrete model, we chose a model
based on the splicing operation. We have shown that this construction is able to
simulate any Turing machine. We have also discussed possible modifications of
the model in order to increase the efficiency of the length-driven communication
strategy.

The formalization that we provided can be further used to investigate different
properties of protocols based on gel electrophoresis. Moreover, since some ideas
from previous section may be realized in practice, it can be used for engineering
transducers (protocols) that will do some particular transformation on DNA
molecules in laboratory. However, in this case, size exclusion chromatography
becomes more interesting as it permits to separate molecules much faster.

Acknowledgements. This publication was supported by the Hungarian Founda-
tion for Research and Technological Innovation (project no. TéT F-19/04) and the
EGIDE in France (project no. Balaton 09000TC, year 2005) in the frame of the
Hungarian-French Intergovernmental Scientific and Technological Cooperation.

References

1. E. Csuhaj-Varjú, L. Kari, and G. Păun. Test tube distributed systems based on
splicing. Computers and AI, 15(2–3):211–232, 1996.

2. T. Head. Formal language theory and DNA: an analysis of the generative capacity
of specific recombinant behaviors. Bulletin of Mathematical Biology, 49(6):737–759,
1987.

3. J. Hopcroft, R. Motwani, and J. Ullman. Introduction to Automata Theory, Lan-
guages, and Computation. Addison-Wesley, Reading, Mass., 2nd edition, 2001.

4. M. Margenstern and Y. Rogozhin. A universal time-varying distributed H system
of degree 2. Biosystems, 52:73–80, 1999.

5. G. Păun, G. Rozenberg, and A. Salomaa. DNA Computing: New Computing
Paradigms. Springer Verlag, Berlin, Heidelberg, New York, 1998.

6. G. Rozenberg and A. Salomaa. Handbook of Formal Languages, 3 volumes. Springer
Verlag, Berlin, Heidelberg, New York, 1997.

7. S. Verlan. Communicating distributed H systems with alternating filters. In
N. Jonoska, G. Paun, and G. Rozenberg, editors, Aspects of Molecular Comput-
ing. Essays Dedicated to Tom Head on the Occasion of His 70th Birthday, volume
2950 of LNCS, pages 367–384. Springer Verlag, Berlin, Heidelberg, New York, 2004.

8. S. Verlan. Head Systems and Applications to Bio-Informatics. PhD thesis, University
of Metz, France, 2004.

9. S. Verlan. A boundary result on enhanced time-varying distributed H systems with
parallel computations. Theoretical Computer Science, 344(2-3):226–242, 2005.

Gene Assembly Algorithms for Ciliates

Lucian Ilie	,		 and Roberto Solis-Oba			

Department of Computer Science, University of Western Ontario
London, Ontario, N6A 5B7, Canada

{ilie, solis}@csd.uwo.ca

Abstract. The micronuclear genes in stichotrichous ciliates are inter-
rupted by multiple non-coding DNA segments. The coding segments are
in scrambled disorder and can also be inverted. Identical short sequences
(pointers) at the ends of the coding segments undergo homologous re-
combination to excise the non-coding segments and splice the coding
ones. We consider the intramolecular model of Prescott, Ehrenfeucht,
and Rozenberg for gene assembly in stichotrichous ciliates from the al-
gorithmic point of view. We give a quadratic time algorithm for finding
a successful sequence of operations to assemble a gene. We also prove an
Ω(n log n) lower bound on the amount of work needed to assemble genes,
even when any pair of identical pointers have the same orientation. For
the problem of finding the minimum number of operations needed to as-
semble a given gene, we give a heuristic quadratic algorithm which works
well in practice. The complexity of this problem remains open.

Keywords: ciliates, stichotrichs, gene assembly, algorithm, dlad-first
greedy strategy.

1 Ciliates

Ciliates form a large ancient group of unicellular organisms which can be found
almost in any place where there is water. Their name comes from one of their
common characteristics, namely, they all possess cilia projecting from their sur-
faces, used to propel them through an aqueous environment. A second common
feature is the presence of two kinds of nuclei in the same cell: a micronucleus
and a macronucleus; the former is used in mating whereas the later produces
the RNA needed for cell operations.

One group of ciliates, known as stichotrichs, are of special interest because of
the amazing DNA manipulations which take place within their micronuclei. The
micronuclei are activated only during reproduction where at some stage their
genome transforms into the macronuclear genome; the process is called gene as-
sembly. This is the most involved DNA processing known in living organisms
and its discovery expanded our view of the versatility of DNA changes in biolog-
ical evolution. What makes this process so complex is the unusual arrangement

� Research partially supported by NSERC.
�� Corresponding author.

��� Research partially supported by NSERC grant 227829-04.

C. Mao and T. Yokomori (Eds.): DNA12, LNCS 4287, pp. 71–82, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

72 L. Ilie and R. Solis-Oba

of the genes in the micronucleus. While the genes in the macronucleus are con-
tiguous sequences of DNA, the ones in the micronucleus are broken into pieces,
called macronuclear destined segments (MDS), separated by non-coding blocks,
called internal eliminated segments (IES). In addition, the MDSs may appear in
scrambled disorder and some may be inverted. An example is shown in Fig. 1(a)
where rectangles represent MDSs and the lines connecting them are IESs. (The
similarity with a doubly linked list is remarkable.)

3 4 6 7 15 9 2 8

1 3 4 6 7 9852

(a)

(b)

Fig. 1. (a) Structure of the micronuclear gene encoding actin protein in the stichotrich
Sterkiella nova. Notice that the MDSs are in scrambled disorder and that MDS number
2 is inverted. (b) The same gene with IESs excised and MDSs assembled in the right
order.

During the development of a micronucleus into a macronucleus the IESs are
excised from micronuclear genes and the MDSs are spliced into the sequentially
correct order. According to [9], there are on average four IESs per gene and
thus, among the approximately 25,000 micronuclear genes, there may be roughly
100,000 IESs to be excised, therefore requiring massive processing of DNA.

Two models have been proposed for gene assembly: one intermolecular, due to
Landweber and Kari [6,7], and another intramolecular, due to Prescott, Ehren-
feucht and Rozenberg [8,4].

We are concerned in this paper with the intramolecular model. The reader is
referred to the book [3] for more details and further references. The operations
of this model, which we describe in the next section, were proven to be able to
assemble any micronuclear gene. However, very little seems to be known about
the algorithmic aspect of the gene assembly problem. Questions such as how fast
we can find a correct sequence of operations to assemble a given gene, or what
the smallest number of operations is in any such sequence, appear naturally.
For the former question, we give a quadratic time algorithm and an Ω(n log n)
lower bound that holds even for the case when the gene contains no inverted
pointers (see the next section for definitions). For the latter problem, we give a
heuristic quadratic algorithm which works well in practice. The complexity of
both problems remains to be determined.

2 Gene Assembly in Ciliates

As mentioned above, gene assembly is the process by which the IESs are ex-
cised from a micronuclear gene and the MDSs are arranged into the sequentially
correct order. An example is shown in Fig. 1 where (a) is transformed into (b)
by the gene assembly process. The lengths and positions of the IESs, as well as

Gene Assembly Algorithms for Ciliates 73

the correct order of the MDSs, is determined by the fact that at the MDS-IES
junction consecutive MDSs contain the same sequence of 3 to 20 nucleotides,
which from now on we shall call pointers. Put differently, the same pointer is
both a suffix of the ith MDS and a prefix of the (i + 1)st MDS. Notice also that
some MDSs may be inverted, that is, their sequence is read backwards; e.g.,
MDS number 2 in Fig. 1(a).

By a process called homologous recombination, two identical pointers may
align side-by-side and an enzyme produces identical staggered cuts at the same
position in both. The cut pieces may then be switched and ligated; the result
being two DNA molecules that have recombined. Based on homologous recom-
bination, Prescott, Ehrenfeucht, and Rozenberg introduced three molecular op-
erations that account for the process of gene assembly.

The first one is loop recombination in which the IES between two consecutive
MDSs is eliminated and the two MDSs are joined together; see Fig. 2(a): the
sequence u1 MDSi p IES p MDSi+1 u2 becomes u1 MDSi p MDSi+1 u2. The
operation is technically called ld, from loop, direct repeat.

The second operation is hairpin recombination, when one pointer appears
inverted; see Fig. 2(b): the sequence u1 MDSi p u2 MDSi+1 p u3 becomes
u1 MDSi MDSi+1 u2 u3. The operation is technically called hi, from hairpin,
inverted repeat.

The third and last operation introduced is double loop recombination, appli-
cable when two pairs of pointers appear alternating; see Fig. 2(c): for instance,
the sequence u1 MDSi p u2 q MDSj+1 u3 p MDSi+1 u4 MDSj q u5 is trans-
formed into u1 MDSi MDSi+1 u4 MDSj MDSj+1 u3 u2 u5. The operation is
technically called dlad, from double loop, alternating direct repeat.

(a)

(b)

(c)

pu1 MDSi

p
MDSi+1

MDSi+1

MDSj+1

u5 q MDSj

p
u2

u3

u4

u1 MDSi

MDSi+1

MDSj+1

u5 MDSj

u1 MDSi

u3

ū2

MDSi+1

p

u2

u1 MDSi

MDSi+1 u2

IESIES

u1 MDSi p u2

p̄u3 MDSi+1

u2

u3

u4q

u1 MDSi

Fig. 2. The gene assembly operations: (a) ld, (b) hi, (c) dlad

74 L. Ilie and R. Solis-Oba

3 Legal Strings

We shall use an abstract representation due to [2,1] which captures the sequence
of pointers in the order they appear in a micronuclear gene. It is based on legal
strings which we define next.

For a finite alphabet A, A∗ denotes the set of all finite strings over A. Let n be
a positive integer; n will be the number of different pointers in a micronuclear
gene. For each pointer i, its inverted version is denoted ī (signed i). Denote
[n] = {1, 2, . . . , n} and [n] = {1̄, 2̄, . . . , n̄}. The union [n]∪[n] contains all pointers
and their inverted versions. A signed string is any string w over [n]∪[n]. A signed
string is called legal if, for any i ∈ [n], w contains exactly two letters (which need
not be different) from the set {i, ī}; that means, each pointer appears twice and
any occurrence may be inverted. For a string u of pointers, u = i1i2 · · · ik, the
inverted version of u is ū = īk īk−1 · · · ī1.

A pointer i occuring in a legal string w is called negative if w contains two i’s
or two ī’s; otherwise i is called positive for w. A legal string w is called negative
if all of w’s pointers are negative.

It is not difficult to see that the number of legal strings with n pairs of pointers
is 2n(2n)!. Indeed, the number of all permutations with 2n elements is (2n)!.
Consider the permutations of the multiset {1, 1, 2, 2, . . . , n, n}. We can permute
the elements in (2n)! ways but exchanging the places of the two i’s will result in
the same permutation, for any 1 ≤ i ≤ n. As there are always 2n possibilities of
doing that, the number of permutations of the above multiset is 2−n(2n)!. Now,
the legal strings are obtained precisely by adding signs in all possible ways to all
permutations of the multiset. For each such permutation, there are exactly 22n

ways of signing and each produces always a different legal string. Therefore, the
number of legal strings is 2−n22n(2n)! = 2n(2n)!, as claimed.

4 Operations for Reducing Legal Strings

Legal strings can model MDS arrangements; see [3]. In order to describe the
operations corresponding to the above ld, hi, and dlad, we need to see that each
pair of pointers is used only once. Therefore, for legal strings, we shall attempt to
reduce rather than arrange them. This means, once a pair of pointers is used, it
will be removed. The goal is to reduce a given legal string to the empty string Λ.

The operations for reducing legal strings, which we abusively denote the same
as the ones already introduced, are defined as follows:

1. ldp(u1ppu2) = u1u2,
2. hip(u1pu2p̄u3) = u1ū2u3, and
3. dladp,q(u1pu2qu3pu4qu5) = u1u4u3u2u5,

where p, q ∈ [n] ∪ [n], ui ∈ ([n] ∪ [n])∗. The correspondence with the previous
operations should be obvious. A reduction of a legal string is a sequence of any
of the above operations which reduces the legal string to the empty string.

Gene Assembly Algorithms for Ciliates 75

As proved in [2,1], any legal string has a successful reduction using the above
three operations. Also, any negative legal string has a successful reduction using
ld and dlad operations only.

5 An Algorithm for Reducing Legal Strings

Our algorithm works in two phases: in the first phase it applies hi operations
until the input string is transformed into a negative string; in the second phase
the negative string is reduced to the empty string.

5.1 Reducing a Legal String to a Negative String

We assume that the string s is implemented as a doubly-linked list in which
every node stores one of the pointers of the string. For each node i of this list,
i.pointer denotes the pointer stored in i, i.right and i.left are references to the
right and left neighbours of i in the list, and i.twin is a reference to the node in
s storing the other occurrence of i.pointer. The algorithm is as follows.

Algorithm produce negative(s)
i ← first node of s
while i �= Null do

if exactly one of i.pointer, (i.twin).pointer is inverted then {
//Perform an hi operation
Invert the sublist (i, j) of s and all pointers in this sublist.
i ← first node of s

}
else i ← i.right

Every hi operation performed by the algorithm needs O(n) time and at most
n hi operations are performed, so the time complexity of this algorithm is O(n2).

5.2 An Algorithm for Reducing Negative Strings

Let s be a negative string of length n. Each pointer p in s appears twice. The
first occurrence of a pointer p in the string s is the leftmost occurrence of p. The
second occurrence of p is the rightmost occurrence of p in s.

Given a string s = u1pu2qu3pu4qu5, a dlad operation dladp,q(s) has minimal
overlap if for no pointer r occurring in u3 the dlad operation dladp,r(s) is appli-
cable. For example, consider the legal string s = abcdbacd. Operation dlada,d(s)
has minimal overlap, while dlada,c(s) does not.

Given a string s for which two dlad operations, dladp,q(s) and dladr,t(s), are ap-
plicable, we say that dladp,q(s) appears before dladr,t(s) if the second occurrence
of p in s appears before the second occurrence of r in s. For example, consider
the same string s as above. Operation dladb,d(s) appears before dlada,c(s).

Given a string s we say that dladp,q(s) is the first dlad operation applicable to
s if no other applicable dlad operation appears before dladp,q(s) and dladp,q(s)
has minimal overlap. For the same string as above, for example, dladb,d(s) is the
first dlad operation applicable to s.

76 L. Ilie and R. Solis-Oba

Lemma 1. Let s = u1pu2qu3pu4qu5 be a negative legal string and let dladp,q(s)
be the first dlad operation applicable to s.

(a) If r is a pointer occurring in u3, then r occurs twice in u3.
(b) No dlad operation dladr,t(s) is applicable to s for any pair of pointers r, t

occurring in u1, u2 or u3.

Proof. (a) We prove the claim by contradiction. Let r be a pointer that occurs
only once in u3. Then, s = u1pu2qu

′
3ru

′′
3pu4qu5. If r is the second occurrence

of this pointer in s, then dladq,r(s) would be an applicable dlad operation that
appears before dladp,q(s), contradicting the assumption that dladp,q(s) is the first
dlad operation in s. On the other hand, if r is the first occurrence of this pointer
in s, then dladr,p(s) is an applicable operation, so dladp,q(s) cannot have minimal
overlap.

(b) The claim follows from the fact that dladp,q(s) is the first dlad operation
in s. �

5.3 Finding the First dlad Operation Applicable to s

The first dlad operation applicable to the string s can be found and performed
using the following algorithm.

Algorithm firstdlad(s)
S ← empty stack
i ← first node of s
while i �= null do {

p ← i.pointer
if this is the first occurrence of p then {

Put p in the stack S
i ← i.right

}
else {

q ← pointer at the top of S
if p = q then { // Apply ldp(s) operation

i ← i.right
Remove the nodes storing p and q from s
Remove q from S.

}
else { // Apply dladp,q(s) operation

Let j0 be the node storing q.
j ← j0.twin
i0 ← i.twin
Swap the sublists (i, j) and (i0, j0) in s.
Remove nodes i, i0, j, and j0 from s.
return

}
}

}

Gene Assembly Algorithms for Ciliates 77

The algorithm scans the legal string s from left to right until it finds the
first pointer p whose second occurrence is preceded by the first occurrence of
another pointer q. While scanning s all ld operations encountered are performed.
Therefore, the algorithm correctly finds the first dlad operation applicable to s.

We can check in O(1) time whether some node i contains the first or second
occurrence of a pointer p by using a binary vector storing one bit for each pointer.
Initially all bits are set to zero. When a pointer p is processed by the algorithm,
the corresponding bit is checked. If the bit is zero then this is the fist occurrence
of p, so the bit is set to 1; this way when the second occurrence of p is found the
corresponding bit in the binary vector will be 1.

The algorithm spends O(1) time processing each pointer in s, so its total
running time is O(n). Repeated application of this algorithm would reduce any
negative legal string s to the empty string. However, up to O(n) iterations might
be needed (like, for example, for the input string p1p2 · · · pnp1p2 · · · pn) yielding
an O(n2) time algorithm.

6 Lower Bounds for Reducing Negative Strings

We consider only algorithms that need to compare pointers or positions (of
pointers) to find applicable dlad and ld operations. Any such algorithm A can
be modeled as a decision tree TA. Every branch of the decision tree corresponds
to an execution path of A, i.e., the set of instructions executed by A on a given
input. In this tree every internal node is labelled with two indices i : j. This
label might either mean the comparison of the pointers at positions i and j in s
or the comparison of the two positions i, j in s. As A executes, the instructions
performed by the algorithm define a unique path in the decision tree: when A
compares pointers (or positions) i and j, the current state of A is represented
by a node a of TA labelled i : j; if i ≤ j the algorithm moves to the left child of
node a, otherwise it moves to the right child of a.

Proceeding in this manner with every comparison made by A, the execution
of the algorithm defines a path ρ(r, �) from the root r to a leaf � of TA. A leaf
of the decision tree models the termination of the execution of A. Every leaf �
is labelled with a set S
 of negative strings with n pointers; any string t ∈ S

causes the algorithm to follow the path ρ(r, �) from r to �.
Some edges of TA will be labelled with a set of ld and dlad operations that the

algorithm performs when traversing these edges. For example, if A has computed
the positions i, j of the two occurrences of some pointer p, then A might check
if j = i + 1 (by testing whether j ≤ i + 1 and i + 1 ≤ j), for then the ldp(s)
operation can be performed. This part of the algorithm might be modeled with
the decision tree shown in Figure 3.

In the decision tree an ld operation is recorded as ldp(i, i+1) to make it explicit
that the same pointer p appears at positions i and i + 1 of the input string s.
A dlad operation is expressed as dladp,q(i, j, i1, j1), where i < j < i1 < j1, p
appears at positions i and i1 of s, and q appears at positions j and j1.

For simplicity, let us consider only legal strings s that do not contain inverted
pointers. Note that this assumption does not affect Theorem 1.

78 L. Ilie and R. Solis-Oba

j i+

i+ :j1

1:

pld (, +1)ii

Fig. 3. Execution of A leading to an ld operation

Lemma 2. For every leaf � of TA, consider the set S′

 obtained from S
 by

removing all strings that contain inverted pointers. Then S′

 contains at most nn

strings.

Proof. Consider a leaf � of TA and let u ∈ S′

. Consider the path ρ(r, �) from the

root r of TA to the leaf �. As the algorithm A follows this path, ld and/or dlad
operations are applied to u so at the end it is reduced to the empty string.

Let us consider a reversed version Ar of the algorithm A that starts with an
empty string and it follows the path ρ(r, �), from � moving up towards r. Every
time that Ar follows an edge e labelled by a sequence op1(e), op2(e), . . . , opk(e)
of ld and dlad operations, the algorithm will perform over the current string s′

a sequence op−1
k (e), . . . , op−1

2 (e), op−1
1 (e) of operations, where

– ld−1
p (i, i + 1) adds a new pointer p (different from the other pointers in s′)

to positions i and i + 1 of s′, and
– dlad−1

p,q(i, j, i1, j1) adds new pointers p and q to s′ so that the resulting string
s′′ has pointer p in positions i and i1, q appears in positions j and j1, and
dladp,q(s′′) = s′.

Note that ld−1
p (i, i+1) has at most n different outcomes as p could be any of the

pointers 1, 2, . . . , n and ld−1
p,q(i, j, i1, j1) has at most n(n− 1) different outcomes.

As every path ρ(r, �) from the root of TA to a leaf is labelled by a sequence of
ld and dlad operations involving n pointers, then the application of the inverse
operation op−1

i (e) along the path can produce at most nn different strings. �
Theorem 1. Every algorithm which reduces negative strings requires Ω(n log n)
time.

Proof. By the above lemma, each leaf of the decision tree is labelled by at
most nn strings without inverted pointers, and different leaves are labelled by
disjoint sets of strings. Since the number of strings without inverted point-
ers is (2n)!2−n, by Lemma 2 the decision tree has at least (2n)!2−n/nn =
(2n)!(2n)−n > (2n)2ne−2n(2n)−n = (2n)ne−2n leaves and, thus, the height of
the decision tree is at least log2((2n)ne−2n) = Θ(n log n). This implies that any
reduction algorithm needs to perform at least Ω(n log n) comparisons and, hence,
to reduce any negative string, at least Ω(n log n) time is required. �
Corollary 1. Every algorithm for reducing legal strings needs Ω(n log n) time.

Gene Assembly Algorithms for Ciliates 79

7 Optimal Reductions

So far we have been concerned with fast algorithms for finding reductions of legal
strings. Another basic question, seemingly more difficult, is how to find reduc-
tions which are themselves fast in reducing the legal strings, e.g., have minimum
number of operations. (Clearly, some strings have many possible reductions; see
below for examples.) One can also imagine weighted variants, where a certain
operation has a given cost. This could be fixed for each operation or even depend
on, for instance, the relative position of the pointers involved; the farther apart
the pointers, the higher the cost.

The basic variant where the total number of operations needs to be minimized
looks already difficult. We don’t even know whether it is NP-hard or not. We
discuss next a greedy approach to this problem.

7.1 Dlad-First Heuristic

It is clear that minimizing the total number of operations amounts to maximizing
the number of dlad operations used. That is simply because a ld or a hi eliminates
one pair of pointers whereas a dlad eliminates two. This raises the idea for the
dlad-first strategy: perform a dlad whenever possible. Clearly, it may not be
unique. Any of these will be called dlad-first reductions. However, there are
cases when no dlad-first reduction is optimal. Here is an example. Consider the
legal string 1 3 2 5̄ 4̄ 6̄ 3̄ 1 2 6 4 5. The only dlad we can perform is dlad1,2 and
then we have the following reduction:

1 3 2 5̄ 4̄ 6̄ 3̄ 1 2 6 4 5
dlad1,2=⇒ 5̄ 4̄ 6̄ 3̄ 3 6 4 5

hi3̄=⇒ 5̄ 4̄ 6̄ 6 4 5
hi6̄=⇒ 5̄ 4̄ 4 5

hi4̄=⇒ 5̄ 5
hi5̄=⇒ Λ.

Notice that the hi operations can be performed in any order producing different
reductions but with the same number of operations. Also, after dlad1,2, nothing
else except for hi operations can be performed, and so the smallest number of
operations we can obtain with a dlad-first strategy is 5.

On the other hand, the following (optimal) reduction has four operations only,
proving the claim:

1 3 2 5̄ 4̄ 6̄ 3̄ 1 2 6 4 5 hi3=⇒ 1 6 4 5 2̄ 1 2 6 4 5
dlad4,5=⇒ 1 6 2̄ 1 2 6

dlad1,6=⇒ 2 2̄ hi2=⇒ Λ.

This example has six pairs of pointers. It is an interesting combinatorial ex-
ercise to prove that there is no such legal string with five pairs or less. Notice
that it is not very easy to verify such properties using a computer program due
to the high number of legal strings.

We start with a lemma which can be proved by a pretty straightforward (but
tedious) exhaustive case analysis. (The second part of the lemma can also be
derived from a result by Harju et al. [5].) The notation dlad{i,j}, where i 	= j,
stands for the dlad involving both the i-pair and j-pair.

Lemma 3. Consider a legal string w with n pairs and four pairwise different
integers i, j, k, �.

80 L. Ilie and R. Solis-Oba

(i) If both dlad{i,j} and dlad{i,k} are applicable and w
dlad{i,j}=⇒ u1ku2ku3, w

dlad{i,k}=⇒
v1jv2jv3, then u2 and v2 are a permutation of each other.

(ii) If both dlad{i,j} and dlad{k,
} are applicable and w
dlad{i,j}=⇒ w1, w

dlad{k,�}=⇒
w2, then the reductions w1

dlad{k,�}
=⇒ · · · and w2

dlad{i,j}
=⇒ · · · are simultaneously

possible or impossible.

Assume that w is a legal string with 4 pairs which can be reduced by two

operations, say: w
dlad{i,j}=⇒ w1

dlad{k,�}=⇒ Λ. If we can perform a dlad{r,s} different
from dlad{i,j} then we can always continue with another dlad operation. Indeed,
this follows from Lemma 3(i) in the case when {i, j} and {r, s} are not disjoint
and by Lemma 3(ii) if they are. We proved

Corollary 2. If a legal string w with 4 pairs can be reduced in two steps, then
any dlad applied to w can be followed by another dlad.

Proposition 1. For all legal strings with five pairs or less, all dlad-first reduc-
tions are optimal.

Proof. Assume there is a legal string w with five pairs or less which has a dlad-
first reduction that is not optimal. Assume w has also the minimum number of
pairs. Then, no ld can be performed as the resulting legal string would have the
same property as w but fewer pairs.

In order to be able to make a difference in the number of operations, the
optimal reduction must have at least two dlad operations. As w has at most five
pairs, the optimal reduction will have exactly two dlad operations whereas the
dlad-first one will not have any further dlad operations (which actually means
that no dlad operations will be possible, as otherwise it would be optimal). In
particular w must have five pairs.

We may assume, by possibly renaming some letters, that the two reductions,
the first optimal and the second dlad-first non-optimal are:

w = x1y1̄z hi1=⇒ w1 = xȳz
dlad=⇒ w2

dlad=⇒ Λ and

w
dlad2,3=⇒ w3 =⇒ Λ.

We have that all 2, 3, 4, 5 are negative in w1, so that we can perform the two
remaining dlad operations. On the other hand, 2 and 3 are negative already in
w since dlad2,3 is applicable.

We notice that y cannot be empty as in that case we would find a shorter
w with the same properties. Therefore, hi1 switches some signs. If y does not
contain any of 2, 2̄, 3, 3̄ then hi1 and dlad2,3 are independent and so the dlad-first
reduction is optimal as well, a contradiction. If this is not the case, then assume
y contains 2 (or 2̄). (All the other cases are analogous.) Then it has to contain
the other 2 (or 2̄) as well since otherwise 2 would not be negative in w1. Since
dlad2,3 can be applied in w, it means there is a 3 or 3̄ between the 2’s and there-
fore inside y. But, for the same reason, y must also contain the other 3 (or 3̄).

Gene Assembly Algorithms for Ciliates 81

Assume y = y12y23y32y43y5. We have then w = x1y12y23y32y43y51̄z and the
following reductions:

w
hi1=⇒ w1 = xȳ53̄ȳ42̄ȳ33̄ȳ22̄ȳ1z

dlad3̄,2̄=⇒ w2 = xȳ5ȳ2ȳ3ȳ4ȳ1z and

w
dlad2,3=⇒ w3 = x1y1y4y3y2y51̄z

hi1=⇒ w2.

Since w3 can be reduced necessarily in no less than three operations, no dlad
is applicable to w2. On the other hand, there is a reduction of w1 by two dlad
operations only. This contradicts Corollary 2. �

7.2 Algorithms and Experiments for Dlad-First

Using the algorithms in Section 5 we can construct a quadratic time algorithm
which finds a dlad-first reduction. Finding a best dlad-first reduction seems much
harder.

Also, note that a sub-quadratic algorithm for performing all hi operations
would not immediately imply a sub-quadratic algorithm for finding a dlad-
first reduction. That is because we may have to alternate many times between
dlad operations and hi operations. Here is a simple example. In the legal string
12132̄3̄ 45465̄6̄ 78798̄9̄ . . . each group is independent from the others and a hi
needs to be done first. If we use first hi3, then we must have dlad1,2 and so they
can alternate until the end. (Notice that this particular example can also be
reduced using hi operations only.)

Experimentally, the dlad-first strategy behaves quite well. Our tests on ran-
dom legal strings with 10 pairs show that most strings (over 98%) possess dlad-
first optimal reductions and for the remaining ones dlad-first reductions are
usually longer by only one operation and very rarely by 2.

Also, all known micronuclear genes do have a dlad-first optimal reduction.

8 Conclusions and Further Research

We have investigated a number of algorithmic issues concerning gene assembly in
ciliates. We gave a quadratic time algorithm for reducing strings and discussed
a heuristic algorithm for approximating the optimal reductions. A number of
interesting problems remain to be investigated. First, is it possible to reduce a
string in sub-quadratic time? Second, can we compute a dlad-first reduction in
linear time? Third, is the problem of computing optimal reductions NP-hard?

References

1. A. Ehrenfeucht, T. Harju, I. Petre, D.M. Prescott, and G. Rozenberg, Formal sys-
tems for gene assembly in ciliates, Theoret. Comput. Sci. 292 (2003) 199 – 219.

2. A. Ehrenfeucht, I. Petre, D.M. Prescott, and G. Rozenberg, String and graph reduc-
tion systems for gene assembly in ciliates, Math. Structures Comput. Sci. 12 (2001)
113 – 134.

82 L. Ilie and R. Solis-Oba

3. A. Ehrenfeucht, T. Harju, I. Petre, D.M. Prescott, and G. Rozenberg, Computation
in Living Cells, Springer, Berlin, Heidelberg, New-York, 2004.

4. A. Ehrenfeucht, D.M. Prescott, and G. Rozenberg, Computational aspects of gene
(un)scrambling in ciliates, in: L.F. Landweber and E. Winfree (eds.), Evolution as
Computation, Springer, Berlin, Heidelberg, 2001, 216 - 256.

5. T. Harju, C. Li, I. Petre, and G. Rozenberg, Parallelism in Gene Assembly, in:
Proceedings of the Tenth International Meeting on DNA Computing, LNCS 3384,
2005, 138–148.

6. L.F. Landweber and L. Kari, The evolution of cellular computing: Nature’s solution
to a computational problem, in: Proceedings of the 4th DIMACS Meeting on DNA
Based Computers, Philadelphia, PA, 1998, 3 - 15.

7. L.F. Landweber and L. Kari, Universal molecular computation in ciliates, in: L.F.
Landweber and E. Winfree (eds.), Evolution as Computation, Springer, Berlin Hei-
delberg, 2002, 257 – 274.

8. D.M. Prescott, A. Ehrenfeucht, and G. Rozenberg, Molecular operations for DNA
processing in hypotrichous ciliates, Europ. J. Protistology 37 (2001) 241 - 260.

9. D.M. Prescott and G. Rozenberg, Encrypted genes and their reassembly in ciliates,
in: M. Amos (ed.), Cellular Computing, Oxford University Press, Oxford, 2003,
171–201.

Spectrum of a Pot for DNA Complexes

Nataša Jonoska, Gregory L. McColm, and Ana Staninska

Department of Mathematics
University of South Florida

{jonoska, mccolm, staninsk}@math.usf.edu

Abstract. Given a set of flexible branched junction DNA molecules
(building blocks) with sticky ends we consider the question of deter-
mining the proper stoichiometry such that all sticky ends could end up
connected. The idea is to determine the proper proportion (spectrum) of
each type of molecules present, which in general is not uniform. We clas-
sify the pot in three classes: weakly satisfiable, satisfiable and strongly
satisfiable according to possible components that assemble in complete
complexes. This classification is characterized through the spectrum of
the pot, which can be computed in PTIME using the standard Gauss-
Jordan elimination method.

1 Introduction

DNA molecules through weak chemical bonds (hydrogen bonds) self assemble
into larger and relatively stable nanostructures. The model described in this
paper is motivated by DNA self-assembly based on the Watson-Crick com-
plementarity pairing. Although the naturally occurring DNA molecule has a
double helix structure, it can be configured in many other forms, e.g.: hairpin,
branched 3 and 4 junction molecules, stick cube, truncated octahedron, etc. (see
[3, 4, 11, 17, 18]). These newly formed molecules have been proposed for compu-
tational purposes [6] as well as for scaffolding for other structures [3, 4, 17, 18].

Several models for DNA self-assembly have appeared, mostly using rigid
square tiles [1, 2, 9, 13, 14, 15]. In this paper, we consider another model that
uses flexible tiles (each tile composed of a single branched junction molecule).
This model was initially proposed in [5] and elaborated in [7, 8]. Flexible junc-
tion molecules have been used in experiments to obtain regular graph structures,
such as the cube [3] and truncated octahedron [17, 18] and non-regular graph
structures [6].

This model is based on DNA branched junction molecules with flexible arms
extending to free sticky ends. By imposing restrictions on the number of types of
tiles, one can get DNA computability classes that correspond to extant complex-
ity classes. A “polynomial” restriction produces precisely the NPTIME queries;
no restriction at all produces the classes of all computable queries [8].

In this model, a problem is encoded in branched junction molecules (tiles)
and a solution is obtained if and only if a complete complex (complex without
sticky ends) of appropriate size can assemble. In an experiment one can expect

C. Mao and T. Yokomori (Eds.): DNA12, LNCS 4287, pp. 83–94, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

84 N. Jonoska, G.L. McColm, and A. Staninska

to obtain many kinds of complexes, and not all of them may represent the
designated structures. It can be observed experimentally that a portion of the
DNA material in the pot ends up in incomplete complexes. Also the appearance
of topoisomers have been reported [12, 16].

In [7] we considered questions for the probability of obtaining a complex of
certain size, mainly with the use of methods from random graph theory. In
this paper we consider the question how to reduce the amount of the useless
material that is obtained at the end of an experiment. We propose a method
and a program that determines the correct stoichiometry of the molecules in
order to avoid the incomplete complexes present at the end of an experiment in
ideal conditions. This means, we identify the right proportions of each molecule
such that at the end of the experiment only desired structures are obtained.

A pot is defined to be a collection of tiles. For every pot we define the “spec-
trum” of the pot to be the set of the vectors of “right proportions” for the
molecules. The spectrum of a pot is a convex subset of Qm (Q is the set of ra-
tional numbers and m is the number of distinct tiles) hence if it is not empty, it
is either a singleton or infinite. We use the Gauss-Jordan elimination algorithm
for matrices to prove that the spectrum of a given pot is PTIME computable.
This process also identifies the tiles that are “useless” in the sense, that will not
appear in a complete complex.

The description of the model is presented in Section 2. It contains the main
definitions of complexes and structures that are built up by junction molecules.
In Section 3 we classify the pots in three categories depending whether every
junction (tile) can be included into a complete complex or whether every sticky
end can be used for assembly of a complete complex, or whether the pot gives
rise to a complete complex. The definition of the spectrum of a given pot and
its algebraic and geometric properties are given in Section 4.

Although the method developed is mainly applied to DNA self assembly, the
idea behind it is very general and it is applicable to any other self-assembly
process.

2 Model Description

Let H be a finite set called sticky end types and let θ : H → H be such that
θ(θ(h)) = h for all h ∈ H . We call θ(h) ∈ H the complementary sticky end type
to h such that sticky ends of type h and type θ(h) bond. For each h ∈ H we
assume that θ(h) 	= h = θ(θ(h)). Thus H can be partitioned into two sets H+

and H− such that if h is an element of H+ then θ(h) is an element of H−.
We simplify the notation by writing ĥ for θ(h) and we fix H for the rest of

the paper. We use notation [n] = {1, 2, 3 . . .n} and N = {0, 1, 2, . . .} in what
follows.

Definition 1. A tile type over (H, θ) is a function t : H → N. A tile of type t
has t(h) sticky ends of type h.

Informally, a tile type represents a type of branched junction molecule. Schemat-
ically it can be presented as a star-like graph (see Fig.1) with sticky end labels

Spectrum of a Pot for DNA Complexes 85

at the one degree vertices. A tile is a copy of a certain tile type, and if a tile t is
of type t then for each h ∈ H , t(h) = t(h), meaning that the tile t has exactly
t(h) sticky ends of type h. In a pot with DNA molecules there are many copies
of a given type of junction molecule, and hence we can assume potentially an
infinite supply of tiles for each type of tile.

Definition 2. A pot type over (H, θ) is a set P of tile types over (H, θ) such
that for any h ∈ H and t ∈ P, if t(h) > 0 then there exists t′ ∈ P such that
t′(ĥ) > 0. To ease the notation we write P(H, θ) for a pot type over (H, θ).

Thus no pot type admits tiles with unattachable sticky ends. A pot P is a
collection of tiles from types in P. We will presume that we are working with a
pot P of type P, where P contains sufficiently many distinct tiles of each tile
type to permit the construction described in this abstract.

Definition 3. A complex over a pot type P is a pair C = 〈T, J〉 where T is a set
of tiles with tile types in P and J is a set of unordered pairs c = {(t,h), (t′,h′)}
satisfying the following properties:

- for each c = {(t,h), (t′,h′)} ∈ J, t, t′ ∈ T, t(h), t′(h′) > 0, and h′ = ĥ (c
indicates the connection between two complementary sticky ends) and

- the cardinality |{c : (t,h) ∈ c}| ≤ t(h) (this prevents the tile from making more
connections than it has sticky ends).

Definition 4. The type of a complex C = 〈T, J〉 is the function type(C) : H →
N defined by

type(C)(h) =
∑
t∈T

t(h)− |{c : (t,h) ∈ c}|.

Informally, a complex type records the number and the types of the sticky ends
that are free.

Note: A tile is also a complex t = 〈{t}, ∅〉 and a tile type is also a complex
type.

Definition 5. A complex C is called complete if it has no free sticky ends, i.e.,
for all sticky ends h, type(C)(h) = 0.

For a pot type P we denote by C(P) the set of all complete complexes that can
be obtained by tiles of tile types in P.

3 Pot Type Classification

A complex C = 〈T, J〉 is embedded in a complex C′ = 〈T ′, J ′〉 if T ⊆ T ′ and
J ⊆ J ′.

For pot types we consider three levels of “satisfiability”.

Definition 6. A pot type P is weakly satisfiable if it admits a complete com-
plex, i.e, C(P) 	= ∅.

A pot type P is satisfiable if, for each h ∈ H, there is a complete complex
C ∈ C(P) of the pot containing at least one sticky end of type h.

86 N. Jonoska, G.L. McColm, and A. Staninska

A pot type P is strongly satisfiable if every complex that can be generated by
P can be embedded into a complete complex of P.

Strong satisfiability is the notion of most immediate interest in this paper and
in general for describing self-assembly processes.

Lemma 7. A pot type P is strongly satisfiable iff every tile of a type in P can
be embedded into a complete complex in C(P).

Proof. (Sketch)
One implication of the lemma is trivial; if P is strongly satisfiable, since every

tile is a complex, it can be embedded into a complete complex.
The converse is obtained by mathematical induction on the number of tiles

in a complex. If the statement holds for k-tile complexes, then as a (k + 1)-
tile complex C can be “separated” into a k-tile complex C′ and a tile t. These
complexes C′ and t can join with complexes Ĉ′ and Ct̂ such that Ĉ′ and Ct̂ have
complementary sticky ends to C′ and t respectively, to form complete complexes.
Then C could join an amalgam of Ĉ′ and Ct̂ and form a complete complex.
Therefore every complex can be embedded into a complete complex.

It is straightforward to see that all strongly satisfiable pot types are also satisfi-
able and that all satisfiable pot types are weakly satisfiable. But the converse is
not necessary true. Fig.1a shows a pot type that is satisfiable, but not strongly
satisfiable, since a tile of tile type t3 can never be embedded into a complete
complex. The pot type of Fig.1b is an example of a pot type that is weakly
satisfiable, but not satisfiable since the sticky end type c can never be a part of
any complete complex.

a

a

b

a)

b)

a

a
2 3

b b

a

1

2 31

a

b c

c

a

t t t

t t t

Fig. 1. a) Satisfiable pot type that is not strongly satisfiable (t3 cannot be a part of a
complete complex) b) weakly satisfiable pot type that is not satisfiable (the sticky end
c cannot be a part of a complete complex)

Note that the number of sticky end types doesn’t depend on the number of
tile types. The pot types in all three examples in Fig 2 are strongly satisfiable;
in the first example the number of tile types and sticky end types are equal; in
the second one there are less tile types then free sticky end types; and in the
third example there are more tile types then sticky end types.

Spectrum of a Pot for DNA Complexes 87

a

b

a

a

b

b

b

a)

b)

c)

a

b
21

b

1
b

a

c c

b

1

a

b

a

2 3

2

t t

t t

t t t

Fig. 2. a) |P| = |H+| b) |P| < |H+| c) |P| > |H+|

From reports on DNA assemblies we know that when one runs an experiment,
the desired complexes are not the only thing which show in the pot, for there
may be a lot of incomplete complexes. They increase the error rate and certainly
increase the cost of the experiment.

If the stoichiometry in the test tube is bad, i.e., an improper ratio of each of
the molecules is used, then any conditions there will be incomplete complexes.
We propose a method which theoretically (ignoring all dynamic considerations
such as those in [10]) eliminates the presence of incomplete complexes assuming
that assembly occurs ideally in a well mixed diluted pot.

The main motive of this research is to study the optimization of the assembly
of complete complexes and to show how to predesign a pot type in which at the
end of an experiment only complete complexes would be expected.

To ease notation, for the rest of the paper we will work with a pot type
P = {t1, t2 . . . , tm} consisting of m tile types, and n sticky end types H+ =
{h1,h2, . . . ,hn}.

To each complex type C we associate a vector zC = (z1, z2, . . . , zn) from Zn

such that zi : H+ → Z

zi = type(C)(hi)− type(C)(ĥi).

We assume that the pot is diluted and the thermodynamic conditions are such
that all sticky ends that can connect would be able to. In this sense zC gives
information about the remaining free sticky end types on the complex C.

4 Spectrum of a Pot

4.1 Definitions

To solve a problem with DNA molecules, first the molecules that encode the
problem need to be synthesized, and then combined into one pot. Often, best

88 N. Jonoska, G.L. McColm, and A. Staninska

stoichiometry is assumed by uniform distribution of the predesigned molecules.
If instead of uniform distribution, the proportion of every molecule in the pot
is carefully selected, the incomplete complexes may be eliminated from the pot.
The collection of vectors that represent the selected proportions of tile types such
that only complete complexes are assembled is called the spectrum of the pot .
Formally,

Definition 8. The spectrum of P is the set S of all vectors r = (rt : t ∈ P)
such that:

1) For each t, rt ≥ 0 and ∑
t∈P

rt = 1, (1)

2) for each h, ∑
t∈P

rtt(h) =
∑
t∈P

rtt(ĥ), (2)

i.e, for each h ∈ H there are as many sticky ends of type ĥ as there are of
type h.

Using the vector zt(h) = t(h)− t(ĥ) associated to tile t when it is considered
as a complex, the second part of the definition can be rewritten in the following
form

2∗) ∑
t∈P

rtzt(h) = 0, for zt(ĥ) = −zt(h). (3)

If a pot has a mixture of tiles whose proportions correspond to a vector in
the spectrum, then theoretically, “ignoring” dynamics, only complete complexes
need be expected. If the used stoichiometry is different then the proportions of
any of the vectors of the spectrum, there are no conditions in the tube that could
avoid incomplete complexes. A vector in the spectrum can also be considered as
a vector of the probabilities for each tile to be part of a complete complex.

Example 9. The spectrum of the pot types given in Fig.1a,b each containing three
tile types, is the solution of the following systems of equations for r1, r2, r3 ≥ 0.

(a) r1 + r2 + r3 = 1 (b) r1 + r2 + r3 = 1
r1 − r2 + 2r3 = 0 r1 − r2 = 0

r1 − r2 = 0 r1 − r2 = 0
2r3 = 0 .

Both systems have the same solution, i.e., the spectrum of both pot types is
S = {(1

2 , 1
2 , 0)}. These two examples show that it cannot be distinguished be-

tween the spectra of a satisfiable pot and a weakly satisfiable pot. Note that a
pot type admits a complete complex iff its spectrum is nonempty. So in the above

Spectrum of a Pot for DNA Complexes 89

example the spectrum points out that the use of equal number of molecules of
the first two types, and no use of any molecules from the third type for no sticky
ends to remain free.

There are finite number of tiles in a given pot type, so the proportion of each
tile is a rational number, i.e. S(P) ⊆ Qm, Q being the set of rational numbers.

4.2 Geometric Representation of the Spectrum

The first part of Definition 8 shows that the spectrum of a pot with m tile
types is a subset of the set Hm defined as the intersection of the subspace of
Qm

+ = {(r1, r2, r3 . . . rm) : ri ∈ Q, ri ≥ 0 for i ∈ [m]} and the hyperplane
r1 + r2 + . . . + rm = 1. This hyperplane is a simplex, and the spectrum of any
given pot is dense in a simplex and includes the vertices of that simplex. 1

From part (2) of Definition 8 it follows that the spectrum is an intersection
of n hyperplanes (for each h,

∑
t∈P

rtzt(h) = 0) and Hm.

Proposition 10. The spectrum S(P) of a pot type P with |P| = m and corre-
sponding set of sticky ends H with |H | = n is an intersection of n hyperplanes
and the set Hm. Moreover the spectrum is a simplex, since Hm is a simplex, and
its vertices are rational points.

Proposition 11. a) A pot type is weakly satisfiable iff it admits a nonempty
spectrum.

b) The closure of the spectrum S(P) of a pot type P is a convex set of vectors:
if u,v ∈ S(P), and if z ∈ [0, 1], then zu + (1 − z)v ∈ S(P).

Proof

a) If a weakly satisfiable pot type P admits a complete complex, then at least
one of the tiles in the pot is a part of that complex. The proportion of that
tile type is nonzero and hence S(P) 	= ∅.

Conversely, if S(P) 	= ∅, there exists a nonzero vector r = (rt : t ∈ P)
of rational numbers in S(P). Multiply r with a positive integer to get a
vector (qt : t ∈ P) of positive integer. Take qt tiles of type t for each t;
and connect the complementary sticky ends. The result is a collection of
complete complexes.

b) Follows immediately from the fact that the spectrum is a simplex.

Proposition 12. The spectrum S(P) of a given pot P is either empty, a sin-
gleton or an infinite set.
1 Let {a1, a2, . . . , an} be a geometrically independent set in RN . An n-simplex spanned

by a1, . . . , an is the set of all points x ∈ RN such that x =
n∑

i=0

tiai where
n∑

i=o

ti = 1.

An intersection of simplices is a simplex . We will further require that ti ≥ 0 for
each i. In this abstract, the vectors ai are all rational, and hence the simplices are
convex polytopes (n-dimensional polygonal solids) with rational vertices.

90 N. Jonoska, G.L. McColm, and A. Staninska

Proof. The spectrum of a non-weakly satisfiable pot is empty (Proposition 11).
Since the spectrum is a convex set, if it contains two points then it contains
every other rational point between those two. Hence the spectrum is infinite.

Proposition 13. If the spectrum consists of only one point, S(P) = {(rt1 , rt2 ,
. . . , rtm)}, and if rtk

> 0 for some k ∈ [m], then every complete complex in C(P)
contains a tile of type tk. Moreover, if rtk

> 0 for all k ∈ [m], P is strongly
satisfiable.

Proof. First suppose that rtk
> 0, but towards contradiction, suppose that there

is a complete complex C that does not contain tk. If C contains ql tiles of type
tl for each l, and q tiles altogether, then (q1

q , q2
q , . . . , qm

q) ∈ S(P), contradicting
that |S(P)| = 1 and rtk

	= o = qk

q .

Now let’s consider examples for the spectra of strongly satisfiable pot types.

Example 14. Consider the pot types depicted in Fig.2. Their spectra can be
computed similarly as in Example 9. The spectrum of the pot type in Fig.2a is
S = {(u, 1− u)|u ∈ Q}, the spectrum of the pot type in Fig.2b is S = {(1

2 , 1
2)},

while the one for Fig.2c is S = {(1
4 , 1

2 , 1
4)}. In the pot type of Fig.2a every

proportion of the molecules of each type ends up with complete complexes only,
while for the other two pot types it is not the case.

In two dimensional space (corresponding to a pot type with exactly two tile
types) since all of the equations for the hyperplanes are equations of a line, the
spectrum is a part of the line segment (r1 + r2 = 1, 0 ≤ r1 ≤ 1, 0 ≤ r2 ≤ 1)
connecting the points (0, 1) and (1, 0). So the spectrum is either a point of that
line segment, or it is the entire line segment, or it is the empty set.

In three dimensional space, (corresponding to a pot type with exactly three

tiles) the spectrum is the intersection of the planes
3∑

i=1

rizti(h) = 0, the plane

r1 + r2 + r3 = 1 and the subspace {(r1, r2, r3)| ri ≥ 0 for i ∈ {1, 2, 3}}.
It means the spectrum of a pot with three tiles types can be either a point in

the triangle {(r1, r2, r3)| r1 + r2 + r3 = 1} ∩ {(r1, r2, r3)| ri ≥ 0 for i ∈ {1, 2, 3}}
(which is the triangle that connects points (1, 0, 0), (0, 1, 0) and (0, 0, 1)) (See 4),
a line segment within this triangle, or the entire interior of the triangle with the
triangle itself. The following example illustrates all three cases.

Example 15. All three examples have a three tile type pot type P = {t1, t2, t3},
and the set of sticky end types H = {a,b, â, b̂}.

For two dimensional space the spectrum is part of the line segment connecting
the points (1, 0) and (0, 1), for three dimensional space it is part of the triangle
connecting the points (1, 0, 0), (0, 1, 0) and (0, 0, 1), for four dimensional it is
part of the tetrahedron connecting the points (1, 0, 0, 0), (0, 1, 0, 0), (0, 0, 1, 0)
and (0, 0, 0, 1), etc.

Spectrum of a Pot for DNA Complexes 91

= (0, 0, 0)

a

b

2

t

a

b

a

t
1 b

b

b

a)
3

t

a

a

1
t

a

b

2
t

a

b

3
tb)

z t 2
= (−1, 1) z t 3

= (0,−3) z t 1
= (2, 1)

z t 1
= (0, 0) z t 2

= (1, 1) z t 3
= (−1,−1) z t 2

= (1, 1)

b

b

t
2

a

a

1
t

c

c

3
tc)

z t 1
= (0, 0, 0) z t 2

= (0, 0, 0) z t 3

Fig. 3. a) Strongly satisfiable pot type with spectrum {(1
4
, 1

2
, 1

4
)}, b) Strongly satisfi-

able pot type with spectrum {(1 − 2u, u, u) : 0 ≤ u ≤ 1
2
} c) Strongly satisfiable pot

type with spectrum {(1 − u − v, u, v) : 0 ≤ u ≤ 1, 0 ≤ v ≤ 1, u + v ≤ 1}}

Note the spectrum contains vectors with rational entries, its closure is bounded
and therefore compact subset of Rm.

4.3 Algebraic Representation of the Spectrum

The spectrum is the intersection of n hyperplanes (for each h,
∑
t∈P

rtzt(h) =

0) and Hm. Hence it is the solution of n homogeneous and 1 inhomogeneous
equations with m variables over Q+.

r1 + r2 + . . . + rm = 1
zt1(h1)r1 + zt2(h1)r2 + . . . + ztm(h1)rm = 0
zt1(h2)r1 + zt2(h2)r2 + . . . + ztm(h2)rm = 0

...
...

...
...

zt1(hn)r1 + zt2(hn)r2 + . . . + ztm(hn)rm = 0.

(4)

An efficient way to do that is by the Gauss-Jordan elimination, which trans-
forms the augmented matrix of system (4) into the row-echelon form. The com-
putational complexity of solving this system with the aid of Gauss-Jordan elim-
ination is O(m2n).

From Example 9 and Example 14 it can be seen that for satisfiable and weakly
satisfiable pots (and not strongly satisfiable pots) vectors of the spectrum may

92 N. Jonoska, G.L. McColm, and A. Staninska

0

0.2

0.4

0.6

0.8

1

0.2

0.4

0.6

0.8

1

0.2

0.4

0.6

0.8

1

Fig. 4. The closure of the spectrum of the pot type given in Example 15b) is the line
segment; the closure of the spectrum of the pot type given in Example 15c) is the
triangle bounded by the dotted lines along with its interior

have zero coordinates. If the spectrum of a strongly satisfiable pot is a singleton,
then all of its coordinates are positive numbers (Proposition 17).

Definition 16. Let A be a set of n dimensional vectors. The support of A
is the set supp(A) = {i ∈ [n] : there exists a vector u = (u1, u2, . . . , un) ∈
A such that ui 	= 0}. In other words, if i /∈ supp(A), then the i th coordinate of
every point in A is 0.

Proposition 17. Suppose S(P) is the spectrum of a given pot type P with |P| =
m

a) supp(S(P)) = [m] iff P is strongly satisfiable.
b) ∅ 	= supp(S(P)) � [m] iff (P is weakly satisfiable that is not strongly satis-

fiable).

Proof. a) supp(S(P)) = [m] iff every tile has a positive probability of being
on a complete complex, i.e., every tile can be embedded into a complete
complex, which means that the pot type is strongly satisfiable.

b) supp(S(P)) � [m] iff there is a coordinate that is zero in every vector of
the spectrum, i.e. at least one tile type cannot be embedded into a complete
complex, so the pot is not strongly satisfiable, but it is weakly satisfiable
since it has a nonempty spectrum.

Proposition 18. Weak satisfiability, satisfiability and strong satisfiability of pot
types are in PTIME.

Proof. Let P be a pot type with m tile types and n sticky end types. In order
to obtain the spectrum for the given pot we need to solve system (4) of n + 1

Spectrum of a Pot for DNA Complexes 93

equations with m variables. If there is a solution with all positive coordinates,
then the spectrum is nonempty and from Proposition 17 it follows that the pot is
strongly satisfiable. If there is a solution to the system (4) and supp(S(P)) � [m],
then the spectrum is nonempty and from Propositions 11 and 17 follows that
the pot is weakly satisfiable but not strongly satisfiable. Therefore the weak
satisfiability and strong satisfiability are in PTIME.

Now suppose that the pot is weakly satisfiable but not strongly satisfiable,
i.e. supp(S(P)) � [m].

In order to determine whether a pot is satisfiable or only weakly satisfiable,
for every h ∈ H we consider the following m dimensional vectors: lh = (lt(h) :
t ∈ P) such that

lt(h) =
{

1 if t(h) ≥ 1 or t(ĥ) ≥ 1
0 otherwise

If there exists a sticky end h ∈ H such that lh(i) = 0 for all i ∈ supp(S(P))
are 0’s, then h could not be embedded into any complete complex, hence the pot
is weakly satisfiable, but not satisfiable (otherwise the pot is satisfiable). Hence,
the computational complexity for classifying pot types according to their type
of satisfiability is O(m2n) + O(mn) = O(m2n), i.e it is in PTIME.

Acknowledgment. Authors thank Stephen W. Suen, David A. Rabson, and
the referees for providing valuable suggestions. The work is supported in part
by NSF grants CCF #0432009 and CCF #0523928.

References

[1] L.M. Adleman, Q. Cheng, A. Goel, M-D. Huang, D. Kempe, P. Moisset de Es-
panes, P.W.K. Rothemund. Combinatorial optimization problems in self-assembly,
STOC’02 Proceedings, Montreal Quebec, Canada, 2002.

[2] L.M. Adleman, J. Kari, L. Kari, D. Reishus. On the decidability of self-assembly
of infinite ribons, Proceedings of FOCS 2002, IEEE Symposium on Foundations
of Computer Science, Washington (2002) 530-537.

[3] J.H. Chen, N.C. Seeman. Synthesis from DNA of a molecule with the connectivity
of a cube, Nature 350 (1991).

[4] R. P. Goodman, I. A. T. Schaap, C. F. Tardin, C. M. Erben, R. M. Berry, C. F.
Schmidt, A. J. Turberfield. Rapid Chiral Assembly of Rigid DNA Building Blocks
for Molecular Nanofabrication, Science 310 (2005).

[5] N. Jonoska, S. Karl, M. Saito. Three dimensional DNA structures in computing,
BioSystems 52 (1999) 143-153.

[6] N. Jonoska, P. Sa-Ardyen, N.C. Seeman. Computation by self-assembly of DNA
graphs, Genetic Programming and Evolvable Machines 4 (2003) 123-137.

[7] N. Jonoska, G. McColm, A. Staninska. Expectation and variance of self-assembled
graph structures, A. Carbone, N. Pierce (eds) Springer LNCS 3892 (2006)144-157.

[8] N. Jonoska, G.L. McColm. A computational model for self-assembling flexible ti-
tles, C. S. Calude et al. (eds) Springer LNCS 3699 (2005).

[9] M-Y. Kao, V. Ramachandran. DNA self-assembly for constructing 3D boxes. Al-
gorithms and Computations, ISAC 2001 Preceedings, Springer LNCS 2223 (2001)
429-440.

94 N. Jonoska, G.L. McColm, and A. Staninska

[10] S. A. Kurtz, S. R. Mahaney, J. S. Royer, J. Simon. Active transport in biological
computing. L. Landweber and E. Baum (eds) DIMACS Vol 44 (1997) 171-181.

[11] C. Mao, W. Sun, N.C. Seeman. Designed two-dimensional DNA holliday junc-
tion arrays visualized by atomic force microscopy, Journal of American Chemical
Society 121(23) (1999) 5437-5443.

[12] J. Qi, X. Li, X. Yang, N.C. Seeman. Ligation of triangles built from bulged 3-
arm DNA branched junctions, Journal of American Chemical Society 120 (1996)
6121-6130.

[13] J. H. Reif, S. Sahu, P. Yin. A self-assembly model of time-dependent glue strength,
A. Carbone, N. Pierce (eds) Springer LNCS 3892 (2006).

[14] P.W.K. Rothemund, P. Papadakis, E. Winfree. Algorithmic self-assembly of DNA
Sierpinski triangles, PLoD Biology 2 (12) e424 (2004).

[15] P.W.K. Rothemund, E. Winfree. The program-size complexity of self-assembled
squares, Proceedings of 33rd ACM meeting STOC 2001, Portland, Oregon, May
21-23 (2001) 459-468.

[16] P. Sa-Ardyen, N. Jonoska, N.C. Seeman. Self-assembly of graphs represented by
DNA helix axis topology, Journal of American Chemical Society 126(21) (2004)
6648-6657.

[17] W.M. Shih, J.D. Quispe, G.F. Joyce., A 1.7-kilobase single stranded DNA folds
into a nanoscale octahedron, Nature 427 (2004) 618-621.

[18] Y. Zhang, N.C. Seeman. The construction of a DNA truncated octahedron, Journal
of American Chemical Society 116(5) (1994) 1661-1669.

On the Complexity of Graph Self-assembly in
Accretive Systems

Stanislav Angelov, Sanjeev Khanna, and Mirkó Visontai

Department of Computer and Information Science
School of Engineering and Applied Sciences

University of Pennsylvania, Philadelphia, PA 19104, USA
{angelov, sanjeev, mirko}@cis.upenn.edu

Abstract. We study the complexity of the Accretive Graph Assembly
Problem (AGAP). An instance of AGAP consists of an edge-weighted graph
G, a seed vertex in G, and a temperature τ . The goal is to determine if
there is a sequence of vertex additions which constructs G starting from
the seed. The edge weights model the forces of attraction and repulsion,
and determine which vertices can be added to a partially assembled graph
at the given temperature.

Our first result is that AGAP is NP-complete even on degree 3 planar
graphs when edges have only two different types of weights. This resolves
the complexity of AGAP in the sense that the problem is polytime solvable
when either the degree is bounded by 2 or the number of distinct edge
weights is one, and is NP-complete otherwise. Our second result is a di-
chotomy theorem that completely characterizes the complexity of AGAP

on degree 3 bounded graphs with two distinct weights: wp, wn. We give
a simple system of linear constraints on wp, wn, and τ that determines
whether the problem is NP-complete or is polytime solvable. In the pro-
cess of establishing this dichotomy, we give the first polytime algorithm
to solve a non-trivial class of AGAP. Finally, we consider the optimization
version of AGAP where the goal is to realize a largest-possible subgraph
of the given input graph. We show that even on constructible graphs of
degree at most 3, it is NP-hard to realize a (1/n1−ε)-fraction of the input
graph for any ε > 0; here n denotes the number of vertices in G.

1 Introduction

Self-assembly is a process in which small objects interact autonomously with each
other to form intricate complexes. The self-assembly approach is particularly ap-
pealing for constructing molecular scale objects with nano-scale features [1]. Ex-
amples of its application and practical modeling can be found in [2,3,4,5,6,7,8,9].

Based on the Wang Tiling Models [10], Rothemund and Winfree [11] proposed
the Tile Assembly Model to formalize and facilitate theoretical study of the self-
assembly process. In this model, DNA tiles are abstracted as oriented squares,
where each side has a glue type and (non-negative) strength. An assembly starts
from a designated seed tile and can be augmented by a tile if the sides of the
tile match the glue types of its already assembled neighbors and the total glue

C. Mao and T. Yokomori (Eds.): DNA12, LNCS 4287, pp. 95–110, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

96 S. Angelov, S. Khanna, and M. Visontai

strength is no less than a threshold parameter τ , referred to as the temperature
of the assembly.

Recently, Reif, Sahu, and Yin [1] proposed a generalization of the Tile As-
sembly Model, i.e., assembly on two-dimensional grids, to one on general graphs,
named the Accretive Graph Self-Assembly Model. The accretive graph assembly
is a sequential process where a weighted graph is assembled one vertex at a
time starting from a seed vertex. The weight of each positive (resp. negative)
edge specifies the magnitude of attraction (resp. repulsion) between the incident
vertices. Again, a vertex is added to the assembly if the net attraction minus
repulsion of the built neighbors is at least τ . Accretive here suggests the mono-
tone property of the process, i.e., an added vertex cannot be removed later, in
contrast to the Self-Destructive Graph Assembly Model [1], or the Kinetic Tile
Assembly Model where tiles can fall off [12,13].

The Accretive Graph Self-Assembly Model addresses some of the deficiencies
of the Tile Assembly Model. Namely, it models repulsion and allows the assem-
bly of general graph structures. A central problem in this model is the Accretive
Graph Assembly Problem (AGAP): Given a weighted graph on n vertices and a
seed vertex, the problem asks for a sequence of vertex additions respecting τ
that builds the graph. Among other results, it was shown in [1] that AGAP is
NP-complete for graphs with maximum degree 4 and for planar graphs (PAGAP)
with maximum degree 5. The authors in [1] posed several natural open problems
related to AGAP which we address in this paper. The first question was to deter-
mine the precise degree bound for which AGAP and PAGAP change in complexity
from polytime solvable to NP-complete, and the second one was to determine
the difficulty of the optimization versions of these problems.

Our Results and Techniques. The complexity of a graph assembly system can be
measured by the degree of the underlying graph G and the number of possible
weights an edge can take. Similarly to the number of different tiles in the Tile
Assembly Model, here we can bound the number of different vertex types, where
a type is determined by the weights of the edges incident to a vertex. A natural
question is under what conditions we can solve AGAP in polytime and what is
the smallest complexity for which we can show the problem to be NP-complete.
Our main results settle open problems posed in [1] and are as follows:

– We show that PAGAP (and hence AGAP) is NP-complete even if the maximum
degree of the input graph is 3 and edges can take only two different weights.
This result is tight in the sense that AGAP is polytime solvable if either the
maximum degree is bounded by two or all edges have identical weights.

– We prove a dichotomy theorem that completely characterizes the complexity
of AGAP on degree 3 bounded graphs with two distinct weights: wp, wn. We
give a simple system of linear constraints on wp, wn, and τ that determines
whether the problem is NP-complete or polytime solvable. In the process of
establishing this dichotomy, we give a polytime algorithm to solve a non-
trivial class of AGAP instances.

On the Complexity of Graph Self-assembly in Accretive Systems 97

– We show that MAX AGAP, the optimization version of AGAP, is hard to approx-
imate within a factor of O(n1−ε) for any ε > 0 even if the degree of the input
graph is 3; here n denotes the number of vertices of the underlying graph G.
When the graph edges are restricted to only two weights, we show the same
hardness of approximation for degree 5 graphs via a novel reduction from the
directed Hamiltonian path problem on cubic (degree 3) graphs. The results
hold even if the seed vertex is not part of the input.

Our technique for showing NP-hardness extends the reduction from P3SAT
shown in [1] with a modular design using gadgets. Note that these gadgets
might be easy to understand but are hard to find. We also show that some
of the NP-hardness results can be obtained independently by reduction from
the Hamiltonian path problem [14]. Our polytime algorithm for AGAP arises by
a reduction to a problem called the Rainbow Spanning Tree Problem which is
known to be solvable by using a result from matroid theory [15]. The hardness
of approximation relies on the NP-hardness of the underlying problem combined
with additional gadget constructions.

Related Work. Much of the theoretical work on self-assembly to date has focused
on analyzing the complexity of the original Tile Assembly Model. Adleman et
al. [16] showed that determining the minimum number of distinct tiles required to
produce a given shape is NP-complete in general, and polytime solvable for trees
and squares. The authors also gave an O(log n)-approximation algorithm for de-
termining the relative concentration of tile types that achieved optimal assembly
time in partial order systems. In the case of n× n squares, an optimal assembly
requiring Θ(n) time and Θ(log n

log log n) tile types was described in [11,17] based on
simulation of binary counters. Extensions to the Tile Assembly Model include
consideration of flexible glue-strengths and temperature programming [18,19,20],
fault tolerance and self-correction [12,13,21,22,23,24,25,26], patterning (of com-
ponents) and self-replication [4,6,27,28,29,30].

Among the first works to study the self-assembly process on general graphs
are [31,32,33,34,35,36]. It was shown that 3SAT and 3-Vertex-Colorability can
be solved by self-assembly of DNA graphs using a constant number of labora-
tory steps [31,32]. A generalization of the Tile Assembly Model, where flexible
tiles may connect to more than 4 tiles in a not necessarily planar arrangement,
was investigated in [33]. Graph grammars were used to model self-assembly on
planar graphs [34,35]. Experiments on construction of non-regular graphs were
presented in [36].

Organization. We begin by formally describing the AGAP problem and providing
the necessary notations and definitions. Building on the ideas in [1], in Section 3
we show that AGAP is NP-complete on degree 4 planar graphs. In Section 4 we
introduce new types of constructions showing that AGAP is NP-complete even
on degree 3 planar graphs with two distinct edge weights. In Section 5 we show
our hardness of approximation results for AGAP. We summarize our results and
discuss some open problems in Section 6.

98 S. Angelov, S. Khanna, and M. Visontai

2 Preliminaries

2.1 Model and Problem Statements

We adopt the Accretive Graph Self-Assembly Model introduced in [1]. A graph
assembly system is a quadruple 〈G, vs, w, τ〉, where G = (V, E) is undirected
weighted graph, vs ∈ V is a seed vertex, w is a weight function: w : E → Z,
and τ ∈ N is the temperature of the assembly. Here the weight of an edge repre-
sents the strength of attraction between adjacent vertices if positive, and their
repulsion if negative. An analogue of the weight function in the Tile Assembly
Model [11] is the glue function (cf. glue strength is non-negative).

The self-assembly process in the Accretive Graph Self-Assembly Model pro-
ceeds as follows. The graph G serves as a template of construction and initially
only the seed vertex vs of G is built. For a vertex v, let Γ (v) represent the set
of neighbors of v in G that are already built. A new vertex v of G can be at-
tached to the construction if and only if

∑
u∈Γ (v) w(u, v) ≥ τ , i.e., the sum of the

weights from v to its already built neighbors is at least equal to the temperature
of assembly. The assembly is sequential, i.e., vertices are built one at a time, and
accretive, i.e., once a vertex is built it cannot be detached from the construction.
We will use u ≺ v to denote that vertex v is built after vertex u.

We consider the following problems:

Definition 1 (Accretive Graph Assembly Problem (AGAP)). Given an ac-
cretive graph assembly system 〈G, vs, w, τ〉, determine if G is sequentially con-
structible (in short, constructible) starting from the seed vertex vs, and provide
a feasible order of construction, π : vs = vπ1 ≺ vπ2 ≺ . . . ≺ vπn , if one exists.

Definition 2 (Planar Accretive Graph Assembly Problem (PAGAP)). The
AGAP problem restricted to planar graphs.

We also consider the following restrictions of AGAP (PAGAP). The k-WEIGHT AGAP
(k-WEIGHT PAGAP) is a special instance of AGAP (PAGAP) such that, there are at
most k different edge weights in G. When the degree of G is restricted to d, we
refer to the problem as d-DEGREE AGAP (d-DEGREE PAGAP).

Since AGAP is NP-complete in general [1], it is natural to consider polytime
approximation algorithms that seek to build a largest subset of vertices of the
input graph.

Definition 3 (Maximum AGAP (MAX AGAP)). Given an instance of AGAP on
a graph G, find a largest subgraph of G which is constructible starting from the
seed vertex, and provide an order of construction.

An α-approximation algorithm for MAX AGAP is a polytime algorithm that on any
given input instance G computes a constructible subgraph of G, say H , such that
|H | ≥ |H∗|/α, where H∗ is a largest constructible subgraph of G.

2.2 Background Results and Definitions

The two propositions below characterize some simple cases where AGAP is poly-
time solvable.

On the Complexity of Graph Self-assembly in Accretive Systems 99

Proposition 1. [1] AGAP with only positive edge weights can be solved in O(|V |+
|E|) time.

Proposition 2. 2-DEGREE AGAP can be solved in O(|V |+ |E|) time.

We, therefore, focus on graphs with maximum degree at least 3 and with at least
one edge with negative weight. In order G to be constructible there must be an
edge of weight at least τ ≥ 0, otherwise the first vertex other than the seed
cannot be built. Hence, we consider graphs with at least two different weights.

We will only show NP-hardness in the NP-completeness proofs for PAGAP since
(P)AGAP is easily shown to be in NP: given an ordering of the vertices, it can be
verified in polynomial time if it is feasible.

Planar 3SAT. In our results we will mostly use a reduction from planar 3SAT
(P3SAT), similar to [1]. Lichtenstein [37] proved that P3SAT, i.e., 3SAT with the
restriction that the identifying graph is planar, remains NP-complete. The identi-
fying graph of a 3SAT formula φ is a graph G = (V, E) where vertices correspond
to literals and clauses; and there is an edge between a literal vertex and a clause
vertex if and only if the literal participates in the clause. Also, there is an edge
between every literal and its complement. Middleton [38] showed that decid-
ing the satisfiability of a P3SAT formula with an identifying graph (see Fig. 1)
obeying the following restrictions is still NP-complete:

(1) There is a cyclic path, called the loop, that can be drawn in the plane such
that it passes between all pairs of complementary literals, but does not in-
tersect any other edges of G.

(2) The boolean formula contains only clauses in which the literals are either all
positive or all negative.

(3) The graph G can be arranged so that interior (resp. exterior) clauses have
only positive (resp. negative) literals.

(4) Let C(�) denote the set of clauses in which a literal � participates, then
|C(�)| ≤ 2 for all � in φ.

The dashed circle in Fig. 1 corresponds to the loop described above, which
we assume to be directed and denote by L. The loop provides a natural (cyclic)
ordering of the variables, e.g., L = x, y, z, w, x. For variables u and v we will use
uv ∈ L to denote that v follows u in L, e.g., xy ∈ L, but xz /∈ L.

3 4-DEGREE PAGAP Is NP-Complete

The construction in this section is similar to that of [1] but it reduces the degree
of the resulting graph from 5 to 4. We start our reduction from a P3SAT formula
φ and its identifying graph. For every variable x and its negation x̄, we replace
the edge (x, x̄) in the graph (Fig. 1) with the gadget depicted in Fig. 2. For x
and y, xy ∈ L, we connect the corresponding gadgets with edge (tx, sy) with
weight τ = 2. This gadget ensures two vital properties. First, along the loop
L we can build all vertices corresponding to literals which are set to TRUE, and

100 S. Angelov, S. Khanna, and M. Visontai

w̄ w

y ȳ

x̄

x

z

z̄

�A �
B

�C

�D

�
E

��

��
��

��

L

Fig. 1. The identifying graph for the formula
A ∧ B ∧ C ∧ D ∧ E = (x ∨ y ∨ w) ∧ (x ∨ y) ∧
(w ∨ z) ∧ (ȳ ∨ z̄) ∧ (w̄ ∨ x̄)

��
sx

�
tx

�
sy

x̄

x

�A �B

�E

'
'

'
'

'

(
(

(
(

(

�
��

�
�

%
%

%%

2

2
2

2

2

2

6
-4

-4

4

Fig. 2. Gadget for degree 4 planar
graphs and τ = 2. Here, sx is the
seed vertex.

therefore all vertices corresponding to clauses. Secondly, we can complete all the
remaining vertices afterwards. On the other hand, if a vertex corresponding to
a literal is built then we need to build tx before we build the complementary
literal. Now, the edges on the complementary literal are such, that we can only
build it if all of its adjacent clauses are already built. This corresponds to the
fact, that if we set x to TRUE, the formula is only satisfiable if the clauses in C(x̄)
can be satisfied independently of x̄. We now describe the construction in detail.

3.1 The Gadget Construction

Figure 2 shows the gadget replacing (x, x̄) in the identifying graph (for τ = 2),
where x and x̄ participate in clauses A and B, and E, respectively. Formally,
we construct the gadget for a variable x as follows. We use additional nodes
sx and tx and introduce new edges with the following weights: w(sx, tx) = 3τ ,
w(x, sx) = w(x̄, sx) = τ , w(x, tx) = w(x̄, tx) = −2τ and w(x, c) = 2τ/|C(x)| for
all clauses c ∈ C(x), and w(x̄, c) = 2τ/|C(x̄)| for all clauses c ∈ C(x̄). (Recall
that |C(�)| ∈ {1, 2} for any literal �.) Also, for xy ∈ L, we add an edge (tx, sy)
with weight τ to connect to the gadget replacing (y, ȳ).

The following theorem shows that φ is satisfiable if and only if there is an
ordering to assemble G.

Theorem 1. 4-DEGREE PAGAP is NP-complete.

Proof. For the first part, assume there is a satisfying assignment of the underly-
ing formula. Consider the obtained graph G. We show that there is an ordering
of vertices in G in which every vertex can be built. Starting from the seed vertex
we construct the literals x or x̄ depending on whose value is set to TRUE in σ
following the loop L. After x or x̄ is built, we construct tx and we proceed to

On the Complexity of Graph Self-assembly in Accretive Systems 101

the next variable y in the loop by building sy. Since σ is a satisfying assignment,
each vertex corresponding to a clause is adjacent to a vertex which is built (each
clause has a variable which is set to TRUE) and the edge weights connecting them
are ≥ τ . At the final step we can build the literals � which are set to FALSE in
σ. We have two cases based on the cardinality of C(�). If |C(�)| = 1, the con-
tribution of �’s neighbors is −2τ + τ + 2τ = τ and similarly if |C(�)| = 2 the
contribution is −2τ + τ + τ + τ = τ .

For the second part, consider an ordering in which we complete all the vertices
of the graph G. Look at the following assignment: set x to TRUE if x is built
before x̄ and set x to FALSE otherwise. We claim this is a satisfying assignment
to φ. We prove by contradiction. Assume there is a clause A = x ∨ y ∨ z which
is not satisfied, hence x = y = z = FALSE. Thus, x̄ ≺ x, ȳ ≺ y and z̄ ≺ z.
W.l.o.g., x ≺ y ≺ z in this ordering. The clause A is adjacent only to x, y, z and
thus x ≺ A. But, due to the construction x can only be built after C(x) is built
(since it must be the case that x̄ ≺ tx ≺ x), implying A ≺ x, which is clearly a
contradiction. ��

3.2 An Alternative Approach

We can show a stronger version of the above theorem, via a reduction from
the directed Hamiltonian path problem in cubic graphs [14]. This new approach
only uses 3 distinct weights, as opposed to the 4 weights in the preceding con-
struction. In addition to that, every constructible instance has a stable order of
construction, i.e., at every step of the construction, each built vertex has a net
attraction at least τ . This is in contrast to the previous reduction using gadgets
shown in Fig. 2, where no stable order of construction exists since the sum of
the weights of edges incident on tx is less than τ .

Theorem 2. 4-DEGREE 2-WEIGHT PAGAP is NP-complete.

4 The Complexity of 3-DEGREE 2-WEIGHT AGAP (PAGAP)

In this section, we prove a dichotomy theorem that completely characterizes the
complexity of AGAP on degree 3 bounded graphs with two distinct weights wp

and wn. We assume w.l.o.g. that wp ≥ τ and wn < 0 since the case when both
weights are positive is trivially solvable by Proposition 1, and the case when
max{wp, wn} < τ has no solution. We give a simple system of linear constraints
on wp, wn and τ that determines whether the problem is NP-complete or solvable
in polynomial time (see Table 1).

Theorem 3. 3-DEGREE 2-WEIGHT (P)AGAP with weights wp and wn is NP-
complete if and only if wp + 2wn < τ and wp + wn ≥ τ ; otherwise it is solvable
in polynomial time.

We first improve on the NP-completeness result for 4-DEGREE PAGAP by showing
that 3-DEGREE 2-WEIGHT PAGAP is NP-complete. Our construction is related

102 S. Angelov, S. Khanna, and M. Visontai

Table 1. Complexity of 3-DEGREE 2-WEIGHT AGAP with weights wp ≥ τ and wn < 0

wp + 2wn ≥ τ wp + wn ≥ τ Results

TRUE TRUE Polytime solvable (Lemma 2)
FALSE TRUE NP-complete (planar graphs, Lemma 1)
FALSE FALSE Polytime solvable (Lemma 3 and Lemma 4)

to the degree 4 case but due to the imposed restrictions, it requires careful
composition of more sophisticated gadgets. We use two gadgets, the direction
and choice gadgets, depicted in Figs. 3(a) and 3(b), which are put together
as shown in Fig. 3(c). The resulting gadget satisfies properties similar to the
properties of the gadget in the degree 4 case (Fig. 2). We then give polynomial
time algorithms for the remaining cases of 3-DEGREE 2-WEIGHT AGAP.

4.1 3-DEGREE 2-WEIGHT PAGAP is NP-Complete

To show NP-hardness of 3-DEGREE 2-WEIGHT PAGAP we follow closely the re-
duction of Section 3. Because of the restriction on the number of distinct edge
weights we use different gadgets as building blocks. Their careful composition,
however, preserves the desired properties of the above analysis. For ease of pre-
sentation we fix edge weights to be wp = 3 and wn = −1 at temperature τ = 2.
We note that the construction works in general for any 〈wn, wp, τ〉 satisfying
wp + wn ≥ τ and wp + 2wn < τ . In other words, building a single neighbor
connected with negative edge to a vertex does not by itself make the vertex not
constructible (infeasible), but building two such neighbors makes it infeasible.
We now describe the gadgets in detail.

Direction gadget. The properties of the direction gadget shown in Fig. 3(a) are
as follows:

– If sd is built, we can complete the gadget: sd ≺ a ≺ d ≺ b ≺ c ≺ a′ ≺ d′ ≺
b′ ≺ c′ ≺ {td, t′d}

– If td and t′d are built, we can complete the gadget: {td, t′d} ≺ a′ ≺ d′ ≺ c′ ≺
b′ ≺ a ≺ d ≺ c ≺ b ≺ sd

– If only td or t′d are built, but not both, we cannot build sd via the gadget
unless we make d′ or d infeasible. Observe that if, say, td is built the only
way to reach sd is via td ≺ c′ ≺ b′ ≺ a ≺ sd but this will make d′ infeasible
(d′ will have two built neighbors contributing −1 each).

Intuitively, we will use the direction gadget to connect a literal � to the clauses
C(�) for |C(�)| = 2. The gadget ensures that if � is built then we can build C(�),
and if both clauses are built then we can build �.

Choice gadget. The properties of the choice gadget shown in Fig. 3(b) are as
follows:

– If sc is built, we can build either tc or t′c but not both via the gadget without
making i infeasible.

On the Complexity of Graph Self-assembly in Accretive Systems 103

�
sd

�b
�

a

�d

�c

�
b′ �

c′

�d′

�a′

�
td

�t′d

����������

��

�
�

��-1

-1

-1
-1

(a) Direction gadget

�
sc �

e

�i

�g � ��
�

f

�h �t′c

�
tc

����������

Direction
gadget

-1

-1

(b) Choice gadget

�
sx

� ��
Choice
gadget

� �
� Direction

gadget 1

� �
� Direction

gadget 2

� �
� Direction

gadget 3

�
tx

x

x̄

)))))

���

�E

�B

�
A

(c) Combined gadget

Fig. 3. Gadgets for 3-DEGREE 2-WEIGHT PAGAP with wp = 3, wn = −1, and tempera-
ture τ = 2. Edges without annotation have weight 3.

– If only tc (resp. t′c) is built, we cannot build t′c (resp. tc) via the gadget
without making i infeasible.

– If tc, t
′
c and only one of e and g are built, we can complete the gadget, i.e.,

if we used the gadget to make a choice to build tc (or t′c) from sc we can
complete it once t′c (or tc) is built independently.

In the analysis in Section 3, it is argued that given a satisfying assignment of
the boolean formula used in the reduction, we can (virtually) walk the loop L
and build x or x̄ (but not both) depending on which literal is set to TRUE in the
assignment. The choice gadget is used to obtain this property.

Putting the gadgets together. We compose the direction and choice gadgets to
obtain a gadget (Fig. 3(c)) equivalent to the one showed in Fig. 2, decreasing the
maximum degree of the resulting graph to 3. Again, we use the gadget to replace
the (x, x̄) edges in the identifying graph. We connect the gadgets corresponding

104 S. Angelov, S. Khanna, and M. Visontai

to x and y, xy ∈ L, with an edge (tx, sy) with weight 3. The following properties
hold:

– Starting from sx we can build x or x̄ but not both. This property ensures
that if there is a satisfying assignment, we can complete G: suppose we build
x, then we can build all the clauses C(x) in which x participates, build tx
and continue to sy of the next variable y in L.

– If x (resp. x̄) is built via the gadget, the only way x̄ (resp. x) can be built
is by building first the clauses in which it participates. This ensures that if
the graph is built, the corresponding φ formula is satisfiable. Again, we use
the following satisfying assignment: x is TRUE if and only if x ≺ x̄.

Using analogous analysis to the degree 4 case, we obtain the following lemma.

Lemma 1. 3-DEGREE 2-WEIGHT PAGAP such that wp+2wn < τ and wp+wn ≥ τ
is NP-complete.

4.2 Polynomial Time Algorithms for 3-DEGREE 2-WEIGHT AGAP

We now give polynomial time algorithms to solve 3-DEGREE 2-WEIGHT AGAP
when the weights wp and wn are such that either wp + 2wn ≥ τ (see Lemma 2)
or wp + wn < τ . The latter case is subdivided into two sub-cases depending on
the relation between 2wp + wn and τ (see Lemmas 3 and 4).

Lemma 2. 3-DEGREE 2-WEIGHT AGAP such that wp + 2wn ≥ τ can be solved in
O(|V |+ |E|) time.

Proof. Note, wp+2wn ≥ τ implies negative edges cannot make a vertex infeasible
as long as it is reachable through positive edges from the seed vertex. We can
therefore use Proposition 1 to solve the problem on the graph induced by the
positive edges (negative edges neither help nor obstruct the construction). ��
Lemma 3. 3-DEGREE 2-WEIGHT AGAP such that 2wp + wn < τ is solvable in
O(|V |+ |E|) time.

Proof. The condition 2wp + wn < τ implies the graph cannot be built if there is
a negative edge. For contradiction, assume there is a negative edge (u, v) and the
graph can be built. W.l.o.g. assume that in a feasible ordering u is built before
v. Then, by the choice of weights, v cannot be built; a contradiction. ��
We prove the remaining case (Lemma 4) in two steps. We first show a feasibility-
preserving transformation that removes any negative edge (u, v) such that either
u or v have a single positive edge incident on it. The resulting graph is such that
every vertex has more positive than negative edges. We then show that the
problem can be viewed as a special case of the Rainbow Spanning Tree Problem
(see Definition 4) where at most two edges have the same color.

Lemma 4. 3-DEGREE 2-WEIGHT AGAP such that wp +wn < τ and 2wp +wn ≥ τ
can be solved in polynomial time.

On the Complexity of Graph Self-assembly in Accretive Systems 105

�
�

a

b

� � �
c d e

��
++

��+
+

+

�
�

� +
�

-1
�
�

a

b �
� � �

c′

c

d e��

++
��

+
�

(a) Removing edges with negative weight and 3 positive edge neighbors.

�
�

a

b

� �
c d �

�
f

e��
++

�� +
+

+

�
�

�

�
�

�

+
+

+

++
��

++
��

-1
�
�

a

b

��
c′

c

��
d′

d �
� f

e,,,

,,,

++
��

��

++
��

++
��

(b) Vertices c and d are replaced by edges (c, c′) and (d, d′) of the same unique color.

Fig. 4. Graph transformations removing negative weight edges

Claim. An instance of 3-DEGREE 2-WEIGHT AGAP satisfying the conditions of
Lemma 4 can be reduced to an instance where each vertex has more positive
edges than negative edges incident on it.

Proof. W.l.o.g. assume that each vertex is adjacent to at least one positive edge,
otherwise this vertex cannot be built. Similarly to Lemma 3, since wp +wn < τ ,
we can argue that for a negative edge, at least one of its endpoints should be
adjacent to two positive edges. Now consider a negative edge (c, d) where d has
only one positive edge (d might have another negative edge). It follows that d
must be built before c in order for the graph to be constructible, and c is built
after its both neighbors are built. We can therefore remove such negative edges,
one by one, making a copy of c, c′, connecting each to only one (different) of c’s
neighbors as shown in Fig. 4(a). In the new graph, we can assume w.l.o.g. that
d ≺ {c, c′} since c and c′ are not used to build other vertices. Now, it is not hard
to see the if and only if correspondence between the two instances. ��

We next consider instances where each vertex has more positive edges than
negative edges and reduce the problem to the following combinatorial problem.

Definition 4 (Rainbow Spanning Tree Problem). Given a graph G with
colors on its edges, is there a spanning tree of G that has no two edges with the
same color?

The Rainbow Spanning Tree Problem can be solved in polynomial time since it
can be formulated as the problem of finding the maximum independent set of
the intersection of two matroids [15].

106 S. Angelov, S. Khanna, and M. Visontai

Claim. Given 3-DEGREE 2-WEIGHT AGAP on graph G where each vertex has more
positive than negative edges, we can compute a graph H such that G is con-
structible if and only if H has a rainbow spanning tree.

Proof. We obtain H from G by performing graph transformations to remove
all negative edges. For each removed edge we split its endpoints and introduce
two positive edges with the same unique color (see Fig. 4(b)). All other edges
are assigned unique colors. Ignoring colors, since wp ≥ τ , to build a vertex it is
enough to have an already built neighbor, i.e., to build all vertices we need a
spanning tree. The colors enforce that if we use an edge of a given color to build
a vertex, we cannot build another vertex using an edge of the same color, i.e.,
we need a rainbow spanning tree.

Formally, consider a negative edge (c, d) and the transformation described in
Fig. 4(b). Vertices c and d have degree 3 by the claim proposition. (Note that
c and d may share some of their neighbors, e.g., a = e.) Assume in a feasible
ordering of G, d ≺ c. From the choice of weights, it follows that {a, b} ≺ c.
Therefore, if G is constructible, we can construct a spanning tree in H which
includes (a, c) and (b, c′) but not (c, c′). Since the color of edge (c, c′) appears
at most twice, the obtained tree is a rainbow spanning tree of H . Conversely,
consider a rainbow spanning tree of H . If say edge (d, d′) is included, we can
build d before c in G. It must be the case that a and b are connected with a
path of distinct colors that does not include c or c′. Therefore we can defer the
building of c after a and b are built in G. The claim follows. ��
This concludes the proof of Lemma 4. Combining Lemmas 1, 2, 3, and 4, we
obtain Theorem 3.

5 Hardness of Approximation of MAX AGAP

We now focus on MAX AGAP where the goal is to find the maximum number of
vertices that can be sequentially built of a given graph assembly system start-
ing from the specified seed vertex. Since AGAP is NP-complete, it is natural to
study polytime approximation algorithms for AGAP. We show that even in very
restricted settings, any non-trivial approximation of AGAP is hard. In particular,
we show that AGAP is hard to approximate within a factor of n1−ε for any ε > 0.
This hardness of approximation holds for degree 3 graphs with three distinct
edge weights as well as for degree 5 graphs with two distinct edge weights.

An approach to show hardness of approximation for degree 3 graphs is to use
the NP-hardness result of 3-DEGREE 2-WEIGHT PAGAP. We would like to boost
the hardness of the instance by attaching a large graph H to it and argue that
a significant fraction of H can be constructed if and only if the original instance
can be fully constructed. This, however, will not work since we can attach H
(almost) only to the vertices corresponding to variables (see Fig. 3(c)) without
increasing the overall degree of the graph. Moreover, we can easily construct all
variables making vertex i of each choice gadget (see Fig. 3(b)) infeasible, and
construct all of H regardless of whether we are given a hard instance or not to

On the Complexity of Graph Self-assembly in Accretive Systems 107

begin with. In fact, there is a 2-approximation algorithm for this case since we
can account for the vertices that are made infeasible by their built neighbors.

Lemma 5. There is a 2-approximation algorithm to 3-DEGREE 2-WEIGHT MAX
AGAP when wp + wn ≥ τ and wp + 2wn < τ .

To show hardness of approximation we allow 3 distinct weights instead of 2: τ ,
τ − 1 and −1 for any τ ≥ 2. We can now define gadgets, shown in Figs. 5(a) and
5(b), equivalent to the direction and choice gadgets (Figs. 3(a) and 3(b)) such
that choice and direction are enforced directly, and not by making some of the
vertices infeasible. We can show in this setting that the underlying formula in the
P3SAT instance is satisfiable if and only if we can build all vertices corresponding
to literals in the respective instance of PAGAP. Furthermore, we can build these
vertices if and only if the corresponding PAGAP can be built.

We now proceed to establish our hardness result. Fix a parameter ε > 0. We
consider the following construction which is a composition of two graphs G and
H . Consider a 3-DEGREE 3-WEIGHT PAGAP instance with the graph G = (V, E)
obtained from a P3SAT formula with n variables. We have |V | = O(n) since each
variable participates in constant number of clauses and its corresponding gadget
is of constant size. The graph H = (V ′, E′) consists of n2/ε chained copies of
the cooperation gadget shown in Fig. 5(c). In H , the vertex ti of the jth copy of
the cooperation gadget is connected to the vertex si of the (j + 1)th copy with
an edge of weight τ . To compose G and H we connect the ith variable (resp. its
negation) to s2i−1 (resp. s2i) of the first copy of the cooperation gadget as shown
in Fig. 5(d). Note that the resulting graph has degree 3 since literals have degree
2 (see Fig. 3(c)). However, the resulting graph is no longer planar.

The cooperation gadget has the property that if all si vertices are built, we
can build all ti vertices. However, if only m of the si’s are built, m < 2n, we can
build at most m− 1 of the ti’s. Therefore, if G is constructible we can build all
of H , otherwise we can build only O(n + n2) = O(n2) vertices of G and H .

The total number of vertices in V ∪ V ′ is N = Θ(n1+2/ε) since each of the
n2/ε copies of the cooperation gadget has O(n) vertices. It follows that an N1−ε-
approximation polytime algorithm for the optimization version of 3-DEGREE
3-WEIGHT AGAP can be used to decide whether or not the instance is constructible,
and therefore decide P3SAT. Hence we obtain the following theorem.

Theorem 4. 3-DEGREE 3-WEIGHT MAX AGAP is NP-hard to approximate within
a factor of O(n1−ε) for any ε > 0, where n denotes the number of vertices in G.

If we restrict the number of weights to two, we can show a similar result by
allowing the maximum degree to be 5. We replace each edge (x, y) with weight
1 (Figs. 5(a) and 5(c)) by a “triangle”, adding a vertex z and using weights
w(x, z) = w(z, y) = 2 and w(x, y) = −1. Note that the degree of the construction
is increased by at most 2, hence we have the following corollary.

Corollary 1. 5-DEGREE 2-WEIGHT MAX AGAP is NP-hard to approximate within
a factor of O(n1−ε) for any ε > 0, where n denotes the number of vertices in G.

108 S. Angelov, S. Khanna, and M. Visontai

�
sd

�a
�

b

�
c

�d
�

td

�t′d
�

�

�
�

�
�

�
�

......

//////
0

0
00

&
&

&&
2

2

2
1

1

1

1

1

1

(a) Direction gadget

�
sc

�d
�

e

�t′c
�
tc

�
�

�
�

2

2
2

2

-1

(b) Choice gadget

�
�
�

�
�
�

���

���

���

... ...

--

--

--

--

--

--1

1

1

1

1

1
1

t1

t2

t2n

s1

s2

s2n

(c) Cooperation gadget

�
�
�

�
�
�

�
�
�

���

���

���

... ...

--- �
�
�

�
�
�

���

���

���

... ...

2

2

2

2

2

2

2

2

2

. . .

. . .

. . .

G

x1

x̄1

...

x̄n

t1

t2

t2n

s1

s2

s2n

(d) Cooperation gadgets (in the dashed boxes) and their composition
with the graph G

Fig. 5. Gadgets for degree 3 planar graphs with three possible edge weights for τ = 2

We note that the NP-hardness and hardness of approximation results hold
even when the algorithm is allowed to choose any seed vertex of its choice. We
also note that the results of this section hold even if we require that each instance
has a stable order of construction, as in Section 3.2.

6 Conclusion

In this paper we resolved the complexity of AGAP and PAGAP by showing that
3-DEGREE PAGAP and hence 3-DEGREE AGAP is NP-complete even with two edge
weights. We proved a dichotomy theorem completely describing the complexity
of 3-DEGREE 2-WEIGHT AGAP, providing a simple system of linear constraints on
the weights and the temperature of assembly to determine whether the prob-
lem is NP-complete or polytime solvable. The solution for the polytime case
provides the first non-trivial algorithm for AGAP. Finally, we proved that both
3-DEGREE 3-WEIGHT AGAP and 5-DEGREE 2-WEIGHT AGAP are hard to approxi-
mate within a factor of O(n1−ε). These negative results motivate the question
whether there exist better approximation algorithms for the lower degree cases
as well as for planar graphs. Approximating PAGAP is especially interesting since
it captures the essential geometry of 2D physical systems.

On the Complexity of Graph Self-assembly in Accretive Systems 109

Acknowledgments. This work was supported in part by an NSF Career Award
CCR-0093117. The authors would like to thank Péter Biró for helpful discus-
sions. We also thank the anonymous reviewers for their useful suggestions and
comments.

References

1. Reif, J.H., Sahu, S., Yin, P.: Complexity of graph self-assembly in accretive systems
and self-destructible systems. In: DNA Computing. (2005) 101–112

2. Winfree, E., Liu, F., Wenzler, L.A., Seeman, N.C.: Design and self-assembly of
two-dimensional DNA crystals. Nature 394 (1998) 539–544

3. Rothemund, P.: Using lateral capillary forces to compute by self-assembly. Proc.
Nat. Acad. Sci. U.S.A. 97 (2000) 984–989

4. LaBean, T.H., Yan, H., Kopatsch, J., Liu, F., Winfree, E., Reif, J.H., Seeman,
N.C.: Construction, analysis, ligation, and self-assembly of DNA triple crossover
complexes. J. Amer. Chem. Soc. 122 (2000) 1848–1860

5. Yan, H., LaBean, T.H., Feng, L., Reif, J.H.: Directed nucleation assembly of DNA
tile complexes for barcode-patterned lattices. Proc. Nat. Acad. Sci. U.S.A. 100
(2003) 8103–8108

6. Rothemund, P.W.K., Papadakis, N., Winfree, E.: Algorithmic self-assembly of
DNA Sierpinski triangles. PLoS Biology 2 (2004) 2041–2053

7. Chelyapov, N., Brun, Y., Gopalkrishnan, M., Reishus, D., Shaw, B., Adleman,
L.M.: DNA triangles and self-assembled hexagonal tilings. J. Amer. Chem. Soc.
126 (2004) 13924–13925

8. He, Y., Chen, Y., Liu, H., Ribbe, A.E., Mao, C.: Self-assembly of hexagonal DNA
two-dimensional (2D) arrays. J. Amer. Chem. Soc. 127 (2005) 12202–12203

9. Malo, J., Mitchell, J.C., Vénien-Bryan, C., Harris, J.R., Wille, H., Sherratt, D.J.,
Turberfield, A.J.: Engineering a 2D protein-DNA crystal. Angewandte Chemie
International Edition 44 (2005) 3057–3061

10. Wang, H.: Proving theorems by pattern recognition II. Bell Systems Technical
Journal 40 (1961) 1–41

11. Rothemund, P.W.K., Winfree, E.: The program-size complexity of self-assembled
squares (extended abstract). In: STOC. (2000) 459–468

12. Winfree, E., Bekbolatov, R.: Proofreading tile sets: Error correction for algorithmic
self-assembly. In: DNA Based Computers. (2003) 126–144

13. Chen, H.L., Goel, A.: Error free self-assembly using error prone tiles. In: DNA
Computing. (2004) 62–75

14. Plesńık, J.: The NP-completeness of the Hamiltonian cycle problem in planar
digraphs with degree bound two. Inform. Process. Lett. 8 (1979) 199–201

15. Broersma, H., Li, X.: Spanning trees with many or few colors in edge-colored
graphs. Discuss. Math. Graph Theory 17 (1997) 259–269

16. Adleman, L.M., Cheng, Q., Goel, A., Huang, M.D.A., Kempe, D., de Espanés,
P.M., Rothemund, P.W.K.: Combinatorial optimization problems in self-assembly.
In: STOC. (2002) 23–32

17. Adleman, L.M., Cheng, Q., Goel, A., Huang, M.D.A.: Running time and program
size for self-assembled squares. In: STOC. (2001) 740–748

18. Aggarwal, G., Goldwasser, M., Kao, M.Y., Schweller, R.T.: Complexities for gen-
eralized models of self-assembly. In: SODA. (2004) 880–889

110 S. Angelov, S. Khanna, and M. Visontai

19. Sahu, S., Yin, P., Reif, J.H.: A self-assembly model of DNA tiles with time depen-
dent glue strength. In: DNA Computing. (2005) 113–124

20. Kao, M.Y., Schweller, R.: Reducing tile complexity for self-assembly through tem-
perature programming. In: SODA. (2006) 571–580

21. Chen, H.L., Cheng, Q., Goel, A., Huang, M.D.A., de Espanés, P.M.: Invadable
self-assembly: combining robustness with efficiency. In: SODA. (2004) 890–899

22. Fujibayashi, K., Murata, S.: A method of error suppression for self-assembling
DNA tiles. In: DNA Computing. (2004) 113–127

23. Reif, J.H., Sahu, S., Yin, P.: Compact error-resilient computational DNA tiling
assemblies. In: DNA Computing. (2004) 293–307

24. Schulman, R., Winfree, E.: Programmable control of nucleation for algorithmic
self-assembly. In: DNA Computing. (2004) 319–328

25. Soloveichik, D., Winfree, E.: Complexity of self-assembled shapes. In: DNA Com-
puting. (2004) 344–354

26. Soloveichik, D., Winfree, E.: Complexity of compact proofreading for self-assembled
patterns. In: DNA Computing. (2005) 125–135

27. Lagoudakis, M.G., LaBean, T.H.: 2D DNA self-assembly for satisfiability. In: DNA
Based Computers. (1999) 139–152

28. Cook, M., Rothemund, P.W.K., Winfree, E.: Self-assembled circuit patterns. In:
DNA Based Computers. (2003) 91–107

29. Schulman, R., Lee, S., Papadakis, N., Winfree, E.: One dimensional boundaries
for DNA tile self-assembly. In: DNA Based Computers. (2003) 108–126

30. Barish, R.D., Rothemund, P.W.K., Winfree, E.: Two computational primitives for
algorithmic self-assembly: Copying and counting. Nano Letters 5 (2005) 2586–2592

31. Jonoska, N., Karl, S.A., Saito, M.: Three dimensional DNA structures in comput-
ing. BioSystems 52 (1999) 143–153

32. Jonoska, N., Sa-Ardyen, P., Seeman, N.C.: Computation by self-assembly of DNA
graphs. Genetic Programming and Evolvable Machines 4 (2003) 123–137

33. Jonoska, N., McColm, G.L.: A computational model for self-assembling flexible
tiles. In: UC. (2005) 142–156

34. Klavins, E., Ghrist, R., Lipsky, D.: A grammatical approach to self-organizing
robotic systems. IEEE Trans. Automat. Control 51 (2006) 949–962

35. Klavins, E.: Directed self-assembly using graph grammars. In: FNANO. (2004)
36. Sa-Ardyen, P., Jonoska, N., Seeman, N.C.: Self-assembling DNA graphs. Natural

Computing 2 (2003) 427–438
37. Lichtenstein, D.: Planar formulae and their uses. SIAM J. Comput. 11 (1982)

329–343
38. Middleton, A.A.: Computational complexity of determining the barriers to inter-

face motion in random systems. Phys. Rev. E 59 (1999) 2571–2577

Viral Genome Compression

Lucian Ilie1,	,		, Liviu Tinta1,
Cristian Popescu1, and Kathleen A. Hill2

1 Department of Computer Science, University of Western Ontario
London, Ontario, N6A 5B7, Canada

ilie@csd.uwo.ca
2 Department of Biology, University of Western Ontario

London, Ontario, N6A 5B7, Canada

Abstract. Viruses compress their genome to reduce space. One of the
main techniques is overlapping genes. We model this process by the short-
est common superstring problem, that is, we look for the shortest genome
which still contains all genes. We give an algorithm for computing op-
timal solutions which is slow in the number of strings but fast (linear)
in their total length. This algorithm is used for a number of viruses
with relatively few genes. When the number of genes is larger, we com-
pute approximate solutions using the greedy algorithm which gives an
upper bound for the optimal solution. We give also a lower bound for
the shortest common superstring problem. The results obtained are then
compared with what happens in nature. Remarkably, the compression
obtained by viruses is quite high and also very close to the one achieved
by modern computers.

Keywords: viruses, viral genomes, genome compression, overlapping
genes, shortest common superstring problem, exact algorithms, approx-
imate solutions, lower bounds.

1 Introduction

According to [5], all virus genomes experience pressure to minimize their size.
For example, those with prokaryotic hosts must be able to replicate quickly to
keep up with their host cells. In the case of viruses with eukaryotic hosts, the
pressure on the genome size comes from the small size of the virus, that is, from
the amount of nucleic acid that can be incorporated.

One way to reduce the size of their genome is by overlapping genes. Some
viruses show tremendous compression of genetic information when compared
with the low density of information in the genomes of eukaryotic cells. As claimed
in [5], overlapping genes are common and “the maximum genetic capacity is
compressed into the minimum genome size.” This property looks very interesting
from mathematical point of view and we found it surprising that it was not much
investigated. Daley and McQuillan [9] introduces and investigates a number
� Corresponding author.

�� Research partially supported by NSERC.

C. Mao and T. Yokomori (Eds.): DNA12, LNCS 4287, pp. 111–126, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

112 L. Ilie et al.

of formal language theory operations motivated by the biological phenomenon.
Krakauer [12] discusses genomic compression in general as achieved through
reduced redundancy, overlapping genes, or translational coupling.

In this paper, we investigate this property by naturally modelling it as the
shortest common superstring problem (SCS). The genes are seen as strings and
we look for the shortest superstring that contains them all. A variation is also
considered due to the retrograde overlaps which may be present in some viruses.

The SCS problem is known to be NP-hard. We give an algorithm to compute
optimal solutions which works well when the number of strings is not too high.
The algorithm is conceptually very simple and also very fast with respect to the
total length of all strings. We used this algorithm for those viral genomes whose
number of genes is not very high.

When the number of strings increases, we are no longer able to find optimal
solutions and use a greedy algorithm for an approximation. This gives an upper
bound for the length of a shortest superstring and, for a better estimate, we
provide also a lower bound.

Finally, our results are compared with those obtained by viruses. The amount
of compression using gene overlapping achieved by the viruses is remarkable; in
all examples considered, it is the same or very close to the one obtained by mod-
ern computers. The biological significance of these results is to be investigated.
Aside from the compression achieved in nature, any solution (or lower bound)
for the corresponding SCS problem provides a limitation on the size of a viral
genome which contains a given set of genes. Again, the biological relevance of
such results remains to be clarified.

2 Basic Definitions

Let Σ be an alphabet, that is, a finite non-empty set. Such an alphabet can
be the set of four nucleotides {A,T,C,G}. We denote by Σ∗ the set of all
finite strings over Σ. The empty word is denoted ε. Given a string w ∈ Σ∗,
w = a1a2 · · · an, ai ∈ Σ, the length of w is |w| = n; the length of ε is 0. We also
denote w[i] = ai and w[i..j] = aiai+1 · · · aj , for all 1 ≤ i ≤ j ≤ n. The reversal
of w is anan−1 · · · a1.

If w = xyz, for some w, x, y, z ∈ Σ∗, then x, y, and z are a prefix, factor (or
substring), and suffix of w, resp. The prefix (suffix) of length n of w is denoted
prefn(w) (suffn(w)).

For further notions and results on string combinatorics and algorithms we
refer to [14] and [7].

3 The Shortest Common Superstring Problem

The formal definition of the shortest common superstring problem (SCS) is: given
k strings w1, w2, . . ., wk, find a shortest string w which contains all wis as factors;
such a w is usually called a shortest common superstring. Any superstring will
be called a solution, whereas a shortest one is an optimal solution.

Viral Genome Compression 113

Example 1. Consider the strings w1 = baac, w2 = aacc, and w3 = acaa. A
shortest superstring has length 8; it is baacaacc.

The SCS problem has many applications. Data compression is one of the fields
where the SCS problem is very useful because data may be stored very efficiently
as a superstring; see [10], [15]. This superstring contains all the information in
a compressed form. Computational biology is another field where SCS can be
applied; see [13].

The SCS problem was proved to be NP-hard in [10] and then MAX SNP-
hard in [3]. Therefore, it is unlikely to have polynomial time exact algorithms
and research focussed mainly on approximation algorithms [17,8,11,1,2,4]. The
best approximation algorithm to date is due to Sweedyk [16] and can reach an
approximation ratio of 2 1

2 .
Still, in practice the very simple greedy algorithm is used with very good re-

sults. Blum et al. [3] proved that greedy is a 4-approximation algorithm. The still
open conjecture is that the approximation factor is 2, which would be optimal
as there are examples for which greedy produces no better approximations.

4 Viral Genome Compression

As already mentioned in the introduction, viruses can overlap their genes. There
are several types of overlaps. First we need to recall the DNA complementarity:
the two strands of DNA are complementary and have opposite direction. The
complementarity is such that whenever an A occurs on one strand, a T must
appear on the other; we say that A and T are complementary. Similarly, C and
G are complementary. We denote the complement of a nucleotide N by N . That
is, we have A = T, C = G, and vice versa. Also, A = A. Complementarity is
needed to understand retrograde overlapping.

For a string w = a1a2 · · · a|w|, we construct the complemented reversal of w,
w = a|w|a|w|−1 · · · a1. When w appears in one strand, w occurs opposite it in the
other strand.

Example 2. Let x = ACCGTGTAC and y = GTGTACCGTAC be two hy-
pothetical genes. The complemented reversal of x is x = GTACACGGT. The
possible overlaps between x and y are shown in Figs. 1 and 2. In Fig. 1 we have
overlaps on the same strand, that is, direct overlaps; one is called suffix overlap
and the other prefix overlap but such a difference is irrelevant for us.

In Fig. 2 we have retrograde overlaps (as can appear, for instance, in double
stranded DNA viral genomes). As seen in the figure, each x in the upper strand

y
GT GT ACCGT ACCGT GT AC

x

y

x
AC CCGT ACCGT GT A

Fig. 1. Direct overlaps (same strand)

114 L. Ilie et al.

AC
GCACATG

xx
CAT GT GCT

TGGCA
GGTACACGTACGG C

GCATGCCATGTG
yy

T
ACAT GT GCCA

CATGCCATG

Fig. 2. Retrograde overlaps (opposite strands)

correspond to an x in the lower strand. Again, one is called head-on overlap, the
other end-on overlap, without relevance for our purpose.

5 Computing Overlaps

In order to give some algorithms for optimal or approximate solutions for the
SCS problem, we need to compute overlaps between strings. Also, we need to
eliminate those strings which are factors of others.

An overlap between two given strings u and v is any suffix of u that is also a
prefix of v. We shall need only the longest overlaps but our algorithm computes
them all in the same optimal time. The set overlaps(u, v) contains the lengths
of all suffixes of u that are prefixes of v. We denote by overlap(u, v) the length
of the longest overlap. Here is an example.

Example 3. For the strings u = abaababa and v = abababb we have

overlaps(u, v) = {1, 3, 5}, overlap(u, v) = 5,
overlaps(v, u) = ∅, overlap(v, u) = 0.

To compute overlaps, we shall use a classical notion in pattern matching: a
border of a string w is any string which is both a prefix and a suffix of w; the
border of w, denoted border(w), is the longest non-trivial border of w, that is,
different from w itself. Notice that all borders of w are: border(w), border2(w) =
border(border(w)), border3(w), . . . , ε.

Denote |w| = n and consider the array borderw[0..n], where, for all 1 ≤ i ≤
n, borderw[i] = | border(w[1..i])|; borderw[0] = −1 for technical purposes.

Example 4. For the string w = abaababaaba we have

borderw = [−1, 0, 0, 1, 1, 2, 3, 2, 3, 4, 5, 6]

and all borders of w are

borderw(|w|) = 6, border(w) = abaaba,
border2

w(|w|) = 3, border2(w) = aba,
border3

w(|w|) = 1, border3(w) = a.

The array borderw can be computed in time linear in |w| by a classical
algorithm. The idea is to compute the elements from first to last. Then, when
computing borderw[i], all previous elements are known. The border of w[1..i]
is either an extension of a border of w[1..i− 1] or empty if this is not possible.

Viral Genome Compression 115

We use borders to solve our problem. Assume we are given two strings u and
v. Consider a new letters # (which does not appear in u or v) and construct
the string w = v#u. It is clear that any border of w gives an overlap of u and v
and vice versa. Therefore, using borders, we obtain an algorithm for computing
overlaps which is linear in terms of |u|+ |v|. Notice, however, that if one of the
strings is much longer than the other, then we do not need the whole long string
but just a short piece of it. An algorithm which works in linear time in the size
of the shorter string would simply consider the string prefs(v)# suffs(u), where
s = min(|u| − 1, |v| − 1).

We can also do it all at once. For the SCS problem, we always exclude from
calculations the strings which are included as factors in others. This is pattern
searching and there are many linear time algorithms for it. We can also use the
borders as above to give a simple algorithm to both identify factors and compute
overlaps. We consider w = v#u. Assuming |v| ≤ |u|, v is a factor of u if and
only if there is i such that borderw(i) = |v|.

overlaps-and-factors(u, v)
1. w ← v#u
2. n ← |w|
3. borderw[0] ← −1
4. b ← −1
5. for i from 1 to n do
6. while b ≥ 0 and w[b + 1] �= w[i] do
7. b ← borderw[b]
8. b ← b + 1
9. borderw[i] ← b

10. if borderw[i] = |v| and |v| ≤ |u| then
11. return overlap(u, v) = −1 [v is a factor of u]
12. return overlap(u, v) = borderw[|w|]

This algorithm is linear in |u| + |v|; this is optimal since it is the minimum
required for searching.

Lemma 1. The algorithm overlaps-and-factors(u, v) returns −1 iff v is a
factor of u and otherwise computes the longest overlap of u and v. It runs in
time O(|u|+ |v|).

6 Optimal Solutions of SCS

We may assume that none of the strings wi appears as factor of another one.
(We check this in the algorithm.) Therefore, for any solution w of SCS, there is
a permutation σ on k elements such that w contains each wi as a factor starting
at position pi and

pσ(1) < pσ(2) < · · · < pσ(k).

Example 5. For the strings in Example 1, the optimal solution is given by the
permutation (1, 3, 2).

116 L. Ilie et al.

Therefore, our brute-force algorithm to compute an optimal solution of SCS
will try all such permutations σ; the set of all permutations on k elements is
the symmetric group Sk. For each permutation, we need the maximum overlap
between wσ(i) and wσ(i+1). No other overlaps are needed. Assuming that wσ(i)

and wσ(i+1) overlap each other on a length less than their maximal overlap. Then
we can simply overlap them more to obtain a shorter superstring.

We shall need one more definition. For two strings u and v which are not
factors of each other, we denote by merge(u, v) the string obtained by overlap-
ping them as much as possible, that is, merge(u, v) = u suff|v|−overlap(u,v)(v) =
pref|u|−overlap(u,v)(u)v.

Example 6. For the strings u = abaababa, v = abababb we have merge(u, v) =
abaabababb.

Here is the algorithm.

scs-optimal(w1, w2, . . . , wk)
1. for i from 1 to k do
2. for j from 1 to k do
3. if i �= j then
4. overlap(wi, wj) ← overlaps-and-factors(wi, wj)
5. if overlap(wi, wj) = −1 then eliminate wi

6. scs ←∑k
i=0 |wi| [we use the same k but it may be smaller]

7. for all σ ∈ Sk do
8. w ← wσ(1)

9. for i from 2 to k do
10. w ← merge(w, wσ(i))
11. if scs > |w| then
12. scs ← |w|
13. return scs

Proposition 1. The algorithm scs-optimal(w1, w2, . . . , wk) computes an op-
timal solution for SCS and runs in time O(k!�), where � =

∑k
i=1 |wi|.

Proof. The correctness follows from the fact that we try all permutations. As
explained above, after eliminating strings which appear as factors of others, it
it enough to consider only longest overlaps.

The time complexity for the preprocessing steps 1-5 is O(k2�), because of
Lemma 1. In the main processing part, steps 7-12, we repeat k! times something
linear in �. This is the dominant order. �

7 Approximate Solutions of SCS

As the SCS problem is NP-hard, in practice approximation algorithms are often
used to find a superstring which may not be shortest but hopefully close to op-
timal. The most common such algorithm for SCS is the greedy algorithm, which
we describe below. It uses the natural idea of considering the longer overlaps

Viral Genome Compression 117

first. It may not produce an optimal solution but it cannot be too far away. Here
is an example when the greedy algorithm does not give an optimal solution.

Example 7. Consider again the strings in Example 1, w1 = baac, w2 = aacc, and
w3 = acaa. The overlaps are shown below:

overlap(wi, wj) w1 w2 w3

w1 3 2
w2 0 0
w3 0 2

The greedy algorithm chooses first the longest overlap, that is, overlap(w1, w2),
and obtains the string baaccacaa of length 9, since merge(w1, w2) and w3 have no
overlap. But there is a shorter one, given by the permutation (1, 3, 2), of length
8, that is baacaacc.

It is conjectured that the greedy solution is always at most twice longer than
optimal; see [16] and the references therein for approximation algorithms for the
SCS problem. In practice, the greedy algorithm works pretty well, as we shall
see also in our experiments.

scs-greedy(w1, w2, . . . , wk)
1. compute overlaps and eliminate factors as before
2. greedy scs ←∑k

i=0 |wi|
3. for all (i, j) with overlap(wi, wj) = max

(s,t)
overlap(ws, wt) do

4. eliminate wi and wj from the list
5. add w = merge(wi, wj) to the list
6. denote the new list w′

1, . . . , w
′
k−1

7. the overlaps of w are given by wi for prefix and by wj for suffix
8. � ← scs-greedy(w′

1, w
′
2, . . . , w

′
k−1)

9. if greedy scs > � then
10. greedy scs ← �
11. return greedy scs

The greedy algorithm gives an upper bound for the shortest length of a com-
mon superstring.

8 Lower Bounds

We give in this section a lower bound for the length of the shortest superstring.
It is computed using also a greedy approach but without checking if it is possible
to actually find a superstring which uses the considered overlaps. (When this is
possible, we have an optimal solution of SCS.)

Any superstring w is defined by a permutation σ on k elements which gives
k−1 overlaps. Also, the length of the superstring is the total length of all strings
minus the total length of overlaps, that is,

|w| =
k∑

i=1

|wi| −
k−1∑
i=1

overlap(wσ(i), wσ(i+1)).

118 L. Ilie et al.

For our estimate, we consider the matrix of overlaps, (overlap(wi, wj))1≤i�=j≤k . A
permutation σ as above gives k−1 overlaps such that no two are in the same row
or column. We relax this condition by considering only rows or only columns.
Choosing k − 1 longest overlaps such that no two are on the same row gives a
lower bound. Similarly for columns.

The algorithm below computes the first one. The second is computed analo-
gously. We assume the matrix of overlaps has already been computed.

lower-bound-row(w1, w2, . . . , wk)
1. sort all elements of the matrix (overlap(wi, wj))1≤i�=j≤k decreasingly
2. to obtain overlap(wi1 , wj1), . . . , overlap(wi

n2−n
, wj

n2−n
)

3. lower bound row ← 0
4. rows used ← 0
5. t ← 1
6. while rows used < k − 1 do
7. if row it not used then
8. lower bound row ← lower bound row + |wit | − overlap(wit , wjt)
9. mark row it as used

10. rows used ← rows used + 1
11. t ← t + 1
12. lower bound row ← lower bound row + |wjt−1 |
13. return lower bound row

Proposition 2. The above algorithm computes a lower bound for the length of
the shortest superstring in time O(k2 log k).

Proof. The time required by the algorithm is O(k2 log k) because of sorting. The
while cycle takes only O(k2) time as it traverses the list of k2 − k elements at
most once and spends constant time for each element.

For correctness, it is enough to prove that the sum of the overlaps chosen by
the algorithm is larger than the sum of overlaps corresponding to an optimal
solution. In both cases, we have k−1 overlaps involved, no two in the same row.
Assume that an optimal solution chooses all rows except for the ith whereas our
algorithm for the lower bound misses only the jth row. In all rows chosen by
both, the overlap included for the lower bound is at least as large. If i = j, this
proves that we obtain indeed a lower bound. If i 	= j, then the overlap chosen
for the lower bound from row i is larger than the one for the optimal solution in
row j as the former appear first in the sorted list from step 2. �

As already mentioned, another lower bound is obtained similarly, by choosing
k − 1 elements from different columns in the overlap matrix; denote this lower
bound by lower bound col. We have then the following lower bound:

lower bound scs = max(lower bound row, lower bound col).

The next result, which summarizes the above discussed bounds, is clear.

Viral Genome Compression 119

Proposition 3. We always have

lower bound scs ≤ scs ≤ greedy scs.

Example 8. For the strings in Example 1, we have:

lower bound row = 7, because of overlap(w1, w2) and overlap(w3, w2),
lower bound col = 7, because of overlap(w1, w2) and overlap(w1, w3),
lower bound scs = 7,
scs = 8,
greedy scs = 9.

The lower bound cannot be achieved however, as it involves the beginning of w2

(or the end of w1) twice. Also, it happened that the lower bounds corresponding
to rows and columns are the same; this is not true in general.

9 Retrograde Overlaps

The possibility of retrograde overlaps (see Fig. 2) further complicates the search
for solutions, optimal or approximate. Each string may appear in a superstring
as it is or as its complemented reversal.

Therefore, we need first to compute more overlaps. The following equalities
help computing only half of all possible ones:

(i) merge(x, y) = merge(y, x),
(ii) merge(x, y) = merge(y, x).

For the exact algorithm, we need to consider, for each string wi, whether wi

or wi appears at position pσ(i), which makes the algorithm even slower in the
number of strings.

The greedy algorithm works rather similarly. Only the overlaps for the merged
strings need to be set a bit differently. For instance, if the overlap between wi

and wj is chosen, then the string merge(wi, wj) is added and its overlaps are
taken from those given by prefixes of wi and wj .

The lower bound is computed similarly. When choosing a certain overlap,
the proper rows or columns need to be discarded for further consideration. For
instance, in case of lower bound row, if the overlap between wi and wj is chosen,
then all overlaps involving the suffix of of wi must be discarded, that is, all pairs
(wi, ws), (wi, ws), (ws, wi) and (ws, wi).

10 Viral Compression Versus Computer Compression

We show in this section our computations for a number of viral genomes which
were obtained from “The National Center for Biotechnology Information,” (web
site www.ncbi.nlm.nih.gov). We start with a set of strings which are the genes
and try to find a short superstring. Then we compare our result with the one

120 L. Ilie et al.

Table 1. Viral genome compression - optimal solutions

Family Name Total length Viral SCS

Paramyxoviridae Human respiratory syncytial virus 13641 13609 13602
Rhabdoviridae Bovine ephemeral fever virus 15029 14662 14650
Rhabdoviridae Northern cereal mosaic virus 11922 11922 11917
Togaviridae Sleeping disease virus 11745 11745 11738
Coronaviridae SARS coronavirus 29974 29046 29040
Retroviridae HIV-1 isolate 01IN565.11 from India 14125 8647 8646
Retroviridae HIV-2 isolate ALI from Guinea-Bissau 14466 8809 8809

Table 2. Viral genome compression - approximate solutions

Family Name Total length Viral Greedy Lower bound

Baculoviridae Choristoneura fumiferana MNPV 119168 118319 117414 117228
Poxviridae Vaccinia Virus strain Ankara 152029 150885 150588 150329
Herpesviridae Bovine Herpesvirus 1 124819 119378 119276 119137
Adenoviridae Human adenovirus type 5 36576 34342 34328 34322
Adenoviridae Hemorrhagic enteritis virus 25158 23433 23414 23402
Iridoviridae Frog virus 3 85593 84443 84248 84174

Fig. 3. Human respiratory syncytial virus

Fig. 4. Bovine ephemeral fever virus

Fig. 5. Northern cereal mosaic virus

Viral Genome Compression 121

Fig. 6. Sleeping disease virus

Fig. 7. SARS coronavirus

Fig. 8. HIV-1 isolate 01IN565.11 from India

Fig. 9. HIV-2 isolate ALI from Guinea-Bissau

Fig. 10. Human adenovirus type 5

122 L. Ilie et al.

Fig. 11. Choristoneura fumiferana MNPV (left) and Vaccinia Virus strain Ankara
(right)

achieved by the viruses. Notice that the time complexity of our exact algorithm
grows very fast with the number of genes, but is linear in the total length.

We managed to obtain exact solutions in Table 1 for a number of single
stranded RNA viral genomes with relatively few genes. The columns give, in
order, the family, the name of the virus, the total length of all genes, the com-
pression achieved by the virus (total length of coding regions), and the shortest
common superstring. All lengths are given in number of nucleotides.

Viral Genome Compression 123

Fig. 12. Bovine Herpesvirus 1

Fig. 13. Hemorrhagic enteritis virus

For genomes with more genes, we had to use the approximation algorithms.
The results for a number of double stranded DNA viral genomes are shown in
Table 2. The columns have similar meaning, except that the one for the shortest
common superstring is replaced by two: greedy and lower bound. All lengths are
given in number of base pairs.

124 L. Ilie et al.

Fig. 14. Frog virus 3

The compression achieved by the viruses is, on average, 7.98%, that is, the
(average) ratio between the reduction in size (total length of all genes minus
viral coding) and the initial size (total length of genes). For the viruses in the
first table, the ratio is higher, 11.95%, whereas for the second table it is 3.36%.
The average compression ratio is remarkably high if we keep in mind that DNA
molecules (seen as strings) are very difficult to compress in general. Commer-
cial file-compression programs achieve usually no compression at all and the
best especially designed algorithms, see [6], can achieve something like 13.73%

Viral Genome Compression 125

(that is the average for DNACompress from [6], the best such algorithm to
date).

Also, the compression achieved by viruses is very close to what we can do
(using overlapping only) by computers. The above averages, for all viruses con-
sidered, single stranded RNA, and double stranded DNA viruses are 8.11% (only
0.13% better than viruses), 11.99%, and 3.59%, resp. For the second table we
used the greedy compression; it should also be noticed that our lower bound
behaves pretty well.

To give a better idea of the overlaps, Figs. 3–14 at the end show all genomes
considered above as they appear in nature with the non-coding regions removed
(top) and then as computed by our programs (bottom). The overlaps and dif-
ferent strands are shown in different color. (The figures are most useful in the
electronic version of the paper.)

References

1. C. Armen and C. Stein, Improved length bounds for the shortest superstring prob-
lem, Proc. 5th Internat. Workshop on Algorithms and Data Structures, Lecture
Notes in Comput. Sci. 955, Springer-Verlag, Berlin, 1995, 494 – 505.

2. C. Armen and C. Stein, A 2 2
3

approximation algorithm for the shortest superstring
problem, Proc. Combinatorial Pattern Matching, Lecture Notes in Comput. Sci.
1075, Springer-Verlag, Berlin, 1996, 87 – 101.

3. A. Blum, T. Jiang, M. Li, J. Tromp, and M. Yannakakis, Linear approximation of
shortest superstrings, J. Assoc. Comput. Mach. 41(4) (1994) 630 – 647.

4. D. Breslauer, T. Jiang, and Z. Jiang, Rotations of periodic strings and short su-
perstrings, J. Algorithms 24 (1997) 340 – 353.

5. A.J. Cann, Principles of Molecular Virology, 3rd ed. Elsevier Academic Press,
London, San Diego, 2001.

6. X. Chen, M. Li, B. Ma, and J. Tromp, DNACompress: fast and effective DNA
sequence compression, Bioinformatics 18 2002 1696 – 1698.

7. M. Crochemore and W. Rytter, Jewels of Stringology, World Sci. Pub., 2003.
8. A. Czumaj, L. Gasieniec, M. Piotrow, and W. Rytter, Parallel and sequential

approximations of shortest superstrings, Proc. First Scandinavian Workshop on
Algorithm Theory, Lecture Notes in Comput. Sci. 824, Springer-Verlag, Berlin,
1994, 95 – 106.

9. M. Daley and I. McQuillan, Viral gene compression: complexity and verification,
Proc. of CIAA’04, Lecture Notes in Comput. Sci. 3317, Springer, Berlin, 2005,
102–112.

10. J. Gallant, D. Maier, and J. Storer, On finding minimal length superstrings, Journal
of Comput. and Syst. Sci. 20(1) (1980) 50 – 58.

11. R. Kosaraju, J. Park, and C. Stein, Long tours and short superstrings, Proc. 35th
Annual IEEE Symposium on Foundations of Computer Science, IEEE Computer
Society Press, Piscataway, NJ, 1994, 166 – 177.

12. D.C. Krakauer, Evolutionary principles of genomic compression, Comments on
Theor. Biol. 7 (2002) 215 – 236.

13. A. Lesk, Introduction to Bioinformatics, Oxford University Press, Oxford, 2002.

126 L. Ilie et al.

14. M. Lothaire, Algebraic Combinatorics on Words, Cambridge Univ. Press, 2002.
15. J. Storer, Data Compression: Methods and Theory, Computer Science Press, 1988.
16. Z. Sweedyk, A 2 1

2
-approximation algorithms for shortest superstring, SIAM J.

Comput. 29(3) (1999) 954 – 986.
17. S. Teng and F. Yao, Approximating shortest superstrings, Proc. 34th Annual IEEE

Symposium on Foundations of Computer Science, IEEE Computer Society Press,
Piscataway, NJ, 1993, 158 – 165.

DNA Codes and Their Properties

Lila Kari and Kalpana Mahalingam

University of Western Ontario,
Department of Computer Science,

London, ON N6A5B7
{lila, kalpana}@csd.uwo.ca

Abstract. One of the main research topics in DNA computing is asso-
ciated with the design of information encoding single or double stranded
DNA strands that are “suitable” for computation. Double stranded or
partially double stranded DNA occurs as a result of binding between
complementary DNA single strands (A is complementary to T and C is
complementary to G). This paper continues the study of the algebraic
properties of DNA word sets that ensure that certain undesirable bonds
do not occur. We formalize and investigate such properties of sets of se-
quences, e.g., where no complement of a sequence is a prefix or suffix of
another sequence or no complement of a concatenation of n sequences
is a subword of the concatenation of n + 1 sequences. The sets of code
words that satisfy the above properties are called θ-prefix, θ-suffix and θ-
intercode respectively, where θ is the formalization of the Watson-Crick
complementarity. Lastly we develop certain methods of constructing such
sets of DNA words with good properties and compute their informational
entropy.

1 Introduction

Several attempts have been made to address the problem of encoding information
on DNA and many authors have proposed various solutions. A common approach
has been to use the Hamming distance [2,7,8,9,25]. Experimental separation of
strands with ”good” sequences that avoid intermolecular cross hybridization was
reported in [5,6]. In [12], Kari et.al. introduced a theoretical approach to the
problem of designing code words. Theoretical properties of languages that avoid
certain undesirable hybridizations were discussed in [14,16,18]. Based on these
ideas and code-theoretic properties, a computer program for generating code
words is being developed [13,20]. Another algorithm, based on backtracking, for
generating such code words is also developed by Li [22]. In [21] the author used
the notion of partial words with holes for the design of DNA strands.

In this paper we continue the study of the algebraic properties of DNA lan-
guages suitable for computation. More precisely, every biomolecular protocol in-
volving DNA or RNA generates molecules whose sequences of nucleotides form
a language over the four letter alphabet Δ = {A, G, C, T}. The Watson-Crick
(W/C) complementarity of the nucleotides defines a natural involution mapping

C. Mao and T. Yokomori (Eds.): DNA12, LNCS 4287, pp. 127–142, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

128 L. Kari and K. Mahalingam

θ, A �→ T and G �→ C which is an anti-morphism of Δ∗. Undesirable Watson-
Crick bonds (undesirable hybridizations) can be avoided if the language satisfies
certain coding properties. In this paper we concentrate on θ-prefix, θ-suffix and
θ-intercode (i.e.) languages where no Watson-Crick complement of a word is a
prefix or suffix of another word, respectively no Watson-Crick complement of
a composition of n words is a subword of a composition of n + 1 words (See
Fig 1 for the types of hybridizations that are avoided if a word set satisfies
these properties). We start the paper with definitions of coding properties that
avoid intermolecular cross hybridizations. The notions of θ-prefix and θ-suffix
languages have been defined in [16] under the names of θ-p-compliant and θ-s-
compliant respectively. Here we also consider two additional coding properties
namely θ-bifix code and θ-intercode. We make several observations about the
closure properties of such languages. In particular, we concentrate on properties
of languages that are preserved by union and concatenation.

.....

.....

(a)

(b)
(c)

(d) (e)

Fig. 1. Various types of intermolecular hybridization that we want to avoid: (a) a
code word is the reverse complement of a subword of a concatenation of two other
code words: θ-comma-free codes avoid such hybridizations, (b) the catenation of m
codewords is the reverse complement of a subword of a concatenation of composition
of m + 1 code words: θ-intercodes (a new notion introduced in this paper) avoid such
hybridizations (c) a code word is a reverse complement of a subword of another code
word: θ-infix codes avoid such hybridizations (d) a code word is the reverse complement
of a suffix of another code word: θ-suffix codes avoid such hybridizations, (e) a code
word is the reverse complement of a prefix of another code word: θ-prefix codes avoid
such hybiridzations. (The 3′ end is indicated by an arrow.)

Also, we show that if a set of DNA strands has “good” coding properties that
are preserved under concatenation, then the same properties will be preserved
under arbitrary ligation of the strands. Section 3 investigates closure properties
of various types of involution codes. Algebraic properties of θ-intercodes are
discussed in Section 4. We introduce and discuss the properties of sets whose n
element subsets are θ-intercodes and θ-comma-free codes in Section 5. Section 6

DNA Codes and Their Properties 129

describes several methods to generate involution codes and also calculate their
informational entropy. Since it turns out that the entropy of these generated
involution codes is greater than log 2, by the coding theorem ([1,23]) it follows
that the constructed code words can be used to encode binary strings. We end
with a few concluding remarks.

2 Definitions and Properties

An alphabet Σ is a finite non-empty set of symbols. We will denote by Δ the
special case when the alphabet is {A, G, C, T} representing the DNA nucleotides.
A word u over Σ is a finite sequence of symbols in Σ. We denote by Σ∗ the set
of all words over Σ, including the empty word 1 and by Σ+, the set of all non-
empty words over Σ. We note that with the concatenation operation on words,
Σ∗ is the free monoid and Σ+ is the free semigroup generated by Σ. The length
of a word u = a1 · · · an is n and is denoted by |u|. For words representing DNA
sequences, we will use the following convention. A word u over Δ denotes a DNA
strand in its 5′ → 3′ orientation. The Watson-Crick complement of the word u,
also in orientation 5′ → 3′ is denoted by

←
u . For example if u = AGGC then

←
u= GCCT .

Throughout the rest of the paper, we concentrate on finite sets X ⊆ Σ+ that
are codes i.e. every word in X+ can be written uniquely as a product of words
in X . For the background on codes we refer the reader to [4,26]. We will need
the following definitions:

PPref(X) = {u | ∃v ∈ Σ+, uv ∈ X }
PSuff(X) = {u | ∃v ∈ Σ+, vu ∈ X }
PSub(X) = {u | ∃v1 , v2 ∈ Σ∗, v1 v2 	= 1 , v1uv2 ∈ X }

We define the set of prefixes, suffixes and subwords of a set of words as Pref ,
Suff and Sub. Similarly, we have Suffk(w) = Suff(w)∩Σ k , Prefk (w) = Pref(w)∩
Σ k , Subk (w) = Sub(w) ∩ Σ k . We follow the definitions initiated in [12] and
used in [13]. An involution θ : Σ → Σ of a set Σ is a mapping such that θ2

equals the identity mapping, θ(θ(x)) = x, ∀x ∈ Σ. The mapping ν : Δ → Δ
defined by ν(A) = T , ν(T) = A, ν(C) = G, ν(G) = C is an involution on
Δ and can be extended to a morphic involution of Δ∗. Since the Watson-Crick
complementarity appears in a reverse orientation, we consider another involution
ρ : Δ∗ → Δ∗ defined inductively, ρ(s) = s for s ∈ Δ and ρ(us) = ρ(s)ρ(u) =
sρ(u) for all s ∈ Δ and u ∈ Δ∗. This involution is antimorphism such that
ρ(uv) = ρ(v)ρ(u). The Watson-Crick complementarity then is the antimorphic
involution obtained by the composition νρ = ρν. Hence for a DNA strand u we
have that ρν(u) = νρ(u) =

←
u . The involution ρ reverses the order of the letters

in a word and as such is used in the rest of the paper.
The following Definition 1 [14,16] introduces notions meant to formalize a

variety of language properties, each of whom guarantees the absence of a cer-
tain unwanted hybridization. The notion of θ-infix and θ-comma-free code were

130 L. Kari and K. Mahalingam

introduced in [12] and was called θ-compliant and θ-free respectively. The defi-
nition of θ-intercode and θ-outfix code are new notions introduced here.

Definition 1. Let θ : Σ∗ → Σ∗ be a morphic or antimorphic involution and
X ⊆ Σ+.

1. The set X is called θ-infix-code if Σ∗θ(X)Σ+∩X = ∅ and Σ+θ(X)Σ∗∩X =
∅.

2. The set X is called θ-comma-free-code if X2 ∩Σ+θ(X)Σ+ = ∅.
3. The set X is called θ-strict-code if X ∩ θ(X) = ∅ .
4. The set X is called θ-prefix-code if X ∩ θ(X)Σ+ = ∅.
5. The set X is called θ-suffix-code if X ∩Σ+θ(X) = ∅.
6. The set X is called θ-bifix-code if X is both θ-prefix and θ-suffix.
7. The set X is called a θ-intercode if Xm+1 ∩Σ+θ(Xm)Σ+ = ∅, m ≥ 1. The

integer m is called the index of X.
8. The set X is called θ-outfix-code if for u, θ(u1)xθ(u2) ∈ X with θ(u) =

θ(u1)θ(u2) implies x = 1 .

Note that θ-infix languages avoid undesirable hybridization of the type depicted
in Fig 1c, θ-comma-free languages avoid undesirable hybridization of the type
depicted in Fig 1a, θ-intercodes avoid undesirable hybridization of the type
depicted in Fig 1b, θ-suffix languages avoid undesirable hybridization of the
type depicted in Fig 1d, θ-prefix languages avoid undesirable hybridization of
the type depicted in Fig 1e, θ-outfix languages avoid undesirable hybridization of
the type depicted in Fig 2. Note that a θ-intercode of index one is θ-comma-free.

u

q
x

p

Fig. 2. Another type of intermolecular hybridization that we want to avoid: the reverse
complement of a code word is a concatenation of a prefix and a suffix of another code
word. A θ-outfix code (a new notion defined in this paper) avoids such hybridizations.

Also note that X is θ-intercode of index m if and only if θ(X) is θ-intercode of in-
dex m. We have defined several properties that are desirable for DNA languages
to have. The properties 1 to 4 in Definition 1 have been extensively studied in
[12,14,16]. Here we complete this study by proving the relationship between sev-
eral properties. The following proposition shows the connection between θ-infix
and θ-comma-free languages. We use θ : Σ∗ �→ Σ∗ to be either morphic or anti-
morphic involution throughout this paper unless specified. In the following, we
list some of the properties and relations between θ-infix and θ-comma-free code.

Proposition 1. Let θ : Σ∗ → Σ∗ be a morphic or antimorphic involution and
X ⊆ Σ∗. Then the following are equivalent.

DNA Codes and Their Properties 131

1. X is a θ-comma-free code.
2. X is θ-infix and θ(X) ∩ PSuff(X)PPref(X) = ∅.
3. X is θ-infix and X2 ∩ PPref(X)θ(X)PSuff(X) = ∅.
4. X is θ-infix and Xn ∩ (Σ+θ(X)Σ+Xn−2) = ∅.
5. X is θ-infix and Xn ∩ (Xn−2Σ+θ(X)Σ+) = ∅.

Proposition 2. Let X ⊆ Σ+ be a θ-infix code. Then X3 ∩Σ+θ(X2)Σ+ = ∅ if
and only if θ(X2) ∩ PSuff(X)XPPref(X) = ∅.
Corollary 1. If X ⊆ Σ+ is θ-comma-free then X2∩PSuff(X)θ(X)PPref(X) =
∅ and θ(X2) ∩ PSuff(X)XPPref(X) = ∅.

3 Closure Properties of Involution Codes

In this section we discuss several properties of θ-prefix, θ-suffix, θ-bifix, θ-outfix
codes and θ-strict codes. Besides being generalizations of outfix codes, the moti-
vation behind introducing the notion of θ-outfix codes comes from the fact that
a set of DNA words that is a θ-outfix code avoids any undesirable hybridization
of the type in Fig 2. Ensuring that no such unwanted hybridization occurs is
obviously desirable from an experimental view point. It is interesting to note
that certain properties that are not satisfied by θ-prefix and θ-suffix codes are
satisfied by θ-bifix codes. In particular we discuss the conditions under which
such languages are closed under arbitrary concatenation. From a practical point
of view, these results give conditions under which, given a small finite set of
“good” codewords, we can construct arbitrarily large sets of good code words by
concatenation.

Lemma 1. Let X ⊆ Σ+.

1. If X is θ-infix then X is both θ-prefix and θ-suffix and hence a θ-bifix code.
2. For a morphic involution θ, X is θ-prefix(suffix) if and only if θ(X) is θ-

prefix(suffix).
3. For an antimorphic involution θ, X is θ-prefix(suffix) if and only if θ(X) is

θ-suffix(prefix).
4. X is θ-bifix if and only if θ(X) is θ-bifix.

In the next proposition we show that the family of θ-prefix(suffix) codes is
closed under concatenation when θ is a morphic involution and hence for a
θ-prefix(suffix) code X , any arbitrary power of X is also a θ-prefix(suffix) code
when θ is a morphic involution.

Proposition 3. For a morphic involution θ, the family of θ-prefix (θ-suffix)
codes is closed under concatenation.

Proof. Let X1 and X2 be θ-prefix. Suppose X1X2 is not θ-prefix then there exists
x1x2, y1y2 ∈ X1X2 such that x1x2 = θ(y1y2)b = θ(y1)θ(y2)b for some b ∈ Σ+.
Note that neither x1 is a prefix of θ(y1) nor θ(y1) is a prefix of x1 since both X1

and θ(X1) (Please refer 1) are θ-prefix. Hence x1 = θ(y1) which implies that
θ(y2) is a prefix of x2 which is a contradiction to our assumption that X2 is
θ-prefix. Similar proof works for θ-suffix. ��

132 L. Kari and K. Mahalingam

Corollary 2. Let θ be a morphic involution.

1. If X is θ-prefix then Xn is θ-prefix for all n ≥ 1.
2. If X is θ-suffix then Xn is θ-suffix for all n ≥ 1.

Note that the above proposition does not hold when θ is an antimorphic involu-
tion. For example let X1 = {aa, baa} and X2 = {bb, bbb} over the alphabet set
Σ = {a, b} and let θ be antimorphism such that a �→ b and b �→ a. Note that
both X1 and X2 are θ-prefix but X1X2 is not θ-prefix since for aabb ∈ θ(X1X2),
aabbb ∈ X1X2. Hence when θ is an antimorphic involution we need an additional
restriction on the sets X1 and X2 which is shown in the next proposition.

Proposition 4. For an antimorphic involution θ, if X1 and X2 are such that
X1 ∪X2 is θ-bifix, then X1X2 and X2X1 are θ-bifix.

Proof. Immediate.

Corollary 3. Let θ be morphic or antimorphic involution on Σ∗. If X is a
θ-bifix code then Xn is a θ-bifix code for all n ≥ 1.

In the next proposition we provide with the necessary condition under which for
a set X , the Kleene star of the set X is θ-prefix(suffix).

Proposition 5. If X is such that X is θ-strict-infix code then X+ is both θ-
prefix and θ-suffix.

Proof. To show that X+ is θ-prefix (i.e.) to show that X+ ∩ θ(X+)Σ+ = ∅.
Suppose X+ is not θ-prefix code then there exists x1x2...xn = θ(y1...ym)b for
xi, yj ∈ X, i = 1, .., n, j = 1, ..., m and b ∈ Σ+. For a morphic θ, x1x2...xn =
θ(y1)...θ(ym)b implies either x1 is a subword of θ(y1) or x1 = θ(y1) or θ(y1) is
a subword of x1. All cases contradict our assumption that X is strictly θ-infix.
Similarly we can prove that X+ is θ-suffix code.

The next two propositions gives us conditions under which when a composition
of some arbitrary languages satisfy good encoding properties, the right and the
left context of such languages also satisfy the same good encoding properties.

Proposition 6. Let X ⊆ Σ+ be such that X is not a θ-strict code.

1. If Xm is θ-prefix for m ≥ 1, then X is θ-prefix.
2. If Xm is θ-suffix for m ≥ 1, then X is θ-suffix.
3. If Xm is θ-bifix for m ≥ 1, then X is θ-bifix.

Proposition 7. Let Xi, i = 1, 2, ..., m be non empty languages over Σ such that
Xi∩θ(Xi) 	= ∅, i = 1, 2, ..., m. Let θ be a morphic involution. Then the following
are true.

1. If X1X2...Xm is θ-prefix, then X2...Xm, X3...Xm,..., Xm−1Xm, Xm are θ-
prefix codes.

DNA Codes and Their Properties 133

2. If X1X2...Xm is θ-suffix, then X1...Xm−1, X1...Xm−2,..., X1X2, X1 are θ-
suffix codes.

Proof. We prove (i) for the case m = 2 and the result follows by induction.
Assume X1X2 is θ-prefix. If X2 is not θ-prefix code then there exists x2, y2 ∈ X2

such that x2 = θ(y2)b. Since X1 ∩ θ(X1) 	= ∅, there exists x1, y1 ∈ X such that
x1 = θ(y1) and hence x1x2 = θ(y1)θ(y2)b = θ(y1y2)b which is a contradiction to
our assumption that X1X2 is θ-prefix. Similar proof works for (ii). ��
In the following propositions we investigate certain properties of θ-outfix codes.
We recall the following definition of insertion into a set from [15].

For X ⊆ Σ+, let

Y = θ(X) ← Σ+ =
⋃

u∈θ(X),v∈Σ+(u ← v)

where, u ← v = {u1vu2 : u = u1u2, u1, u2 ∈ Σ∗}.
The next lemma is a direct consequence of the definition of θ-outfix codes.

Lemma 2. For X ⊆ Σ+ let Y be the set obtained above. Then X is a θ-outfix
code iff Y ∩X = ∅.
Corollary 4. For a regular X, it is decidable whether X is a θ-outfix code or
not.

Proof. For a regular X , θ(X) is regular and it has been show in [15] that for
regular set θ(X) and Σ+, Y = θ(X) ← Σ+ is also regular. It is decidable whether
a regular set is empty or not. Hence it is decidable whether X is a θ-outfix code
or not.

It is easy to see that every θ-outfix code is θ-prefix and θ-suffix and hence a θ-bifix
code. Also note that X is θ-outfix code if and only if θ(X) is a θ-outfix code. In
the following propositions we investigate the closure properties of θ-outfix codes.
In most cases we omit the proof.

Proposition 8. For a morphic involution θ, the family of θ-outfix codes is
closed under concatenation.

Note that the above proposition does not hold when θ is an anitmorphic invo-
lution. For example let X1 = {aa, baa} and X2 = {bb, bbb} over the alphabet set
Σ = {a, b} and let θ be antimorphism such that a �→ b and b �→ a. Note that
both X1 and X2 are θ-outfix but X1X2 is not θ-outfix since for aabb ∈ θ(X1X2),
aa(b)bb ∈ X1X2. But the cases become simpler if we just work with one set X .
In the next proposition, we show that a θ-outfix code is closed under arbitrary
concatenation with itself for both morphic and antimorphic involution.

Proposition 9. X is a θ-outfix code iff X+ is a θ-outfix code.

Proposition 10. For a morphic involution θ, let X1, X2 ⊆ Σ+ be such that
Xi ∩ θ(Xi) 	= ∅ for i = 1, 2. If X1X2 is θ-outfix code then both X1 and X2 are
θ-outfix codes.

134 L. Kari and K. Mahalingam

Proof. Suppose that X1 is not θ-outfix, then xy, θ(x)uθ(y) ∈ X1 for some u ∈
Σ+, x, y ∈ Σ∗. Consider z ∈ X2 ∩ θ(X2). Then xyz ∈ X1X2 and θ(x)uθ(y)z ∈
X1X2, a contradiction. Hence X1 must be a θ-outfix code. Similarly, we can
show that X2 is a θ-outfix code. ��
In the next proposition we investigate certain properties of θ-strict codes and
their relation with other sets of codes.

Lemma 3. 1. If X1, X2 ⊆ Σ+ are θ-strict, then X1 ∪ X2 is not necessarily
θ-strict.

2. Let X1, X2 be θ-strict. Then X1∩θ(X2) = ∅ and X2∩θ(X1) = ∅ if and only
if X1 ∪X2 is θ-strict.

3. If X1 and X2 are θ-strict, then X1 ∩X2 is θ-strict.
4. Let X1 and X2 be θ-strict. When θ is morphism, if one of X1 or X2 is

θ-prefix , then X1X2 is θ-strict. When θ is antimorphism, if X1 ∪ X2 is
θ-strict-bifix, then X1X2 is θ-strict.

5. If X is θ-strict-bifix, then X+ is θ-strict.
6. X is θ-strict if and only if θ(X) is θ-strict.

4 Involution Intercodes

We now generalize the concept of θ-comma-free codes to θ-intercodes and study
the properties of such codes. Note that if θ is the identity function, a θ-intercode
becomes the well known notion of intercode, widely studied in the literature [26].
Besides being generalizations of intercodes, the motivation behind introducing
the notion of θ-intercodes comes from the fact that a set of DNA words that is
a θ-intercode avoids any undesirable hybridization of the type in Fig 1b. Ensur-
ing that no such unwanted hybridization occurs is obviously desirable from an
experimental view point.

Proposition 11. Let X be a regular language. Then for a given m ≥ 1, it is
decidable whether or not X is a θ-intercode of index m.

Proof. X is a θ-intercode of index m if and only if Xm+1 ∩ Σ+θ(Xm)Σ+ = ∅.
Since the family of regular languages is closed under catenation and intersection,
Xm+1 and Σ+θ(Xm)Σ+, θ(Xm) and Xm+1 ∩ Σ+θ(Xm)Σ+ are regular. It is
decidable whether a regular language is empty or not.

Proposition 12. Let |Σ| ≥ 2. Then for any m ≥ 1, every θ-intercode of index
m is a θ-intercode of index m + 1.

Proof. Given X is a θ-intercode of index m hence Xm+1 ∩ Σ+θ(Xm)Σ+ = ∅.
Suppose Xm+2 ∩ Σ+θ(Xm+1)Σ+ 	= ∅ then there exists x1, x2, ...xm+2, y1, y2,
...ym+1 ∈ X such that x1x2...xm+2 = aθ(y1...ym+1)b for some a, b ∈ Σ+.
If |a| ≥ |x1| then x2...xm+2 ∈ Σ+θ(y2)...θ(ym+1)Σ+. If |b| ≥ |xm+2| then
x1...xm+1 ∈ Σ+θ(y1)...θ(ym)Σ+. If |a| < |x1|, |b| < |xm+2| then a1x2...xm+1b1

= θ(y1)...θ(ym+1) which implies y1...ym+1 = a2θ(x2...xm+1)b2 which is a contra-
diction.

Both cases contradict our assumption that X is a θ-intercode of index m. ��

DNA Codes and Their Properties 135

Proposition 13. For any involution θ, every θ-intercode X such that X ∩
θ(X) 	= ∅ is a θ-bifix code.

Proof. X is a θ-intercode of index m, then by definition Xm+1∩Σ+θ(Xm)Σ+ =
∅. Since X ⊆ Σ+ and Xm+1 ∩ θ(Xm+1)Σ+ ⊆ Xm+1 ∩ Σ+θ(Xm)Σ+ = ∅ we
have Xm+1 is a θ-prefix code which implies X is a θ-prefix code by proposition 6.
Similarly we can show that X is a θ-suffix code. ��

The converse of the above proposition is not true. For example let X = {aab, aba}
over the alphabet set Σ = {a, b}. Let θ be a morphic involution with a �→ b and
b �→ a. Note that X is both θ-prefix and θ-suffix but aaθ(aba)a = aababa ∈ X2.
Hence X is not θ-intercode of index one. Also it is shown in [12] that every
θ-comma-free code is θ-infix. But this is not the case for θ-intercodes of index
m ≥ 2. One example is as follows: Let X = {b2ab3ab2, a3} over the alphabet set
Σ = {a, b} and let θ be an antimorphic involution such that a �→ b and b �→ a.
The language X is θ-intercode of index 2 but not a θ-infix code.

Proposition 14. If X is θ-comma-free code then X is a θ-intercode of index m
for all m ≥ 1.

Proof. Suppose Xm+1 ∩ Σ+θ(Xm)Σ+ 	= ∅, then there exists x1, x2, ...xm+1,
y1, y2, ..., ym ∈ X and a, b ∈ Σ+ such that x1x2...xm+1 = aθ(y1y2...ym)b. Then
either θ(yi) is a subword of xj which contradicts X being θ-infix and hence
θ-comma-free or θ(yi) is a subword of xjxj+1 which contradicts X being θ-
comma-free. ��

Note that the converse of the above proposition is not true. For example let X =
{cbaa, baad, babb} over the alphabet set Σ = {a, b, c, d} . Let θ be an antimorphic
involution with a �→ b and c �→ d. It is easy to check that X3∩Σ+θ(X2)Σ+ = ∅
but X is not θ-comma-free since cbθ(babb)ad = cbaabaad ∈ X2.

For any word u = a1a2...an ∈ Σ∗ with ai ∈ Σ define the reverse of u as
û = anan−1...a2a1. For X ⊆ Σ+, define X̂ = {û : u ∈ X . The following charac-
terization of θ-intercodes of index m is an immediate result from the definition
of θ-intercodes.

Proposition 15. Let X ⊆ Σ+. The following are equivalent.

1. X is a θ-intercode of index m.
2. X̂ is a θ-intercode of index m.
3. For any u ∈ Xm, x, y ∈ Σ∗, xθ(u)y ∈ Xm+1 implies x = 1 or y = 1.

Proposition 16. If X is a θ-intercode of index m then Xk ∩Σ+θ(Xm)Σ+ = ∅
for all k ≤ m + 1.

Proof. Suppose Xk ∩Σ+θ(Xm)Σ+ 	= ∅ for some k < m + 1, then ∅ 	= Xm+1 ∩
Xm+1−kΣ+θ(Xm)Σ+ ⊆ Xm+1 ∩Σ+θ(Xm)Σ+ which is a contradiction to our
assumption X is a θ-intercode of index m.

136 L. Kari and K. Mahalingam

Proposition 17. If X ⊆ Σ+ is a θ-intercode of index m, m ≥ 1 and X is
strictly θ-infix, then Xn ∩ Σ+θ(Xm)Σ+ = ∅ and Xm ∩ Σθ(Xn)Σ+ = ∅ for all
n ≥ m.

Proof. We prove by induction on n. Suppose for n = m, x ∈ Xm∩Σ+θ(Xm)Σ+

then x = x1...xm = aθ(y1)...θ(ym)b. Then atleast one of the θ(yi) is a subword
of xj which is a contradiction to our assumption that X is strictly θ-infix. When
n = m+1, Xm+1∩Σ+θ(Xm)Σ+ = ∅ since X is a θ-intercode. Now assume that
Xn ∩ Σ+θ(Xm)Σ+ = ∅ for all m ≤ n ≤ k. Suppose Xk+1 ∩ Σ+θ(Xm)Σ+ 	=
∅, then there exists x1, x2, ..., xk+1, y1, y2..., ym ∈ X such that x1x2...xk+1 =
aθ(y1)θ(y2)...θ(ym)b. If |a| = |x1| then x2...xk = θ(y1)...θ(ym)b which implies
either x2 is a subword of θ(y1) or θ(y1) is a subword of x2 which contradicts our
assumption that X is strictly θ-infix. If |a| > |x1| then x2...xk = a1θ(y1)...θ(ym)b
which implies that Xk−1 ∩ Σ+θ(Xm)Σ+ 	= ∅ which is a contradiction to our
induction hypothesis. The cases when |b| = |xk+1| or |b| > |xk+1| are similar to
the case when |a| = |x1| or |a| > |x1| respectively. If |a| < |x1| and |b| < |xk| then
atleast one of θ(yi) is a subword of xj which is a contradiction to our assumption
that X is strictly θ-infix. ��

Proposition 18. If X is a θ-intercode of index m and X is strictly θ-infix, then
Xn is a θ-intercode of index m, for all n ≥ 1.

Proof. We need to show that (Xn)m+1∩Σ+(θ(Xn))mΣ+ = ∅ for all n > 1 . Then
(Xn)m+1 ∩Σ+(θ(Xn))mΣ+ = (Xnm+n) ∩Σ+θ(Xnm)Σ+. Note that by propo-
sition 12 X is a θ-intercode of index nm and hence Xnm+1∩Σ+θ(Xnm)Σ+ = ∅.
Then by proposition 17 (Xnm+n)∩Σ+θ(Xnm)Σ+ = ∅. Hence Xn is a θ-intercode
of index m. ��

Proposition 19. If X is a θ-intercode of index m and X is strictly θ-infix then
X+ is a θ-intercode of index m.

Proof. Suppose X+ is not θ-intercode of index m, then there exists x, y ∈ X+

such that x = x1...xm+1 and y = y1..ym for all xi, yj ∈ X+ and x = aθ(y)b
for some a, b ∈ Σ+. The case when xi, yj ∈ X for all i, j then x ∈ Xm+1 ∩
Σ+θ(Xm)Σ+ which is a contradiction. If x ∈ Xp and y ∈ Xq for some p, q ≥ m
then x ∈ Xp ∩ Σ+θ(Xq)Σ+ which is a contradiction by Proposition 12 and 17.
Hence X+ is a θ-intercode of index m. ��

Proposition 20. If X∪Y is a θ-intercode of index m then XY is a θ-intercode
of index m.

Proof. Suppose (XY)m+1 ∩ Σ+θ((XY)m)Σ+ 	= ∅ then let r ∈ (XY)m+1 such
that r = x1y1x2y2...xm+1ym+1 = aθ(p1q1...pmqm)b for x1, ..., xm+1, p1, ..., pm ∈
X and y1, ..., ym+1, q1, ..., qm ∈ Y and a, b ∈ Σ+. But r ∈ (X ∪ Y)2(m+1) ∩
Σ+θ((X ∪ Y)2m)Σ+ which is a contradiction by Proposition 12 and 17. ��

DNA Codes and Their Properties 137

5 n-θ-Comma-Free Codes and n-θ-Intercodes

If the alphabet Σ consists of more than one letter, the partial order ≤c defined
on Σ∗ by u ≤c v if and only if v = xu = ux for some x ∈ Σ∗ plays an interesting
role. That is if u ≤c v, then u = f i for some primitive word f (f is primitive if
f = ai, a ∈ Σ+ for some i implies i = 1) and v = f i+j for some j ≥ 0. Thus if
u, v ∈ X ⊆ Σ+ and X is an independent set with respect to ≤c, then uv 	= vu,
which is equivalent to the fact that the two element set {u, v} is a code. Hence a
≤c-independent set is called a 2-code. This notion can be generalized as follows:
An n-code is a set X with the property that every n element subset of the set X is
a code ([26]). The notion of n-codes, n-comma free codes and hence n-intercodes
were defined and studied in [26]. Here we extend these concepts to involution
comma-free and involution intercodes as follows. This section investigates these
notions and algebraic properties of these codes. An n-θ-intercode of index m is
a language X ⊆ Σ+ such that every subset of X with at most n elements is
a θ-intercode of index m. An n-θ-comma-free code is an n-θ-intercode of index
one.

Proposition 21. The class of 2-θ-comma-free codes is not closed under union,
catenation, complement, catenation closure.

Proof. The proof will be done by constructing some examples. We consider two
languages {ab} and {ba} that are 2-θ-comma-free for an antimorphic θ mapping
a �→ b. It is clear that the union {ab, ba} = {ab, ba}, the product {ab}2 and
the catenation closure {(ab)+} are not 2-θ-comma-free codes. Also, the class
of 2-θ-comma-free codes are closed under intersection but not under union or
complement.

Proposition 22. If X is a 2-θ-comma-free code then X is θ-infix.

Proof. Suppose X is not θ-infix then there exists x, y ∈ X such that x = aθ(y)b
which implies {x, y} is not θ-infix and hence not θ-comma-free which is a con-
tradiction. Hence X is θ-infix. ��
Proposition 23. Let X ⊆ Σ+ be such that X ∩ θ(X) = ∅ and θ(PSuff(X)) ∩
PPref(X) = ∅.

Then the following are equivalent.

1. X is a 2-θ-comma-free code.
2. X is θ-infix and for u, v ∈ Σ+, if uv ∈ θ(X) then X ∩ vΣ∗u = ∅.

Proof. Note that from Proposition 22 X is θ-infix. Let u, v ∈ Σ+ such that uv ∈
θ(X). If X ′ = {θ(uv), vxu} ⊆ X for some x ∈ Σ∗, then (vxu)2 ∈ X ′2∩Σ+X ′Σ+.
This implies that X is not a 2-θ-comma-free code.

For the converse, let X be θ-infix. Suppose there exists x, y ∈ X such that
{x, y} is not θ-comma-free then the either xy = aθ(x)b or x2 = aθ(x)b or y2 =
aθ(x)b or yx = aθ(x)b for some a, b ∈ Σ+. Since X is θ-infix, θ(x) is not a proper
subword of x or y. Also note that θ(x) 	= x2x1 for x1x2 = x or θ(x) 	= y2y1 for

138 L. Kari and K. Mahalingam

y1y2 = y since for all uv ∈ θ(X), vΣ∗u ∩ X = ∅. Suppose aθ(x)b = xy, then
θ(x) = x2y1 for x = x1x2 and y = y1y2. When θ is morphism, x = θ(x2)θ(y1) and
when θ is antimorphism, x = θ(y1)θ(x2) both cases contradict our assumption
that θ(PSuff(X)) ∩ PPref(X) = ∅. Hence X is a 2-θ-comma-free code.

Proposition 24. X is a 3-θ-comma-free code if and only if X is a θ-comma-free
code.

Proposition 25. If X is a k-θ-comma-free code then X is a i-θ-comma-free
code for all i ≤ k.

Proof. Immediate. Note that X being k-θ-comma-free code does not imply X is
i-θ-comma-free code for i ≥ k + 1 and k ≤ 2. For example let X = {cbaa, baad,
babb} over the alphabet set Σ = {a, b, c, d}. Let θ be an antimorphic involution
such that a �→ b and c �→ d. It is easy to check that X is not θ-comma-free but
X is 2-θ-comma-free.

Proposition 26. X is a θ-intercode of index m if and only if X is a (2m + 1)-
θ-intercode of index m.

Proof. Let X be (2m+1)-θ-intercode of index m. Suppose X is not θ-intercode of
index m then there exists x1, x2, ..., xm+1, y1, ..ym ∈ X such that x1x2...xm+1 =
aθ(y1...ym)b for some a, b ∈ Σ+ which implies that X is not (2m+1)-θ-intercode
of index m. The converse of the proof is immediate. ��

Note that every θ-intercode of index m is an n-θ-intercode of index m for all
n ≥ 1. But for n ≤ 2m an n-θ-intercode of index m is not neccesarily a θ-
intercode of index m. For example.....

Proposition 27. If X is a 2-θ-comma-free code , then Xy and yX are 2-θ-
comma-free code for all y ∈ X.

Proof. Suppose Xy is not 2-θ-comma-free then there exists {x1y, x2y} ⊆ Xy
such that atleast one of the following happens:

x1yx2y = aθ(x1y)b or x1yx2y = aθ(x2y)b or x2yx1y = aθ(x1y)b or x2yx1y =
aθ(x2y)b or x1yx1y = aθ(x1y)b or x1yx1y = aθ(x2y)b or x2yx2y = aθ(x1y)b or
x2yx2y = aθ(x2y)b.

Note that none of the θ(x1) or θ(x2) or θ(y) is a subword of x1, x2 or y since
X is θ-infix. Also none of the θ(xi) or θ(y) is a subword of xiy or yxi since X
is a 2-θ-comma-free code. Suppose in x1yx2y = aθ(x1y)b if θ(x1) is a subword
of yx2 then either θ(y) is a subword of x1 or x2y which is a contradiction to the
given assumption. Similarly we can show that yX is a 2-θ-comma-free code. ��

Note that X being 2-θ-comma-free code does not imply Xn is 2-θ-comma-free
code. For example let X = {ebb, dae, aac, bcb}. Let θ be a morphic involution such
that a �→ b, c �→ d and e �→ e. It is easy to check that X is 2-θ-comma-free code
but X2 is not since ebbdae, aacbeb ∈ X2 with ebbdaeaacbeb = eθ(aacbeb)acbeb.

DNA Codes and Their Properties 139

6 Methods for Constructing Involution Codes

With the constructions in this section we show several ways to generate involu-
tion codes with “good” properties. Many authors have realized that in the design
of DNA strands it is helpful to consider three out of the four bases. This was
the case with several successful experiments [3,8,24]. It turns out that this, or
a variation of this technique, can be generalized in such a way that codes with
some of the desired properties can be easily constructed. Methods to construct
θ-infix, θ-comma-free, θ-k-code and θ-subword-k-codes were provided in [14]. In
this section, we concentrate on providing methods to generate θ-prefix, θ-suffix,
θ-bifix, θ-outfix and θ-intercodes X such that X+ has the same property. Some
of these methods (Proposition 28) are in some sense generalizations of the idea
of considering only three out of four bases. For each code X , the entropy of X+

is computed. The entropy measures the information capacity of the codes, i.e.,
the efficiency of these codes when used to represent information.

Suppose that we have a source alphabet with p symbols each occurring with
probability s1, s2, ...sp. If s1 = 1, then there is no information since we know what
the message must be. If all the probabilities are different then for a symbol with
low probability we get more information than for a symbol with high probability.
Hence information is somewhat inversely related to the probability of occurrence.
Entropy is the average information over the whole alphabet of symbols.

The standard definition of entropy of a code X ⊆ Σ+ uses a probability
distribution over the symbols of the alphabet of X (see [4]). However, for a p-
symbol alphabet, the maximal entropy is obtained when each symbol appears
with the same probability 1

p . In this case the entropy essentially counts the
average number of words of a given length as subwords of the code words [19].
From the Coding Theorem ([1]), it follows that {0, 1}+ can be encoded by X+

with Σ �→ {0, 1} if the entropy of X+ is at least log 2 (see Theorem 5.2.5 in [23]).
The codes for θ-comma-free, strictly θ-comma-free, and θ-k-codes designed in
this section have entropy larger than log 2 when the alphabet has p = 4 symbols.
Hence, such DNA codes can be used for encoding bit-strings.

We start with the entropy definition as defined in [23].

Definition 2. Let X be a code. The entropy of X+ is defined by

h̄(X) = limn→∞
1
n

log |Subn(X+)|.
If G is a deterministic automaton or an automaton with a delay (see [23]) that
recognizes X+ and AG is the adjacency matrix of G, then by Perron-Frobenius
theory AG has a maximal positive eigen value μ̄ and the entropy of X+ is log μ̄
(see Chapter 4 of [23]). We use this fact in the following computations of the
entropies of the designed codes. In [12], Proposition 16, authors designed a set of
DNA code words that is strictly θ-comma-free. The following propositions shows
that, in a similar way, we can construct codes with additional “good” properties.

In what follows we assume that Σ is a finite alphabet with |Σ| ≥ 3 and
θ : Σ → Σ is an involution which is not identity. We denote by p the number of
symbols in Σ.

140 L. Kari and K. Mahalingam

Proposition 28. Let a ∈ Σ be such that θ(a) 	= a. Let X =
⋃∞

i=1 an(Σ \
θ(a))ian for a fixed integer n ≥ 1. Then X and X+ are both θ-prefix and θ-
suffix. The entropy of X+ is such that log(p− 1) < h̄(X+) < log(p).

Proof. By Proposition 5 it is enough to show that X is strict θ-infix. Let x, y ∈ X
such that uθ(x)b = v for some u, v ∈ Σ∗. Then uθ(anw1a

n)v = anw2a
n for some

w1, w2 ∈ (Σ \ {θ(a)})i which implies ubnw3b
nv = anw2a

n where θ(a) = b which
is not possible since a 	= b and b 	= Sub(w2). Therefore X is θ-strict-infix code
and hence X+ is both θ-prefix and θ-suffix.

1 2 n+1 n+2
a a a s

s

a a

a

... ...1 2n+1

Fig. 3. Finite state automaton A that recognizes X+ where S = Σ \ θ(a)

LetA = (V , E , λ) be the automaton that recognizes X+ where V = {1, ..., 2n+
1} is the set of vertices, E ⊆ V ×Σ × V and λ : E → Σ (with (i, s, j) �→ s) is
the labeling function defined in the following way:

λ(i, s, j) =

⎧⎨
⎩

a for 1 ≤ i ≤ n, n + 2 ≤ i ≤ 2n, j = i + 1,
and i = 2n + 1, j = 1,

s for i = n + 1, n + 2, j = n + 2, s ∈ Σ \ {θ(a)}
Then the adjacency matrix for A is a (2n+1)×(2n+1) matrix with ijth entry

equal to the number of edges from vertex i to vertex j. Then the characteristic
polynomial can be computed to be det(A−μI) = (−μ)2n(p−1−μ)+(−1)2n(p−1).
The eigen values are solutions of the equation μ2n(p − 1) − μ2n+1 + p − 1 = 0
which gives p− 1 = μ− μ

μ2n+1 . Hence 0 < μ
μ2n+1 < 1, i.e., p− 1 < μ < p. ��

In the case of the DNA alphabet, p = 4 and for n = 1 the above characteristic
equation becomes μ3− 3μ2− 3 = 0. The largest real value of μ is approximately
3.27902 which means that the entropy of X+ is greater than log 2.

Proposition 29. Let a, b ∈ Σ be such that for all θ(a) 	= θ(b) 	= a 	= b. Let
X =

⋃∞
i=1 anΣibn for a fixed integer n ≥ 1. Then X and X+ are θ-bifix and

θ-outfix. The entropy of X+ is such that log(p− 1) < h̄(X+) < log(p).

In the case of the DNA alphabet, p = 4 and for n = 1 the above characteristic
equation becomes μ3− 4μ2− 4 = 0. The largest real value of μ is approximately
4.22417 which means that the entropy of X+ is greater than log 2.

Proposition 30. Choose distinct a, b, c ∈ Σ such that θ(a) 	= b, c, θ(a) 	= a.
Let X =

⋃∞
i=1 an(Σn−1c)ibn for some n ≥ 2. Then X and so X+ are strictly θ-

intercodes of index m for all m ≥ 1. The entropy of X+ is such that log(p
n−1

n) <

h̄(X+) < log((pn−1 + 1)
1
n).

DNA Codes and Their Properties 141

For the DNA alphabet, p = 4, and for n = 2, the above characteristic equation
becomes μ6 − 4μ4 − 4 = 0. Solving for μ, the largest real value of μ is 2.05528.
Hence the entropy of X+ is greater than log 2.

7 Concluding Remarks

In this paper we investigated theoretical properties of languages that avoided
certain type of undesirable Watson-Crick bindings; θ-outfix codes, θ-intercodes,
n-θ-intercodes and n-θ-comma-free codes. All these new concepts generalize clas-
sical notions of outfix codes, intercodes, n-intercodes and n-comma-free codes
respectively. In addition, DNA word sets that are θ-outfix codes or θ-intercodes
are of interest in the design of DNA computing experiments since such sets avoid
unwanted hybridization Fig 1 and Fig 2. This paper We also developed certain
methods to construct such sets of DNA code words with good properties and
have calculated their informational entropy.

Acknowledgment. This work has been supported by NSERC and Canada
Research Chair Grant for Lila Kari.

References

1. R.L. Adler, D. Coppersmith and M. Hassner, Algorithms for sliding block codes
-an application of symbolic dynamics to information theory, IEEE Trans. Inform.
Theory 29 (1983): 5-22.

2. E.B. Baum, DNA Sequences useful for computation unpublished article (1996).
3. R.S.Braich, N.Chelyapov, C.Johnson, P.W.K.Rothemund, L.Adleman, Solution

of a 20-variable 3-SAT problem on a DNA computer Science, Science 19, Vol
296(5567) (2002) 499-502.

4. J. Berstel, D. Perrin, Theory of Codes, Academis Press, Inc.
Orlando Florida, 1985.

5. R.Deaton, J.Chen, H.Bi, M.Garzon, H.Rubin, D.F.Wood, A PCR based protocol
for In vitro selection of non-crosshybridizing oligonucleotides, DNA Computing:
Proceedings of the 8th International Meeting on DNA Based Computers (M.Hagiya,
A.Ohuchi editors), Springer LNCS 2568 (2003) 196-204.

6. R.Deaton, J.Chen, M.Garzon, J.Kim, D.Wood, H.Bi, D.Carpenter, Y.Wang, Char-
acterization of Non-Crosshybridizing DNA Oligonucleotides Manufactured in Vitro,
DNA computing: Preliminary Proceedings of the 10th International Meeting on
DNA Based Computers (C.Ferretti, G.Mauri, C.Zandron editors) June7-10, (2004)
132-141.

7. R. Deaton et. al, A DNA based implementation of an evolutionary search for good
encodings for DNA computation, Proc. IEEE Conference on Evolutionary Compu-
tation ICEC-97, (1997) 267-271.

8. D. Faulhammer, A. R. Cukras, R. J. Lipton, L. F.Landweber, Molecular Compu-
tation: RNA solutions to chess problems, Proceedings of the National Academy of
Sciences, USA, 97 4 (2000) 1385-1389.

9. M. Garzon, R. Deaton, D. Reanult, Virtual test tubes: a new methodology for com-
puting, Proc. 7th. Int. Symposium on String Processing and Information retrieval,
A Corun̆a, Spain. IEEE Computing Society Press (2000) 116-121.

142 L. Kari and K. Mahalingam

10. T. Head, Formal language theory and DNA: an analysis of the generative capacity
of specific recombinant behaviors, Bull. Math. Biology 49 (1987) 737-759.

11. T. Head, Gh. Paun, D. Pixton, Language theory and molecular genetics, in Hand-
book of formal languages, Vol.II (G. Rozenberg, A. Salomaa editors) Springer Ver-
lag (1997) 295-358.

12. S. Hussini, L. Kari, S. Konstantinidis, Coding properties of DNA languages, DNA
Computing: Proceedings of the 7th International Meeting on DNA Based Com-
puters (N. Jonoska, N.C. Seeman editors), Springer LNCS 2340 (2002) 57-69.

13. N. Jonoska, D. Kephart, K. Mahalingam, Generating DNA code words Congressus
Numernatium 156 (2002): 99-110.

14. N.Jonoska , K.Mahalingam and J.Chen, Involution Codes: With Application to
DNA Coded Languages, Natural Computing, Vol 4-2(2005), 141-162.

15. L.Kari, On insertion and deletion on formal languages, Doctoral Dissertation in
Mathematics, University of Turku, Finland.

16. L. Kari, S. Konstantinidis, E. Losseva and G. Wozniak, Sticky-free and overhang-
free DNA languages, Acta Informatica 40 (2003): 119-157.

17. L.Kari, S.Konstantinidis and P.Sosik, Bond-free Languages: Formalizations, Max-
imality and Construction Methods, Preliminary Proceedings of DNA 10 June 7-10
(2004):16-25.

18. L.Kari, S.Konstantinidis, P.Sosik, Preventing Undesirable Bonds between DNA
Codewords Preliminary Proceedings of DNA 10 June 7-10 (2004) 375-384.

19. M.S. Keane, Ergodic theory an subshifts of finite type , Ergodic theory, symbolic
dynamics and hyperbolic spaces (ed. T.Edford, et.al.) Oxford Univ. Press, Oxford
(1991): 35-70.

20. D.Kephart and J.Lefevre, Codegen: The generation and testing of DNA code words,
Proceedings of IEEE Congress on Evolutionary Computation, June (2004): 1865-
1873.

21. P.Leupold, Partial Words for DNA Coding Preliminary Proceedings of DNA 10
June 7-10 (2004) 26-35.

22. Z. Li, Construct DNA code words using backtrack algorithm, preprint.
23. D. Lind and B. Marcus, An introduction to Symbolic Dynamics and Coding, Cam-

bridge University Press, Inc. Cambridge United Kingdom (1999).
24. Q. Liu et al., DNA computing on surfaces, Nature 403 (2000) 175-179.
25. A. Marathe, A.E. Condon, R.M. Corn, On combinatorial word design Preproceed-

ings of the 5th International Meeting on DNA Based Computers, Boston (1999)
75-88.

26. H.J.Shyr, Free Monoids and Languages, Hon Min Book Company 2001.

In Search of Optimal Codes for DNA Computing

Max Garzon, Vinhthuy Phan, Sujoy Roy, and Andrew Neel

Computer Science, The University of Memphis TN 38152-3240, U.S.A.
{mgarzon, vphan, sujoyroy, aneel}@memphis.edu

Abstract. Encoding and processing information in DNA-, RNA- and
other biomolecule-based devices is an important requirement for DNA-
based computing with potentially important applications. Recent exper-
imental and theoretical advances have produced and tested new methods
to obtain large code sets of oligonucleotides to support virtually any kind
of application. We report results of a tour de force to conduct an exhaus-
tive search to produce code sets that are arguably of sizes comparable to
that of maximal sets while guaranteeing high quality, as measured by the
minimum Gibbs energy between any pair of code words and other crite-
ria. The method is constructive and directly produces the actual compo-
sition of the sets, unlike their counterpart in vitro . The sequences allow a
quantitative characterization of their composition. We also present a new
technique to generate code sets with desirable more stringent constraints
on their possible interaction under a variety of conditions, as measured
by Gibbs energies of duplex formation. The results predict close agree-
ment with known results in vitro for 20−mers. Consequences of these
results are bounds on the capacity of DNA for information storage and
processing in wet tubes for a given oligo length, as well as many other
applications where specific and complex self-directed assembly of large
number of components may be required.

Keywords: Word design, encoding data on DNA, Gibbs energy, fault-
tolerant DNA computing, maximal code sets, complex DNA self-assembly,
shuffle codes.

1 Introduction

The problem of data and information encoding on DNA bears an increasing
interest for both biological and non-biological applications of biomolecular com-
puting (BMC). Virtually every application of DNA computing maps data to ap-
propriate sequences to achieve intended reactions, reaction products, and yields.
DNA molecules usually process information by intramolecular and (more often)
intermolecular reactions, usually hybridization in DNA-based computing. Most
of prior work in this area has been centered on the so-called word design prob-
lem, or even the encoding problem (Garzon et al., 1997) [14,15]. Encoding sets
will eventually prove necessary to realize the successful applications of BMC
to expected and competitive scales in a number of areas such as directed self-
assembly of complex structures (Seeman et al, 2005; Reif et al., 2003; Winfree

C. Mao and T. Yokomori (Eds.): DNA12, LNCS 4287, pp. 143–156, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

144 M. Garzon et al.

et al., 2001), DNA memories (Garzon et al., 2005)[16], and other applications.
In (Phan and Garzon, 2004) [21], we introduced an algorithm that produces
codesets of nearly optimal size under the h-distance model [14]. Whether these
codesets will perform accordingly in vitro requires experimental confirmation.

The purpose of this paper is to present two new families of oligonucleotide
sets of high quality for DNA-based computing. The first family is the result
of exhaustive searches to produce code sets of n−mers, for n ≤ 20, that are
very likely to be maximal sets while guaranteeing high quality as measured by
the minimum Gibbs energy between any pair of code words. This is a challeng-
ing problem because of the enormous size of the search space of all n−mers
(exponential 4n) and the practically infinite size of possible candidate subsets
(superexponential 24n

) under virtually any condition on the quality of the sets,
even for small oligos typically used on DNA chips (n ≤ 20). In Section 2, we first
describe the tools and techniques used to cope with the combinatorial explosion,
as well as analyses of the size of the sets for their near optimality and a charac-
terization of their noncrosshybridzation quality. The methods are constructive
in two important senses. First, the sets are actually produced by simulation of
proven experimental techniques in vitro (Deaton et al., 2004) [9], but, unlike the
latter method, their composition is actually obtained as well. This fact affords
important advantages because of the enormous cost of synthesizing (possibly
hundreds of) thousands of different strands with a protocol that produces them
directly in vitro . Second, we show, for example, an analysis of their composition
that provides interesting clues as to the nature of Gibbs energy landscapes at
play in BMC applications. The code sets obtained in Section 2 exhibit minimal
noncrosshybridization for actual applications. Further selection may be necessary
for specific uses of a code set.

In Section 3, we present a second family of codes that satisfy desirable and
more stringent constraints on their interaction under a variety of conditions by
refining the previously introduced shuffle operation of (Phan and Garzon, 2004)
[21]. The thermodynamic stringency maintained is that the free energies are not
too low between pairs of strands in the set, pairs of strands and the complements
of other strands in the set, and pairs of complements of strands in the set. The
codesets obtained are generally competitive with, and at time superior to, those
obtained from other methods, while being produced by a much more efficient
method.

Finally, in Section 4 we conclude with some remarks about the availability of
the codes, some possible applications, their implications for DNA computing, as
well as the difficulties in extending these methods to produce longer codeword
sets.

2 Nearly Maximal DNA Codes

At first blush, finding good code sets appears to be a straightforward extension
of the analogous problem of finding error-correcting codes of maximal rate in
information theory (Roman, 1995) [22]. Two differences make the problem much

In Search of Optimal Codes for DNA Computing 145

more difficult. First, the metric (distance function) involved in determining the
quality of the code (i.e., minimum distance between any two codewords), namely
the Gibbs energy of duplex formation (SantaLucia and Hicks, 2004) [24], is not
the Hamming distance, indeed not ever a metric remotely comparable to the
Hamming distance. In fact, even finding a very large set of very short oligonu-
cleotide (say 20−mers) is computationally difficult [19]. Recent efforts based on
the thermodynamic estimate of free energy has only been able to produce sets
of no larger than 400 strands of 12- to 20-mers (Shortreed et al., 2005; Tulpan
et al., 2005) [25,26]. Second, the computation of the Gibbs energy is in itself a
challenge (probably NP-hard in itself) which requires an approximation of its
own. Although more metric-like approximations of the Hamming distance have
been found (Garzon et al., 1997)[14], the strong contrast in the topology of the
corresponding spaces make it quite different. Nonetheless, the Hamming distance
offers an inspiring analogy to tackle the search, as discussed next.

2.1 Gibbs Energy Model

The Gibbs energy value can be thus regarded as a measure of the hybridization
likelihood between any pair of strands. Of the various methods that have been
proposed, we use in this section a computation based on a model that shortcuts
the common dynamical programming algorithm in the nearest neighbor model
by adding a penalty function for buldges (Deaton et al., 2002)[8]. This model has
been proven to work well in the solution of the encoding problem in vitro (Chen
et al., 2004; 2005)[6,4] . More details on this point can be can be found in (Garzon
and Deaton, 2004)[13].

Envisioning the full space of n−mers as a (pseudo-)metric space, the problem
is analogous to the well known sphere-packing problem in ordinary euclidean
spaces as follows. The stringency conditions in the test tube (as determined by
factors such as temperature, salinity, and kinetic effects) can be abstracted as an
appropriate parameter τ representing the threshold under which hybridization
will occur. We set this value at the standard of τ = −6 Kcal/mole. Inclusion
of any n−mer x as a codeword automatically excludes all other n−mers within
a Gibbs energy of duplex formation with x below τ , herein named the “ball of
radius τ centered at x.” We are thus searching for sets C of noncrosshybridizing
n−mers of the largest possible size with the requirement that the minimum
distance between every pair of n−mers is at least τ .

2.2 Exhaustive Search Methods: The PCR Selection Protocol

Polymerase Chain Reaction (PCR) is a well established technique to amplify the
number of copies of DNA strands by thermal cycles using a polymerase enzyme
(Mullins, 1984). At low temperatures, DNA strands are primed for copying by
attaching primers (short ssDNA) to their 5′-end and 3′-ends. By supplying ad-
ditional Taq polymerase and nucleotide bases, the ssDNA will extend forming
fully Double Stranded DNA (dsDNA). At high temperatures, dsDNA melts or
splits into ssDNA. Thus, by repeating this basic round, new copies of original
DNA are produced with amazing volume and accuracy in only a few cycles.

146 M. Garzon et al.

PCR Selection (PCRS) (Bi et al., 2003) [3] is an in vitro protocol that was
designed to make use of PCR to obtain good code sets from a seed set by
adding a filtering phase. In the experimental confirmation, the target strands in
the seed set (the full population of 20−mers) were flanked by carefully chosen
20−mer primers on both sides obtained using the model in (Deaton et al., 2002)
[8]. In the extension phase, the template strands that have not found sticking
(pseudo)complements are extended in a PCR cycle; in the filtering phase, those
not amplified are eventually filtered out of the set. After repeating this process
for a few rounds (four sufficed in [3]), a code set of actual DNA strands has been
experimentally confirmed to be obtained with high noncrosshybridizing quality
(Chen et al., 2005) [4]. Because the seed set is the largest possible and strands
are only filtered out only when they have been caught crosshybridizing with
other strands, the results after an appropriate number of rounds is expected to
be a maximal noncrosshybridizing set, not unlike the perfect codes well known
in information theory with the Hamming distance (Roman, 1995) [22].

It is impressive how the PCR Selection protocol can thus perform an exhaus-
tive search that cuts through the combinatorial explosion to produce good code
sets in feasible time (a matter of days). It is worth pointing out that the proto-
col does obtain the code set in vitro , thus eliminating the cost of synthesizing a
large number of strands in code sets designed by design or conventional means.
On the other hand, the actual composition of the sequences and the quality of
the full set cannot be subject to the kind of analysis and so be given the guar-
antees that designs and evolutionary methods in silico do provide. Although
experimental characterization of their quality has been given (Chen et al., 2005;
Chen et al., 2004) [4,6], even if one is willing to bear the cost, in terms of money,
of sequencing a sample of the code set in vitro , it is forbiddingly infeasible in
terms of time to do so for the whole set of estimated 10, 000 − 50, 000 species
present in the wet set.

2.3 Maximal Code Sets

In this section we present the results of an analogous exhaustive search in sil-
ico by running PCR selection in simulation. Monetary costs of this approach are
only those associated with developing the required software and purchasing the
required hardware to run it. If the simulation is feasible to perform in silico , the
full sequences of the code sets would actually be obtained and analyses could be
performed of their nature and composition. The results in terms of knowledge of
the actual composition of the set and their structure would be clearly superior,
if it could be done.

PCR Selection in simulation is not without its challenges. For example, the
set of 20−mers contains about 1 trillion species and would hold a full terabyte
of data if just one byte is associated to just one DNA species. Simulation of
PCRS on a terabyte of data is no trivial task for any computer. Fortunately,
we have developed a simulation tool, EdnaCo , in the last few years for under-
standing biochemical reactions involving DNA. EdnaCo is a virtual test tube
(VTT) capable of reliably predicting wet test tube outcomes with high fidelity

In Search of Optimal Codes for DNA Computing 147

(Garzon et al, 2004) [18]. Although running on a cluster of PCs, it is still a
challenge for EdnaCo to handle a simulation of PCR Selection on 20−mers in
less than six months. We thus gave PCRS a hand by adding a pre-processing
step, i.e. doing PCRS in two major stages, (a) filtering and (b) simulation on the
filtered set. Several filters were applied to the full seed set of n−mers in order
to remove a priori those obvious candidate DNA species likely to be removed
by PCR Selection. The filters remove from the full set (left bars in Fig. 1, top
right) those strands which are palindromes, contain hairpins (a folding of DNA
onto itself), contain 4−mer runs of a single base, or are too close in h-distance
to other strands already passed through the filter. Filtering the DNA sets can
require from several minutes (for shorter strands) to several weeks (for larger
sets.) The net gain is a filtered set (middle bars) that is at least one order of
magnitude smaller in size than the full set (left bars), as shown in Fig. 1 (top
right).

The general fidelity of the software simulations has been documented in (Gar-
zon et al., 2004; Garzon et al., 2003) [18,11]. As a further validation of our sim-
ulation PCRS++, we ran PCR selection on a smaller subset of about 5, 400
40−mers in order to determine the number of PCR rounds necessary to filter
out all crosshybridizing pairs. The protocol converged to a stable product after
four (4) rounds, which is in good agreement with the number of rounds con-
sidered to be necessary with in vitro runs of the protocol. Fig. 1 shows that
PCRS++typically converges in practice in under 20 rounds to a stable set of
20−mers on filtered seed sets of about 5K species, which was heuristically de-
termined to be the optimal value for parallelization of the job. (PCRS++a
randomized algorithm and it may take in principle a very long time to converge
to an ideal product subset of the seed set.) Further validation of the results will
be possible when a comparison can be made with the analogous characteriza-
tions of the product code sets to the available characterization of the products
in vitro for 20−mers (Chen et al., 2005; Chen et al., 2004)[4].

Fig. 1 also shows the results of filtering the full set of DNA n−mers of various
lengths. The size of the remaining set of strands after filtering still grows expo-
nentially with a power law 40.72n+1.66. This suggests that at some point, filtering
will yield DNA sets that still contain too many DNA species. After projecting
the curve forward, their intercept is estimated to be beyond DNA sets of length
60. This evidence does not suggest a limitation of our method since the Gibbs
energy approximation of (Deaton et al., 2002)[8] breaks down beyond 60−mers.
Rather, it suggests that filtering as described above may not be ideal for discov-
ering a maximal set of strands of a specific length. Even so, a subset of strands
obtained will far exceed the size of the best set know today, and by analogous
arguments to the advantages of PCR selection in vitro , produce sets that are of
comparable order of magnitude to an optimal (perfect) code.

Fig. 2 shows the noncrosshybridizing quality of the sets obtained by the sim-
ulation over a period of months, as measured by the pairwise Gibbs energy of
strand pairs in the input filtered sets and across word pairs in the set resulting
from the PCRS products. The length of the simulation for one round of PCRS

148 M. Garzon et al.

Fig. 1. Top Left: The simulations converge to a noncrosshybridizing subset of a seed set
of 5K species in about fifteen (15) rounds of PCRS++on a single processor. Four (4)
rounds could be achieved on a larger number of processors to match the experimental
protocol in vitro (Chen et al., 2005) [4]. Top Right: Pre-filtering of the space of n−mers
reduces the full set by at least one order of magnitude. The filtering process removes
from the full input set (left bars) the DNA species that contain hairpins or short runs of
the same base, and those species that are palindromes or are too close to other strands
already accepted by the filter. The size of the resulting filtered seed sets (middle bars)
can be estimated by the power law 40.72n+1.66 (right bars). Bottom center: Size of the
PCR Selection products obtained from the filtered input seed sets (left bars). The size
of PCRS++products (middle left bars) come between 1% and 27% of the ideal PCRS
subset contained in the filtered seed set if all collisions were eliminated (middle right
bars). (The full runs of PCRS++are not finished in time for 16−mers and 20−mers;
shown are estimates based on the partial results available but guaranteed to be within
5% error of the true values.) The size of ideal PCRS++products (middle right bars)
can be estimated by the sub-powerlaw 41.9

√
n+0.3 (light bars on the right).

has been calculated to guarantee enough time for every strand to visit every
place in the test tube simulator EdnaCo (Garzon et al., 2004) [18]. The mini-
mum energies are the most stringent criterion, and a value of −6 Kcal/mole is
generally required to avoid crosshybridization between any pair of strands. Most
sets obtained satisfy this condition on the average in under fifteen (15) rounds,
and in the few that do not, an additional round of exhaustive filtering (not
included in the results reported here for PCRS++) was found to satisfy this
minimum criterion easily. It must be noted that the full runs of PCRS++were
not finished in time for 16−mer and 20−mer; shown are estimates based on the
partial results available but guaranteed to be within 5% error of the true values.

In Search of Optimal Codes for DNA Computing 149

Fig. 2. High quality of PCR Selection protocol product set, as measured by two dif-
ferent criteria: Gibbs energies across word pairs in the input filtered set (left) and
across word pairs in the PCRS product set (right). Despite their much larger size,
they are competitive in quality with similar codes obtained by other methods (such
as the template method (Arita et al, 2002) [1] or methods in Section 3 below.) The
ideal PCRS++products have minimum quality above −6 Kcal/mole when measured
at 20◦C.

With the code sets in hand, we can proceed to do a number of analysis that
would be impossible to perform if the results were obtained in vitro . For example,
Fig. 3 shows the quality of the sets in terms of GC-content (occurrence of 1−mers,
top left), frequency of 2−mer blocks (top right); frequency of 3−mer blocks
(bottom left); and 4−mer blocks (bottom right). On this metric again, these
codes are competitive with similar codes obtained by other methods (such as
the template method (Arita et al, 2003) [1] or methods in Section 3 below. For
example, the GC content, although not exceeding 60%, remains above 40% .
There are biases in the distribution of the blocks. Some blocks seem to occur
with comparably the same highest frequency if the oligos are long enough (for
13−mers, for example, GA, AG, AT, GG among 2−mers; GTA, GAG, GGT,
GGA among 3−mers; and GAGG, AGGT,ATGA,AGGG among 4−mers.) These
statistics lend empirical evidence for the effectiveness of the shuffle code method
to build codesets (more in Section 3.).

3 Construction of More Stringent Codesets

In many applications, the requirement that for all pairs of strands u and v, their
Gibbs energies are high enough to prohibit cross-hybridization is sufficient. In
others, additional requirements to prohibit cross-hybridization among strands in
the codesets and strands not in the codesets may be necessary to ensure not only
sensitivity but also specificity of intended hybridizations. Namely, in addition to
the requirement that Gibbs energies among all pairs in the codeset are above
a certain threshold, it is desirable to require (a) the Gibbs energies between a
strand in the codeset and the complements of other strands in the codeset and
(b) the Gibbs energies among complements of strands in the codeset are also
above a certain threshold. In other words, the goodness of strands in a codeset
depends not only on interaction among strands in the set, but also on interaction

150 M. Garzon et al.

Fig. 3. A characterization of PCRS++product sets given by frequency occurrence
of short blocks of size m = 1, 2, 3, 4: GC/AT content of words in the set(top left);
frequency of 2−mer blocks (top right); frequency of 3−mer blocks (bottom left); and
4−mer blocks (bottom right).

of strands not in the set. In each iteration of the present PCR protocol, only
interaction of strands in the set are considered. For example, complements of
strands already excluded from the current set should not possibly be considered
for selection into the current set. Under the h-distance model that approximate
Gibbs energy by assuming stiff strands (e.g. bulges cannot form), the requirement
that the h-distance h(u, v) > τ for all pairs u and v implies this additional
requirement, because h(u, v) = h(u′, v′)/leh(u, v′). Under the nearest neighbor
model with Gibbs energy, however, these two quantities are not the same because
free energy of complementary stack pairs are not symmetric (SantaLucia and
Hicks, 2004) [24].

We introduce a new method of constructing codesets that satisfy the addi-
tional criteria that require (a) the Gibbs energies among strands in the set and
complementaries of other strands in the set are high enough and (b) the Gibbs
energies among complementaries of strands in the set are also high enough. We
obtained generally larger codesets (actually, very much larger in some cases) than
those of similar quality obtained by other researchers (Tulpan et al., 2005) [26];
see Fig. 4. This method relies on the Shuffle algorithm (Phan and Garzon, 2004)
[21], that produces codesets of provably near-optimal size under the h-distance
model, where an (n, τ)-codeset S, is a set of n-mers that satisfies the condition
∀u, v ∈ S, h(u, v) ≥ τ ; for applications that requires the strands to have similar
melting temperatures, we extend this notion to an (n, τ, w)-codeset, that is an
(n, τ)-codeset with a GC-content of w. The larger the value of τ , the farther
apart the strands in S are, which means hybridization among strands in S is

In Search of Optimal Codes for DNA Computing 151

Fig. 4. The size of our codesets (mer8s, 12−mer and 15−mermers) compares favorably
to that of extant codes of similar quality in the literature. A more detailed comparison
is shown in Table 1.

less likely. To impose the additional criteria, we post-process the large codesets
by optimizing approximately certain instances of the NP-hard minimum vertex
cover problem.

3.1 Shuffle Codes

The shuffle algorithm was introduced in (Phan and Garzon, 2004) [21], as a
particular case of the tensor product operation of (Garzon et al., 2004)[12], to
construct provably near-optimal codesets under the h-distance model (Garzon
et al., 1997)[14]. This algorithm is based on the so-called shuffle function, Sh,
which is defined on l DNA strands u1, u2, · · · , ul, each of length n, as follows:

Sh(u1, · · · , ul) = u11u21 · · ·ul1u12u22 · · ·xl2 · · ·u1nu2n · · ·uln

where ui = ui1ui2 · · ·uin. In other words, Sh(u1, · · · , ul) is a string of length ln
obtained by concatenating n blocks, each of length l each obtained by concate-
nated together the first (second, third, · · ·, nth) characters of u1, · · · , ul, respec-
tively. Briefly, to construct a very large codeset, we started with an (n, 1)-codeset
(or an (n, 1, w)-codeset with w being the GC-content). Then, the base codeset is
shuffled l times to create a l (nl, l)-codeset or an (nl, l, wl)-codeset respectively.
The reason this construction works as claimed is based on the property of the
shuffle function, Sh, being amplifiable with respect to the h-distance function
(Phan, 2006)[20]. A function f : Dn ×Dn × · · ·Dn(l times) → Dnl, where Dm

is a set of strands of length n, is amplifiable with respect to a distance function
d if

152 M. Garzon et al.

d(f(u1, · · · , ul), f(v1, · · · , vl)) ≥ min
1≤i,j≤l

{l · d(ui, vj)}

It is shown, in particular, that using any amplifiable function, one can construct
very large codesets by applying the function repeatedly from one or several seed
codesets.

3.2 Construction of Stringent Codes from Shuffle Codes

We follow a similar procedure to the tensor product technique of (Garzon et al.,
2004)[12] to improve the quality of the large shuffle codes by further processing.
Strands are renoved for the sets that violate the requirements that (a) the Gibbs
energies among strands in the set and complements of other strands in the set
are high enough, and (b) the Gibbs energies among complements of strands in
the set are also high enough. This method has the advantage of narrowing down
the exponential size of the search space to a much smaller subset of all possi-
ble n-mers. As such, it is more efficient than exhaustive methods or heuristics
that examine the whole search space. More specifically, first, a shuffle code is
generated in such a way that the word-complement constraint is least violated
(i.e. h(u, v′) being too large). This is done by partitioning the base codeset into
disjoint sets and shuffle each of them individually as in (Phan and Garzon, 2004)
[21]. The resulting codesets will be merged to produce a larger codeset, which
has a minimal number of potential word-complement constraint violations. Sec-
ond, the resulting codeset is processed to eliminate all strands that violate the
word-word, word-complement and complement-complement constraint, i.e. elim-
inate all strands u ∈ S such that for some strand v ∈ S, ΔG(u, v), ΔG(u, v′) or
ΔG(u′, v′) are too large. To do that, a violation graph GS is constructed from S
in such a way that vertices represent strands and edges represent pairs of strands
that violate one of the three requirements. A vertex cover of such a graph GS

identifies the strands whose removal leaves no pair u and v violating any of the
requirements. To minimize the number of strands needed to removed, we aim to
find the minimum vertex cover of GS , which unfortunately is an NP-hard prob-
lem. As such, we resort to approximations to find a close candidate (Cormen et
al., 2001) [7].

We experimented with two ways of imposing thermodynamic requirements.
The first way is similar to our notion of a codeset, namely an edge between
two vertices in GS is defined if at least one of three requirements fails: (1)
ΔG(u, v) ≥ t1, (2) ΔG(u, v′) ≥ t2 or (3) ΔG(u′, v′) ≥ t3. The second way, pro-
posed in (Tulpan et al., 2005) [25], measures the energy gap between the intended
hybridization and cross-hybridization. Specifically, there’s an edge between ver-
tices u and v if

min{ΔG(u, v), ΔG(u, v′), ΔG(u′, v), ΔG(u′, v′)} −ΔG(u, u′) < δ

Parameters t1, t2, t3 and δ are used to produce codesets with the desired thermo-
dynamic characteristics. Free energies are computed at the standard temperature
37◦C using the PairFold package, which employs thermodynamic parameters
(Santa Lucia, 1998)[23] to predict RNA and DNA secondary structures (Zuker

In Search of Optimal Codes for DNA Computing 153

Table 1. A comparison of our codesets denoted as P1, P2, · · · , P9 to those recently
produced using other methods (Tulpan et al., 2005)[26]. The best result for each crite-
rion is bold-faced; higher free energies between different strands are better. Unreported
values are left blank. The comparison shows our codesets are of comparative quality
and generally larger (in fact in some cases, much larger). Free energies are computed
at the standard temperature 37◦C, using the PairFold package, which employs ther-
modynamic parameters (Santa Lucia, 1998) [23].

Set Length Size min ΔG(u, u′) minΔG(u, v) min ΔG(u, v′) min ΔG(u′, v′) δ

P1 8 132 -6.8 -3.3 -5.4 -3.9 -0.1
P2 8 173 -7.1 -5.3 -6.5 -5.5 0.1
P3 8 135 -6.9 -5.3 -6.3 -5.4 0.2
S4-Frutos 8 108 -8.95 -6.83 -8.24 -0.21
S4-1 8 108 1.28
S4-2 8 173 1.59

P4 12 617 -11.6 -5.9 -9.9 -5.9 -0.1
P5 12 1424 -11.8 -9.2 -11.2 -10 0.2
P6 12 628 -11.8 -9 -11 -9.8 0.6
S7 Shortreed 12 64 -12.66 -8.94 -5.06 2.87
S7-1 12 64 3.72
S7-2 12 144 3.01

P7 15 42 -15.4 -6 -14.9 -7.3 -0.1
P8 15 96 -16.3 -12.3 -15.5 -12.3 0.2
P9 15 48 -16.3 -12.3 -15.5 -12.3 0.6
S1 Braich 15 40 -16.8 -9.29 -4.4 6.25
S1-1 15 40 7.57
S1-2 15 114 6.42
S3 Faulhammer 15 20 -17.56 -7.98 -5.02 6.13
S3-1 15 20 8.59
S3-2 15 110 6.25

et al., 1999)[27]. Table 1 shows the the resulting codesets are of comparable
quality and generally larger sizes than those obtained by most other methods.

4 Conclusions and Future Work

We have obtained very large of very good noncrosshybridizing quality that are
guaranteed to perform well under reaction conditions in wet test tubes by a tour
de force, an exhaustive search that has lasted over 6 months (and yet has to bear
fruits for 20−mers). As a result, we have in hand or can produce a number of
code sets of n−mers for values of n = 4−10, 13, 16, 20. The search can be scaled
for sets of longer oligonucleotides within feasible (but long) run times up to
about 60−mers when the Gibbs energy model used begins to fail), although now
optimality will be out of range. Arguments have been given that the size of these
code sets may be in the order of magnitude of maximal sets. They provide, for
example, a good practical estimate of the capacity of a DNA memory (Garzon
et al, 2005; 2003)[16,10] based on Baum’s construction [2]. These codes support
virtually any kind of application of biomolecular computing that requires the
use of DNA molecules in a controlled way.

The method is constructive, not in the sense that it produces the actual cod-
ing wet strands as the PCR Selection protocol does in vitro (Deaton et al., 2004)
[5], but in the complementary sense that the sequence and composition of the

154 M. Garzon et al.

actual codewords is known, thereby bypassing a costly or impossible sequenc-
ing procedure. As a result, careful analyses can be made of the structure and
nature of the code and the abilities and limitations of storing information in
DNA molecules. The results of some of these analyses have been presented, for
example, the G/C-content, and a bias in the most frequent k−mer-blocks for
k = 2, 3, 4. These results suggest further analyses that could be conducted with
the products of the protocol in vitro to obtain further characterization of its
products (so far only conducted in vitro for 20−mers (Chen et al., 2005) [5].)

We also presented a refinement of our shuffle algorithm (Phan and Garzon,
2004)[21] by post-filtering to produce sets where desriable more stringent non-
crosshybridization criteria are met. The quality of the codes is competitive with
those produced by recent works on codeword and structure-free design. Our
codesets are typically larger and our method is more efficient since shuffle codes
are constructed optimally in linear time (Phan and Garzon, 2004)[21][21] and
the approximation algorithm for vertex cover in the post-filtering step is done
in linear time in the number of strands and violating pairs. This is considerably
more efficient than the other methods that employ local search and other search
heuristics.

Acknowledgements

Partial support from the National Science Foundation grant QuBiC/EIA-0130385
is gratefully acknowledged. Special thanks to Russell Deaton (Arkansas) for mak-
ing the C code for the Gibbs energy model available for the PCR simulations
in Section 2.2 used in Section 2, as well as to Anne Condon and her team for
making available the code for the Gibbs energy used in Section 3.

References

1. M. Arita and S. Kobayashi. Dna sequence design using templates. New Gen.
Comput., 20(3):263–277, 2002.

2. E. Baum. Building an associative memory vastly larger than the brain. Science,
268:583–585, 1995.

3. H. Bi, J. Chen, R. Deaton, M. Garzon, H. Rubin, and D. Wood. A pcr-based
protocol for in vitro selection of non-crosshybridizing oligonucleotides. J. of Natural
Computing, 2:4:417–426, 2003.

4. J. Chen, R. Deaton, M. Garzon, J.W. Kim, D.H. Wood, H. Bi, D. Carpenter, J.S.
Le, and Y.Z. Wang. Sequence complexity of large libraries of dna oligonucleotides.
In 11th International Conference on DNA Computing, page in press, 2005.

5. J. Chen, R. Deaton, Max Garzon, D.H. Wood, H. Bi, D. Carpenter, and Y.Z.
Wang. Characterization of non-crosshybridizing dna oligonucleotides manufactured
in vitro. Proc. 8th Int Conf on DNA Computing DNA8.

6. J. Chen, R. Deaton, Max Garzon, D.H. Wood, H. Bi, D. Carpenter, and Y.Z.
Wang. Characterization of non-crosshybridizing dna oligonucleotides manufactured
in vitro. In L. Smith G.C. Mauri, editor, 10th International Workshop on DNA
Computing, pages 50–61, 2004.

In Search of Optimal Codes for DNA Computing 155

7. T. Cormen, C. Leiserson, R. Rivest, and C. Stein. Introduction to Algorithms, 2nd
Edition. The MIT Press, 2001.

8. R. Deaton, J. Chen, H. Bi, and J. Rose. A software tool for generating non-
crosshybridizing libraries of dna oligonucleotides. pages 252–261, 2002. In: [17].

9. R.J. Deaton, J. Chen, H. Bi, M. Garzon, H.Rubin, and D.H. Wood. A pcr-based
protocol for in vitro selection of non-crosshybridizing oligonucleotides. In: (Hagiya
& Ohuchi, 2002), pages 105–114, 2002a.

10. E. Cantu-Paz et al., editor. Efficiency and Reliability of DNA-based Memories.,
2003. The Genetic and Evolutionary Programming Conference. Springer-Verlag
Lecture Notes in Computer Science 2723.

11. M. Garzon, D. Blain, K. Bobba, A. Neel, and M. West. Self-assembly of dna-like
structures in silico. In M. Garzon, editor, Biomolecular Machines and Artificial
Evolution, Special Issue of the Journal of Genetic Programming and Evolvable
Machines, pages 185–200. Kluwer Academic Publishers, 2003.

12. M. Garzon, K. Bobba, and B. Hyde. Digital information encoding on dna. In
Aspects of Molecular Computing, volume 20, pages 152–166, London, UK, 2004.
Springer-Verlag.

13. M. Garzon and R. Deaton. Codeword design and information encoding in dna
ensembles. J. of Natural Computing, 3:253–292, 2004.

14. M. Garzon, R. Deaton, P. Neathery, D. R. Franceschetti, and R. C. Murphy. A new
metric for dna computing. In Second Annual Genetic Programming Conference,
pages 472–478, 1997.

15. M. Garzon, R. Deaton, P. Neathery, R.C. Murphy, D.R. Franceschetti, and
E. Stevens Jr. On the encoding problem for dna computing. In The Third DIMACS
Workshop on DNA-based Computing, pages 230–237, 1997.

16. M. Garzon, V. Phan, K. Bobba, and R. Kontham. Sensitivity analysis of microarray
data: A new approach. In Proc. IBE Conference, Athens GA., 2005. Biotechnology
Press.

17. M. Hagiya. Dnabasedcomputers. In A. Ohuchi, editor, Proc. 8th Int. Meeting on
DNA-Based Computers, volume LNCS 2568. Springer-Verlag, 2002.

18. Garzon M, D. Blain, and A. Neel. Virtual test tubes for biomolecular computing.
J. of Natural Computing, 3:4:460–477, 2004.

19. A. Marathe, A. Condon, and R. Corn. On combinatorial DNA word design. In
Erik Winfree and David K. Gifford, editors, Proceedings 5th DIMACS Workshop
on DNA Based Computers, pages 75–89. American Mathematical Society, 1999.

20. V. Phan. A method for constructing large dna codesets. In T. Pham, H Yan,
and D.I. Crane, editors, Advanced Computational Methods for Biocomputing and
Bioimaging. Nova Science Publishers, New York, 2006.

21. V. Phan and M. Garzon. The capacity of dna for information encoding. Proc. 10th
Int Conf on DNA Computing, LNCS, 3384:281–292, 2005.

22. J. Roman. The Theory of Error-Correcting Codes. Springer-Verlag, 1995.
23. J. SantaLucia. A unified view of polymer, dumbbell, and oligonucleotide dna

nearest-neighbor thermodynamics. Proc Natl Acad Sci, 95(4):1460–1465, 1998.
24. J. SantaLucia and D. Hicks. Thermodynamics of dna structural motifs. Annu Rev

Biophys Biomol Struct., 33:415–440, 2004.
25. M.R. Shortreed, S.B Chang, D. Hong, M. Phillips, B. Campion, D.C. Tulpan,

M. Andronescu, A. Condon, H.H. Hoos, and L.M. Smith. A thermodynamic ap-
proach to designing structure-free combinatorial dna word sets. Nucleic Acids Res.,
33(15):4965–4977, 2005.

156 M. Garzon et al.

26. D. Tulpan, M. Andronescu, S.B. Chang, M.R. Shortreed, A. Condon, H.H. Hoos,
and L.M. Smith. Thermodynamically based dna strand design. Nucleic Acids
Research, 33(15):4951–4964, 2005.

27. M. Zuker, D.H. Mathews, and D.H. Turner. Algorithms and thermodynamics
for rna secondary structure prediction: A practical guide in rna biochemistry and
biotechnology. In J. Barciszewski and B.F.C. Clark, editors, NATO ASI Series.
Kluwer Academic Publishers, 1999.

DNA Sequence Design
by Dynamic Neighborhood Searches�

Suguru Kawashimo, Hirotaka Ono,
Kunihiko Sadakane, and Masafumi Yamashita

Dept. of Computer Science and Communication Engineering, Kyushu University,
6-10-1 Hakozaki, Higashi-ku, Fukuoka, Fukuoka 812-8581, Japan

kawa@tcslab.csce.kyushu-u.ac.jp, {ono, sada, mak}@csce.kyushu-u.ac.jp

Abstract. We propose a local-search based algorithm to design DNA se-
quence sets that satisfy several combinatorial constraints about hamming-
distance criteria. To deal with the constraints in the local search, we adopt
elaborate (and dynamic) neighborhood search frameworks called the Vari-
able Neighborhood Search (VNS) and the Variable Depth Search (VDS).
Although our algorithm can deal with many types of hamming distance-
based constraints and is easy to extend (e.g., also applicable for other
constraints), in computational experiments, we succeeded in generating
better sequence sets than the ones generated by exiting methods of more
specified constraints.

Keywords: DNA Sequence Design, Local Search, Combinatorial Con-
straints, Variable Neighborhood Search, Variable Depth Search.

1 Introduction

Designing DNA sequence sets is a fundamental issue in the fields of nanotech-
nology and nanocomputing, e.g., Adleman’s DNA solution for the Hamiltonian
path [1], DNA tiling with its self-assemble [16], hairpin-based state machine [7]
and so on. One point of DNA computing / technology is to control the DNA
molecules reactions; to fulfill a robust “computation”, it is important that DNA
molecules react only in expected ways, because unexpected secondary structures
of DNA sequences may cause error, for example. The sequence design is an
approach of the control, which aims to design DNA sequences satisfying some
constraints to avoid such unexpected molecular reactions. Since expected or un-
expected reactions depend on the applications or the purposes, usually several
representative constraints are considered as below mentioned. Another require-
ment for DNA sequence sets is that the sets should be large. This is because
designed DNA sequences are used as elemental components of computation; the
size of sequences is considered the size of the computational resource. In sum-
mary, our purpose is to design large sets of sequences that satisfy certain types
of constraints.
� This research partly received financial support from Scientific research fund of Min-

istry of Education, Culture, Sports, Science and Technology.

C. Mao and T. Yokomori (Eds.): DNA12, LNCS 4287, pp. 157–171, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

158 S. Kawashimo et al.

In the sequence design, many types of constraints are considered. Among
them, combinatorial constraints and thermodynamics are well studied. Most
common measures of combinatorial constraints are the Hamming Distance con-
straint (HD) and the Reverse Complement Hamming Distance constraint (RC).
Also, the overlapping measure, which is more strict than the HD and RC, is well
considered.

Based on these constraints (or measure), many researchers argue the sequence
set design. Arita et al. apply techniques from the coding theory to design se-
quence sets [3,10]. Hamming distance measure has been discussed in the coding
theory for long. In order to utilize the results, they propose the template method
that projects a set of sequences satisfying HD (from the coding theory) into a set
of sequences satisfying all the three measures based on Hamming distance. The
template method achieves a fast design of sequence sets satisfying the Hamming
distance-based constraints, though the distance parameter cannot be large. Tul-
pan et al. propose a Stochastic Local Search (SLS) method for the sequence sets
design [13,14,15]. In [13,14], they treat the HD and RC constraint and another
constraint called the GC-content constraint. Also, they treat thermodynamical
constraints in [15]. Their method can be easily adapted to other constraints, since
the local-search framework has a good flexibility. Other than these, many meth-
ods are proposed: a random generation and a genetic algorithm (Arita et al. [2]),
lexicographic techniques and stochastic searches (Gaborit et al. [5]), traditional
greedy methods (Asahiro [4]), a random generation with a local improvement
(Kashiwamura et al. [8]), and so on.

In this paper, we focus on the combinatorial properties of sequence sets de-
sign problems. More concretely, we consider the problem from the view point
of the combinatorial optimization, and propose a local-search based algorithm.
The local-search framework is known to be useful to solve hard combinatorial
optimization problems in practical sense. We adopt in our local search algorithm,
the techniques called the Iterated Local Search (ILS), the Variable Neighborhood
Search (VNS) and the Variable Depth Search (VDS) [17]. In local search, it is
considered that controlling the range of searches well is important to achieve
a good performance, and the idea is represented by intensification and diver-
sification. Both of VNS and VDS dynamically control neighborhoods in our
local search for this purpose. In passing, the VDS method is an abstraction
of the Lin-Kernighan methods for TSP and the Ejection-Chain methods for
GAP [6,9,11,18]).

In the design of our local search-based algorithm, we adopt these elaborate
neighborhood search strategies, but the neighborhood definition itself is very
simple; this realizes the flexibility of our algorithm, i.e., our algorithm is easy to
apply other kinds of constraints. In spite of these, some preliminary computa-
tional experiments show that our method finds better sequence sets than ones by
some existing methods. This implies that our approach is promising in designing
favorable sequence sets.

DNA Sequence Design by Dynamic Neighborhood Searches 159

2 Preliminaries

2.1 Constraints Using Hamming-Distance

Let S be the sequence set. In previous works, “hybridization” refers to “caus-
ing completely hydrogen-bonds between a sequence in S and its complement
sequence”, and “miss-hybridization” refers to “conformation changes which are
not hybridization”. We follow this manner in this paper. The constraints intro-
duced in this section are proposed in order to avoid miss-hybridization.

Let s, s′, s′′ be DNA sequences of length n, then s, s′, s′′ ∈ {A, T, G, C}n. Se-
quences are represented as s = s1s2 · · · sn, s′ = s′1s

′
2 · · · s′n, and s′′ = s′′1s′′2 · · · s′′n.

In these representations, the left end of a sequence corresponds to 5′ end of a
DNA sequence. Let s[i, j] = sisi+1 · · · sj−1sj for i ≤ j. Concatenation of se-
quences s′ and s′′ is defined by s′s′′ = s′1s

′
2 · · · s′ns′′1 · · · s′′n. In addition, wcc(s)

denotes the Watson-Crick complement of DNA sequence s, here, wcc(s) is the
sequence which reverse s and replaced each A in s by T and vice versa, replaced
each G in s by C and vice versa. Hamming-distance between s and s′ is repre-
sented as H(s, s′) which denotes the summation of bases such as si 	= s′i. Let
wcc(S) = {wcc(s)|s ∈ S}.

Given a distance parameter d, we define the following constraints based on
the Hamming distance measure:

Hamming Distance constraint(HD): for all pairs of distinct sequence
s, s′ in S, HD(s, s′) ≥ d. That is, HD(S) def= mins,s′∈S,s�=s′{H(s, s′)} ≥ d.

Reverse Complement Hamming Distance constraint(RC): for
all pairs of sequence s in S and s′ in wcc(S), H(s, s′) ≥ d. That is,
RC(S) def= mins∈S,s′∈wcc(S){H(s, s′)} ≥ d.

Overlapped Hamming Distance constraint(OL): for all combina-
tions of sequence s in S, s′, s′′ in S ∪ wcc(S) (to attend that they are
not distinct) and for ∀i, H(s, s′s′′[i, i + n − 1]) ≥ d. That is, OL(S) def=
mins∈S,s′,s′′∈S∪wcc(S),1<i≤n {H(s, s′s′′[i, i + n− 1])} ≥ d.

To avoid miss-hybridization, we consider to find S satisfying HD(S) ≥ d,
RC(S) ≥ d and OL(S) ≥ d for large d. The OL constraint is more effective to
avoid miss-hybridization than the HD and RC constraints. In other words, the
OL constraint is more strict than the other two.

In this paper, HD + RC and HD + RC + OL are adopted for constraints.
Thus we design sets which satisfy min hd(S) ≥ d, where min hd(S) def= min
{HD(S), RC(S)} or min hd(S) def= min {HD(S), RC(S), OL(S)}.

2.2 Local-Search

The local-search is known to be useful for solving hard combinatorial optimiza-
tion problems in practical sense.

160 S. Kawashimo et al.

In general, combinatorial optimization problems are defined as follows: mini-
mize (or maximize) f(x) for the solution x and the objective function f . Let N(x)
denote the neighborhood of x (i.e., a set of solutions which are obtained by a slight
perturbation to x). Operations which perturb certain solution x are called the
neighborhood operations. When x satisfies f(x) < f(x′) (or f(x) > f(x′)) for
∀x′ ∈ N(x), x is called the local optima. In general, solution spaces have a lot of
local optima.

The local-search starts from a certain solution x and repeatedly moves to
another solution x′ in N(x) where f(x′) < f(x) (or f(x) > f(x′)) until a better
solution can not be found; then it eventually obtains a local optimal solution.
Thus, a standard strategy of local-search is as follows:

(1) Select an initial solution x.
(2) Search in N(x).
(3) If an improved solution x′ in (2) is found, the solution x is replaced by x′,

and go to (2). Otherwise, current x is local optima, then return x.

Fig. 1. Idea of local-search

The local-search frameworks have a trade-off between its accuracy and its
running time. For example, larger neighborhood is searched, more accurate so-
lution is found in general. However, to search in larger neighborhood requires
more computational time. Therefore it is important to adopt neighborhoods
which have appropriate size and structure. Another point is how we search. A
traditional strategy of searches is the first admissible move strategy which moves
immediately when a improved solution is found.

In addition, experiences show that “good solutions tend to have similar solu-
tion structures” in combinatorial optimization problems. Thus, it is considered
effective to search solutions which are similar in structures to good ones, which
is called the intensification of local-search frameworks. In contrast, superfluous
intensification induces waste searches, for example, this leads to search the same
solution repeatedly, to search repeatedly in spite that there exists no better so-
lutions in the area where is searched intensively. Therefore, it is necessary to
search solutions which have different solution structures, which is called the di-
versification of local-search frameworks. Thus, to balance conflicting ideas (the
intensification and the diversification) is important. Figure 2 shows these ideas.

DNA Sequence Design by Dynamic Neighborhood Searches 161

Fig. 2. Ideas of the intensification and the diversification

In summary, in order to design good local-search algorithms, it is necessary
to carefully choose neighborhood operations which define appropriate size of
neighborhoods, to consideration to adequate control of search strategies.

Based on these ideas, improved local-search frameworks are proposed. These
are combinable and can be improved for specific problems, which shows the
flexibility of local-search frameworks. We describe three ideas of improving local-
search frameworks, used in this paper.

We first explain an Iterated Local Search (ILS) method. We consider the case
of reaching a not-good local optimal solution during the search; it is not possible
to move from local optima by the ordinary neighborhood operations. For such
a case, we consider to perform a stronger perturbation to the local optima than
one of ordinary neighborhood operations. Instead of that, we permit a corrup-
tion. As above, we move from the local optima, and search continuously. This
operation is called the iterated local search (ILS) method. This method realizes
the diversification of local-search frameworks. When an ILS method is adopted,
searches can not finish, then it is necessary to define the condition of finish (e.g.,
time-limit, strict step number, and so on).

Secondly, we explain the Variable Neighborhood Search (VNS) method. Local-
search frameworks use the determine neighborhood in general. However, to ex-
change neighborhoods depending on situations can lead effective search, since
local-search frameworks have accuracy/time trade-off. Thus the method which
exchanges neighborhoods depending on situations is called the Variable Neigh-
borhood Search (VNS) method. This method realizes the intensification of local-
search frameworks. One of the issue on a VNS method, it is necessary to define
the rule how to exchange neighborhoods.

Finally, we explain a Variable Depth Search (VDS) method [6,9,11,17,18]. This
is the method which defines neighborhoods as a set of solutions obtained by the
chain of simple neighborhood operations. The chains of neighborhood operations
are represented as a tree, and it is called the search tree (See Fig.3 and Fig.4).

162 S. Kawashimo et al.

Fig. 3. Search tree in ordinary local search Fig. 4. Search tree in a VDS method

In the search tree, the root corresponds to the current solution, the nodes
correspond to the solutions, children of a certain node correspond to the so-
lution obtained from the node by single neighborhood operation. A feature of
the VDS method is that we can search the solutions which are not obtained by
the single neighborhood operation. The single neighborhood operation does not
move unimproved solutions, then it can not obtain improved one obtained by the
move from unimproved solutions. However, the VDS method can find out these.
In the case of the VDS method, structures of the search tree grow explosively
without restricting it, then to restrict search tree is necessary. As a result, the
depth of a search tree varies adaptively. The VDS method enables to balance
the intensification and the diversification.

3 Sequence Design Based on Local-Search

In this section, we propose a local-search based algorithm for sequence sets design
problems. Let the sequence set be S, the size of S be m, the length of sequences
be n, the number of constraints be d.

For sequence sets, the maximum size of these depends on constraints. There
are two optimization approaches for sequence design as follows:

approach(1) For fixed m and n, design S which has maximized d.
approach(2) For fixed d and n, design S which has maximized m.

In early studies of these problems, since there are not sufficient experiences,
we could not know appropriate evaluations of d and m; they took approach(1).
However, since we know evaluations of d and m in recent [4,5,8,13,14], it is possi-
ble to take approach (2) also. In this paper, we mainly consider the approach(2)
by using approach (1) as a subprocedure.

More concretely, we take the following approach:

step 1. Find a set S that approximately maximizes min hd(S) for fixed m and
n (this part is smiler to approach(1)).

step 2. Increase m. Go back to step 1.

The outline of step 1, the main part of our method, is as follows: Apply a VNS
method to find a local optima. Once it is found, escape from the local optima,

DNA Sequence Design by Dynamic Neighborhood Searches 163

and then search by the VNS method again. We use two varieties of escapes, one
is the VDS, a small escape, and the other is the iterated local search (ILS), a big
escape. The VNS part is oriented to the intensification, and the VDS part and
the ILS part are oriented to the diversification. We describe the detailed ideas
in section 3.2 and section 3.3.

In step 2, it is important to carefully choose a new sequence to be added.
For this purpose, we adopt the idea introduced in [8], which will be explained in
section 3.4.

3.1 Basic Properties of the Problem

Before explaining these details, we first give basic materials, such as the definition
of neighborhood, which define our local search algorithm, in section 3.1.

First, we discuss the objective function of the problem. We then define the
neighborhoods of the local search, and consider move strategies by focusing on
the combinatorial aspects.

min count(S): Evaluating Function of the Local Search. This problem
has the objective function min hd(S). Although it is common to use the objective
function for evaluation of the local search, adopting min hd(S) as the evaluating
function is not suitable in this problem; the value of min hd(S) hardly varies
in reasonable neighborhood definitions (e.g., the neighborhood defined in the
next subsection). This implies that another measure is needed for neighborhood
search.

Fig. 5. Ideas of min count(S), and min related

dots : sequences used in min hd(S)
radii of the circles : d
distance between two dots : hamming-distance between sequences
minimum distance between two dots : min hd(S)
If a dot exists in the circle regions of other dots, min hd(S) ≥ d is not satisfied.

See Figure 5, which shows an image of the solution space and the solu-
tion structures in the problem. In this figure, dots represent sequences used
in min hd(S). (For example, in the case of HD + RC, ∀s ∈ S∪wcc(S) are dots.)
Intuitively, a neighborhood operation corresponds to a slight move of dots. The
figure of left-side has the same min hd(S) as the right-side. However, the left-side

164 S. Kawashimo et al.

has more pairs of dots whose distances are min hd(S) than the right-side. There-
fore the left-side may need more neighborhood operations than the right-side in
order to improve min hd(S).

Here, we define min count(S) as the number of pairs of sequences whose
distance are min hd(S). By using this, we evaluate the solution in the follow-
ing way: For two sequence sets S and S′, if min hd(S) > min hd(S′) (resp.,
min hd(S) < min hd(S′)), min hd(S) (resp., min hd(S′)) is the better solu-
tion. For S and S′ of min hd(S) = min hd(S′), the set having the smaller
min count value is the better solution.

Definition of Neighborhoods. We define neighborhoods in the local search.
Naturally, two candidates of neighborhoods are considered:

Ni(S) ={S′ | sequence sets obtained by changing i character(s)
of a sequence belonging to S} ∪Ni−1(S),

N ′
i(S) ={S′ | sequence sets obtained by changing i character(s)

in (some) sequence(s) belonging to S} ∪N ′
i−1(S),

where i = 1, 2, For convenience, we define N0(S) = φ, N ′
0(S) = φ. It should

be noted that Ni(S) ⊆ N ′
i(S) for any i.

We performed a preliminary computational experiment to find out which
neighborhood is better. In this experiment, we improve min hd(S) with fixed
m and n. Taking into account of section 3.4, we break off the search when
min hd(S) becomes greater or equal to d. We use constants n = 10, m = 15,
d = 4. We performed 50 trials. The experimental environment is as follows: CPU
- Pentium4 2.0GHz, MEM - 256MB, OS - VineLinux3.1, compiler - gcc3.3.2. We
call success if a solution which satisfies min hd(S) ≥ d is found. Table 1 shows
the experimental results.

Table 1. Results of comparing neighborhoods

N2(S) N3(S) N2(S)′ N3(S)′

trial number of success 24 47 27 48
average CPU time of success trials(sec) 52.50 117.47 169.56 181.50
average CPU time of false trials(sec) 138.23 832.00 291.08 1088.00
average CPU time of all trials(sec) 97.08 160.34 230.82 217.42

The results show that N ′
i(S) are slightly better than Ni(S) in the number

of improvement, while Ni(S) is much more preferable to N ′
i(S) in the running

time. By these, we use Ni(S) as the neighborhoods in the search.

Efficient Neighborhood Search. Here, we consider the effective order of
checking sequences of S in our neighborhood searches. See the left-side of Fig.5
again. The contributions of dots for min hd(S) vary. To clarify the variation,
we define min related as a counter for each sequence in S; the counter denotes

DNA Sequence Design by Dynamic Neighborhood Searches 165

the number of the contributions of the sequence for min hd(S). Let us show
examples. For S = {s1, s2, s3}, in the case of H(s1, wcc(s2)) = min hd(S), both
s1 and s2 are contributing to min hd, so min relateds of s1 and s2 are at least
1. In the case of H(s2, s2wcc(s3)[3, n + 2]) = min hd(S), min related of s2 is at
least 2 and the one of s3 is at least 1.

If a sequence has large min related, the sequence may be located in a wrong
position. Therefore we change characters of sequences in descending order of
min related in the search. By the definition, changing character(s) of a sequence
with min related = 0 is useless. We do not perform the neighborhood search for
such sequences.

Another issue of efficient neighborhood searches is the relationship between a
neighborhood search and its succeeding neighborhood search. The naive evalu-
ation needs to calculate for all pairs of sequences. However, comparing the set
after the neighborhood operation with before, only one sequence is changed, then
some pairs are not changed. Therefore, we can skip re-calculation of pairs not
changed, which makes the evaluation more efficient.

3.2 Iteration of VNS

In this section, we describe the iterated VNS part of our algorithm. We first
explain VNS of our sequence design problem and how to control the size of
neighborhood searches. We then explain the “iteration part” of our VNS, that
is, the big perturbation to escape from local optima.

Algorithm Based on VNS. The idea of a VNS method is to dynamically
change the range of neighboorhood. Our basic strategy is to enlarge the neigh-
boorhood, N1(S), N2(S) and so on, in this order.

Here, the point is how we control the enlargement. In some cases, we hardly
expect finding an improved solution in the Ni(S) that we currently search. One
easy case is that the size of Ni(S) is too small. Let mR(S) denote the number of
sequences whose min related 	= 0 in S, that is the size of searchable neighbor-
hood, since changing characters of the sequences with min related = 0 is not
performed in our neighborhood search as mentioned in the previous section. If
mR(S) is too small, there is very little possibility of getting an improved solution
in Ni(S) with small i. For such S, we should search Ni(S) with larger i in order
to improve the solution. On the contrary, if mR(S) is large enough, there are
many chances of improvements even in the search of Ni(S) with small i; Ni(S)
with large i is not necessarily searched.

We decide the control by considering the relationship between mR(S) and the
size of the searchable neighborhood. Let fi(S) denote the size of the searchable
neighborhood in Ni(S) \Ni−1(S). Then,

fi(S) = mR(S)
(

n
i

)
3i.

If the searchable neighborhood of Ni(S) is large enough, we search it, other-
wise we do not. We quantify fi(S) by comparing with N1(S) = m

(
n
1

)
3 = 3mn.

166 S. Kawashimo et al.

Let Pi be a parameter of the comparison, and let MAX N be the maximum
number of i. If fi(S) ≤ 3mn · Pi and i ≤MAX N , we search Ni(S), otherwise,
we do not. That is, we enlarge the search of Ni(S) by

max
{

i
∣∣∣ mR(S)

(
n

i

)
3i−1 ≤ mn · Pi and i ≤MAX NUM

}
.

Iteration Method. We achieve a perturbation as the “iterated” part of our
search as follows:

(1) Delete a sequence in S and let the resulting set be S′.
(2) Add a sequence to S′.

In (1), we consider to delete a sequence that has negative effects on S, i.e.,
having large (actually, the largest) min related. This is because such a sequence
is critical for min hd in a sense and by eliminating it we can expect an improve-
ment of the solution structure.

In (2), we consider to add a sequence that is farthest from all the sequences
in the set. Here, “farthest” means a sequence that maximizes the distance from
a nearest sequence in S. Such a farthest sequence is considered to have the least
negative effect on the set (See Fig.6). However, since it may be time-consuming
to compute such a farthest sequence, we use approximately farthest sequence
instead. We find such a sequence in a greedy manner.

Here we use U as the set of sequences that appear explicitly or implicitly in S′.
For example, in the case of HD + RC, U = S′ ∪wcc(S′), and in the case of HD
+ RC + OL, U = S′ ∪ wcc(S′) ∪W , where W = {w|w = ss′[i, i + n− 1], s, s′ ∈
S′ ∪ wcc(S′), 1 < i ≤ n}. Let v be a sequence that approximates a “farthest”
sequence from S′. Note that v and wcc(v) approximately maximize the minimum
distance between all sequences in U , and approximately minimize the number
of pairs which have minimum distance.

We compute v in the following way: For all i = 1, . . . , n, initialize vi = ∗.
Randomly choose vi of vi = ∗. We then replace vi as one of {A,T,G,C} according
to the following rule: the resulting v maximizes the minimum distance from all
sequences in U , and minimizes the number of sequences whose distance from
the resulting v is minimum. (∗ is a wild card character and is considered any
alphabet in {A,T,G,C}). Continue the procedure until all vi 	= ∗.

Our iterated VNS method is summarized as follows:

(1) Apply VNS for a initial solution S0, and find a local optimal solution S.
(2) Delete a sequence whose min related is the largest in S, and let the resulting

set be S′.
(3) Find a sequence that approximates a farthest sequence from S′.
(4) Set new S0 by adding the sequence obtained by (3) to S′, and go to (1).

In this search, we expect that the intensification and the diversification are
fulfilled by VNS and the iteration part, respectively.

DNA Sequence Design by Dynamic Neighborhood Searches 167

Fig. 6. Idea of farthest

3.3 Control of Iteration by VDS

We described the iterated VNS method in above. As I mentioned before, the
intensification and the diversification are not always balanced in this method,
then we adopt the idea of a VDS method in this operation for the balance of
conflicting ideas.

A Variable Depth Search (VDS) method [6,9,11,17,18] is which defines neigh-
borhoods as a set of solutions which obtained by a chain of simple neighborhood
operations. The chains of neighborhood operations are represented as a search
tree, then to define the structure of the search tree is necessary. In this paper,
the nodes corresponds to the local optima obtained by the VNS method, the
edges correspond to the iterations in section 3.2.

Since the search tree can be very large, we usually restrict its size by the
degree of the tree and the depth of the tree, where we set these by parameters
MAX W IDTH and MAX DEPTH , respectively (Fig.7).

On the search tree, VDS virtually traverses the nodes in the depth first man-
ner. If an improving solution from the root solution is found, we set the improving
solution as the new root immediately, and move on the search on the new search
tree. Otherwise, we continue the search on the current search tree. If a node
whose solution is as good as the current root is found, we expand the search tree
by making the same tree from the node recursively. To avoid the explosion of
the search tree, we do at most REC NUM recursions from one root.

Fig. 7. Search tree of our approach

168 S. Kawashimo et al.

If we reach a node whose solution is rather worse than the current root, break
off descending the tree. Figure 7 shows the threshold of breaking off.

As mentioned, we intend the intensification (with small diversification) by this
VDS part. In spite of that, we sometimes fail to obtain better solutions than the
iterated VNS method, after the VDS search. In such a case, there may be little
possibility of existing improved solution around the local optima, which implies
that it is better to search more different structures of search spaces. Hence, we
add stronger perturbations than ones of the iterated VNS method as follows:

(1) Determine JOIN NUM .
(2) Design S′ satisfying |S′| = JOIN NUM and min hd(S′) ≥ d.
(3) Delete JOIN NUM sequences in descending order of min related from S.
(4) Add S′ to S.

3.4 Extension of S

In this section, we explain how to increase m in step 2 of the beginning of Section 3.
The idea is introduced in [8]: When the sequences (dots in the figure) are densely
located, we can easily add a new sequence satisfying constraints (See Fig.8).

Fig. 8. Situation of increasing sequence
In all the figure, three dots are located but their balances are different. Since the left
one does not satisfy the constraints, it may not be suitable to add a new sequence.
The other two satisfy the constraints, but the center one is densely located than the
right one. Intuitively, the center one is more adequate to put a new sequence than the
right one, because the former has more free spaces.

However, the dots are densely located means that min hd(S) is small and
min count(S) is large. On the other hand, in our search method presented in
the previous subsections, an improvement means increasing min hd(S) or re-
ducing min count(S); that is, as the search goes, the solution may get sparser.
Therefore, the timing of the addition of a new sequence to S should be immediate
after the sequence set satisfying min hd(S) ≥ d is found.

How to choose a sequence to be added is also an important factor. Here, we
again adopt (approximately) farthest to S (in Section 3.2) to be added.

DNA Sequence Design by Dynamic Neighborhood Searches 169

4 Computational Experiments

We implemented our algorithm, and performed computational experiments. The
experimental environment is as follows: CPU - Pentium4 2.8GHz, MEM - 512MB,
OS - Fedora, compiler - gcc3.3.2.

4.1 In the Case of HD + RC

The setting of the parameters is as follows: MAX N = 3, P2 = 1, P3 = 1,
MAX DEPTH = 3, MAX W IDTH = 5, REC NUM = 1, CUT NUM =
10, JOIN NUM = m/3, and the initial set size is 1. Under this setting, we ran
the algorithm with time-limit 10 minutes.

We compare our results with the traditional greedy methods [4] and the SLS
method [13]1.

Table 2 shows the largest size of the sets obtained by our method when we
performed five trials. The horizontal scale and the vertical scale represent the
number of constraints and the length of sequences, respectively.

The results in bold faces means that we succeeded in finding larger sets than
the existing works. The underlined results means that the same size as the exist-
ing works are found. The results with “!” means that they are missing in [4,13].
The results with “∗” means that the results reach the upper bounds obtained
in [12], i.e., optimal.

Table 2. Results of HD + RC

n \ d 2 3 4 5 6 7 8 9 10 11 12
4 32∗ 6 2∗ - - - - - - - -
5 116 32 4 2 - - - - - - -
6 407 60 28 4 2∗ - - - - - -
7 1268 186 42 12 2 2 - - - - -
8 2843 580 124 30 16 2 2∗ - - - -
9 2887! 1559 346 78 22 8 2 2 - - -
10 2786! 2702 965 201 54 17 8∗ 2 2 - -
11 2677! 2054 1796 545 129 39 14 6 2 2 -
12 2734! 2609! 2592 1164 309 84 29 12 4 2 2

In the case of around n − 3 ≤ d ≤ n, our approach has the same size as the
existing works. Most of the cases, they are shown to be optimal [12].

In the case when the number of constraints is smaller than above (around
n − 5 ≤ d ≤ n − 3), we can obtain lager sizes than the existing works. This
results show the effectiveness of our approach.

In the case when the number of constraints is much smaller (around 1 ≤ d ≤
n − 5), our method fail to obtain better sequence sets than the existing works.

1 Although SLS method [13] is extended to [14], [14] do not treat HD + RC, so we
compare our result with the ones of [13].

170 S. Kawashimo et al.

However, in the case of around d = n−6, the sizes of our results are just slightly
smaller than the existing works. If we take the time-limit longer, there may be
possibilities which our method can obtain better results.

4.2 In the Case of HD + RC + OL

The setting of the parameters is as follows: MAX N = 3, P2 = 3, P3 = 6,
MAX DEPTH = 3, MAX W IDTH = 5, CUT NUM = 10, REC NUM =
∞, JOIN NUM = 10, and the initial size of sequence set is 1. Under this
setting, we ran the algorithm with time-limit 24 hours for n = 10 and d = 4,
and with time-limit 72 hours for n = 15 and d = 6.

We compare with the AG-template method [3] whose constraints are HD +
RC + OL.

In the case of n = 10 and d = 4, we succeeded in finding the sequence set whose
size is 39 in five trials. In the case of n = 15 and d = 6, we succeeded in finding
the sequence set whose size is 80 in five trials. In the both cases, the results are
better than ones obtained by AG-Template method [3] (n = 10, d = 4, m = 36
and n = 15, d = 6, m = 70).

AG-Template method cannot generate sets for large d, though our method
can do. Furthermore, since our method is effective for strict constraints, our
method has a good potential to generate good sets for large d.

These results may show that our approach has a good potential for the problem,
although the experiments are not sufficient and there are many parts to be refined.

5 Conclusion

In this paper, we propose a local-search based algorithm of sequence sets design
from the viewpoint of combinatorial optimizations. Taking into consideration
the combinational properties of the problem, we proposed a dynamic neighbor-
hood search strategy by combining VNS, ILS and VDS method based on natural
neighborhood operations. In the computational experiments, we succeed in de-
signing better sequence sets than the existing works in some cases.

As future works, we will consider to adjust our method to other constraints
such as the GC-content constraint, and thermodynamical criteria.

References

1. L.Adleman, “Molecular Computation of Solutions to Combinatorial problems”,
Science 226, pp.1021–1024, 1994.

2. M.Arita, A.Nishikawa, M.Hagiya, K.Komiya, H.Gouzu,and K.Sakamoto, “Improv-
ing Sequence Design for DNA Computing”, Proc. 5th Genetic and Evolutionary
Computation Conference (GECCO-00), pp.875–882, 2000.

3. M.Arita, and S.Kobayashi, “DNA Sequence Design Using Templates”, New Gen-
eration Computing, Vol.20(3), pp.263–273, 2002.

4. Y.Asahiro, “Simple Greedy Methods for DNA Word Design”, Proc. 9th World
Multi-Conference on Systemics, Cybernetics and Informatics, Vol.III, pp.186–191,
2005.

DNA Sequence Design by Dynamic Neighborhood Searches 171

5. P.Gaborit, and O.D. King, “Linear Constructions for DNA Codes”, Theoretical
Computer Science, vol.334, no.1–3, pp.99–113, 2005.

6. F.Glover, “Ejection Chains, Reference Structures and Alternating Path Methods
for Traveling Salesman Problem”, Discrete Applied Mathematics, vol.65, pp.223–
253, 1996.

7. A.Kameda, M.Yamamoto, H.Uejima, M.Hagiya, K.Sakamoto, and A.Ohuchi,
“Hairpin-based State Machine and Conformational Addressing: Design and Ex-
periment”, Natural Computing, Vol.4, No.2, pp.103–126, 2005.

8. S.Kashiwamura, A.Kameda, M,Yamamoto, and A.Ouchi, “Two-Step Search for
DNA Sequence Design”, Proc. the 2003 International Technical Conference on
Circuits/Systems, Computers and Communications (ITC-CSCC 2003), pp.1889–
1892, 2003.

9. B.Kernighan, and S.Lin, “An Effective Heuristic Procedure for Partitioning
Graphs”, Bell System Technical J., Vol.49, pp.291–307, 1970.

10. S.Kobayashi, T.Kondo, and M.Arita, “On Template Method for DNA Sequence
Design”, Proc. 8th DNA Based Computers, LNCS(2568) pp.205–214, 2002.

11. S.Lin, and B.Kernighan, “An Effective Heuristic Algorithm for the Traveling Sales-
man Problem”, Operation Research, Vol.21, pp.498–516, 1973.

12. A.Marathe, A.Condon, and R.Corn, “On Combinatorial DNA Word Design”, Jour-
nal of Computational Biology, Vol.8(3), pp.201–220, 2001.

13. D.Tulpan, H.Hoos, and A.Condon, “Stochastic Local Search Algorithms for DNA
Word Design”, Proc. 8th DNA Based Computers, LNCS(2568), pp.229–241, 2002.

14. D.Tulpan, and H.Hoos, “Hybrid Randomized Neighborhoods Improve Stochastic
Local Search for DNA Code Design”, Proc. Advances in Artificial Intelligence,
16th Conference of the Canadian Society for Computational Studies of Intelligence,
LNCS(2671), pp.418–433, 2003.

15. D.Tulpan, M.Andronescu, S.Chang, M.Shortreed, A.Condon, H.Hoos, and
L.Smith, “Thermodynamically based DNA strand design”, Nucleic Acids Res,
33(15), pp.4951–4964, 2005.

16. E.Winfree, F.Liu, L.Wenzler, and N.Seeman, “Design and Self-assembly of DNA
Crystals”, Nature 394, pp539–544, 1998.

17. M.Yagiura, T.Yamaguchi, and T.Ibaraki, “A Variable Depth Search Algorithm for
the Generalized Assignment Problem”, Meta-Heuristics: Advances and trends in
Local Search Paradigms for Optimization, pp.459–471, 1999.

18. M.Yagiura, T.Ibaraki, and F.Glover, “An Ejection Chains Approach for the Gen-
eralized Assignment Problem”, INFORMS Journal on Computing, Vol. 16, No. 2,
pp. 133–151, 2004.

Sequence Design for Stable DNA Tiles

Naoki Iimura1, Masahito Yamamoto2, Fumiaki Tanaka1, Atsushi Kameda3,
and Azuma Ohuchi2

1 Graduate School of Information Science and Technology, Hokkaido University
North 14, West 9, Kita-ku, Sapporo, Hokkaido 060-0814, Japan

{i~mu, fumi95}@complex.eng.hokudai.ac.jp
2 CREST, Japan Science and Technology Agency (JST) and

Graduate School of Information Science and Technology, Hokkaido University
North 14, West 9, Kita-ku, Sapporo, Hokkaido 060-0814, Japan

{masahito, ohuchi}@complex.eng.hokudai.ac.jp
3 Suyama Lab.Department of Life Sciences, The University of Tokyo

3-8-1, Komaba, Meguro-ku, Tokyo 153-8902, Japan
kameda@genta.c.u-tokyo.ac.jp

http://harmo.complex.eng.hokudai.ac.jp/

Abstract. DNA tile nanostructures have lately attracted a lot of at-
tention as a new calculation technique and material on the nanometer
scale. In forming DNA tiles, sequences need to bond in tile conformation.
Conventional work can design sequences using overlapping subsequence.
In this paper, we design tile sequences based on free energy. As a result
of optimization, we show that we can design tile sequences as stable as
conventional tiles. Moreover, we illustrate that the tile designed by the
proposed method is perhaps more stable than conventional one. This
method will be useful to design many tiles when forming large scale and
complex DNA nanostructures.

1 Introduction

In recent years, the construction of molecular-scale structures has attracted at-
tention in material engineering, medicine, and other fields. DNA tiles, which use
DNA’s nature that bonds by self-assembly, are studied as a parallel calculation
technique and a nanostructure expected to apply nanodevices and nanocircuits
[1][2][3]. Yan et al. visualized 4×4 DNA tiles, which array protein and produce
silver nanowires, by atomic force microscope (AFM) [4]. In forming a tile, se-
quences need to bond (hybridize) accurately in tile conformation. Furthermore,
the hybridization needs to be stable to prevent the tile from collapsing.

Conventional work SEQUIN can design tile sequences using overlapping sub-
sequences (critons) and complementary sequences [5]. In designing DNA tile by
SEQUIN, every critons in an individual single strand DNA molecule is proxi-
mate to be unique. However, it is possible that non-complementary subsequences
(unique subsequence) mis-hybridize when many sequences exist in liquid solu-
tion, and ease of hybridization differs with the secondary structure of each se-
quence. Therefore, it is safe to say that SEQUIN can design tile sequences based

C. Mao and T. Yokomori (Eds.): DNA12, LNCS 4287, pp. 172–181, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Sequence Design for Stable DNA Tiles 173

on an approximate estimate of bond strength, not the secondary structure. We
must consider the secondary structure in forming tiles because it affects hy-
bridization between sequences. Sequence design regarding these points seems to
form a stable and large scale DNA nanostructure. In DNA computing, sequence
design based on the free energy is emphasized to form wanted structure and to
design stable hybridization [6]. Free energy can evaluate a bond strength pre-
cisely because it considers kinds of base pair, loop structure and hairpin structure
based on a thermodynamic nearest-neighbor parameters.

We previously proposed structural stability evaluation criteria for DNA tile
and applied this method to 4×4 DNA tiles [7]. In this paper, we propose eval-
uation criteria based on the free energy and optimize tile sequences using the
weighted sum of the ones as a measure of structural stability. Our sequence
design considers the following points. First, single strand DNA does not have
secondary structure. Second, needless hybridization must be avoided. Third, nec-
essary hybridization must be tight. Furthermore, we show that we can design
tile sequences as stable as or even more stable than conventional ones.

2 Design Method

2.1 Procedure

We propose stability evaluation criteria and define the weighed sum of the ones
as a measure of tile stability. Our aim is to design tiles which maximize the
evaluation value, that is, optimizing tile sequences to be stable. Although we
can optimize tile sequences by any optimization method and need examine the
most suited method, we employ the simplest hill-climbing algorithm as the op-
timization method in this paper.

First, we generate a tile so that each single strand DNA molecule has a certain
GC rate (the ratio of G and C), and then this tile is set to a candidate tile. Second,
the candidate tile is evaluated by evaluation criteria illustrated in the next section.
In the optimization process, we change the candidate tile slightly by selecting a
base pair in the tile randomly and flipping the bases of the selected base pair in
order not to bias the GC rate : A and T flip and G and C flip. The changed tile is
evaluated, and if the evaluation value of this tile is more than the previous candi-
date tile, this tile becomes a new candidate tile. If not, this changed tile is broken
off. We select a base pair again and reexecute a similar operation. The above op-
eration is repeated until the terminal conditions fulfilled, such as a predetermined
number or a convergence of improvement (Fig. 1).

Although this method can be applied to any kind of tile, in this paper we
explain the example of a 4 × 4 DNA tile, which consists of nine single strand
DNA molecules, that is, one Core that has bulged T4 loops at each of the four
corners, four Shells, and four Arms (Fig. 2) [4][8].

174 N. Iimura et al.

procedure Tile Sequence Design
generate initial tile(x)
evaluate(x)
while terminal condition

generate x’ by flip two bases in x
evaluate(x’)

if evaluate(x’) is more stable
than evaluate(x) then

x = x’
end if

end while
return x

end Tile Sequence Design

Fig. 1. Procedure of Sequence Design Fig. 2. 4×4 DNA tile

2.2 Stability Evaluation

We propose a stability evaluation method. For more precise evaluations, this
method uses the free energy for a single molecule [9][10] and pairs of molecules
[11]. Free energy (ΔG) is well used as a measure of bond (hybridization) strength.
For example, hybridization strength increases as the number of base pairs, espe-
cially GC pairs, increases. And ΔG decreases as the secondary structure or the
hybridization strength is tightened. We use the minimum free energy (ΔGmin)
of any secondary structure for one molecule or hybridization for two molecules.

Our evaluation method considers the following evaluation items, and the eval-
uation value is the sum of each weighted evaluation criterion by evaluation item.
Each evaluation item rises as criterion value increases.

Item 1(I1). ΣΔGmin of each single strand DNA molecule
Hybridization between single strand DNA molecules may be obstructed by
the secondary structure. This criterion evaluates whether a single strand
DNA molecule has secondary structure.

Item 2(I2). ΣΔGmin when two single strand DNA molecules mis-hybridize
Needless hybridization may become competition that obstructs necessary
hybridization. This criterion evaluates needless hybridization to form tiles.
In the case of a 4×4 DNA tile, we evaluate between sequences which do not
hybridize as a round robin : Core and Core, Shell and Shell, and Arm and
Arm, including own sequence.

Item 3(I3). Σ(−ΔGmin) when two single strand DNA molecules hybridize
Necessary hybridization must react more accurately and be tighter. This cri-
terion evaluates necessary hybridization to form tiles. We use subsequences
and evaluate the hybridization of the complementary subsequence in Shell
and Arm (or Shell and Core). To align the magnitude relation of each eval-
uation item, this value is multiplied by −1.

Sequence Design for Stable DNA Tiles 175

We employ the weighted sum of each criterion as the stability of entire tile.
The weighted sum for tile x E(x) is defined by the following expression:

E(x) = I1(x) + αI2(x) + βI3(x) (α = 0.086, β = 0.12). (1)

Although each weight needs to be set depending on the importance of each
item, we use the frequency distributions of each evaluation value by calculating
randomized tiles to set weights. We examined each value by randomly providing
100,000 tiles. Then, we weighed the I2 and I3 values such that the average of I2

and I3 equaled the average of I1. As a consequence, α and β were 0.086, 0.12,
respectively. The weight may be able to estimate by the number of sequence and
the length of sequence, although this is not our concern in this paper.

3 Preliminary Experiment

We design tile sequences based on the above proposal. We use Yan’s conventional
tile [8], designed by SEQUIN as the initial tile here. We cut off the sticky ends to
validate the stability of only a tile part without sticky ends. Hill-climbing steps
were 2000.

Consequently, the transition of evaluation value E appears in Fig. 3. The figure
shows that E improves, and the tile has the potential to gradually become stable.
When we see optimized sequences, we find that there are places where the same
base continues in a sequence except the bulged T4 loop. The reason for this is
that the property of free energy which stabilizes the hybridization strength as
the continuation of G or C is lengthened. Furthermore, the continuation of the
same base causes mis-hybridization and a reduction of orthonormal sequences.
By adding constraints for the initial tile, the above problem can be resolved.
These constraints are introduced in the next section.

Fig. 3. Transition of E

176 N. Iimura et al.

4 Constraint for Reducing Sequence Similarity

4.1 GC Pair Template for Initial Tile

The continuation of GC pair in a sequence causes the difference of hybridization
kinetics between sequences and the bad influence on forming DNA tile. Since the
positions of the GC pair are not changed by flipping bases while optimization is
being performed, an initial tile maintains their positions. Therefore, we consider
that it is important to generate an initial tile. We adopt a template that decides
the positions of the GC pair. Using this template, the positions of GC pair in
an initial tile are designed as below.

– The number of GC pairs is in the range 55 to 66% of the total in a sequence.
This percentage is ± 5% of Yan’s tile.

– The GC pair or the AT pair does not permit more than 4 pairs in a row.

G or C and A or T are allocated based on the template at random. Then an
initial tile limits the number of Gs in a sequence not to bias G in each Shell and
each Arm. We set constraints that keep the limit of the number of Gs. In this
study, the number of Gs in a shell sequence is 10 to 13 and the number of Gs
in an arm sequence is 8 to 10. To reweigh items, we randomly generated 50,000
tiles based on templates and used the average of each evaluation value in the
same way. The obtained α and β were 0.097, 0.14, respectively.

Figures 4-6 show the frequency of each value (I1, I2, I3) of above random
50,000 tiles, respectively. As a result of calculation, Yan’s tile designed by SE-
QUIN allows improvement of the secondary structure (Fig. 4). In Fig. 5, Yan’s
tile marks a large value. Because SEQUIN uses overlapping subsequences and
minimizes reuse of the subsequences, it is probable that sequences avoid mis-
hybridization efficiently. In Fig. 6, the hybridization of local long GC pair con-
tinuations in Yan’s tile causes this frequency. Although the meaning of I2 and
I3 seems to be inversion and have relevance, the correlation coefficient between
I2 and I3 was −0.21. Each has little relation. Fig. 7 shows the frequency of E.
Yan’s tile ranks in the top 1%. Therefore, it is difficult to design tiles at random.

Fig. 4. Frequency of I1 Fig. 5. Frequency of I2

Sequence Design for Stable DNA Tiles 177

Fig. 6. Frequency of I3 Fig. 7. Frequency of E

4.2 Experiment and Results

We executed sequence design 50 times with the GC pair templates and the above
constraints. Templates were generated at random based on the constraints in sec-
tion 4.1. Optimization steps, α and β were 2,000, 0.097, and 0.14, respectively.
Our program was implemented using C language and a PC with 2.26GHz Pen-
tium 4 processor, 512KB cache and 256MB RAM running Turbo Linux. The
average computational time for each trial was about 92 minutes.

Table 1 shows the evaluation value after the optimization. Each value im-
proved compared with Yan’s tile. Any seed tile was optimized and the evaluation
value was better than Yan’s tile. An extensive improvement is found especially
in I1 and I2. This implies that optimized sequences do not have the robust sec-
ondary structure and mis-hybridize easily. The improvement of the secondary

Table 1. Results of each value (50 hill-climbing executions)

E I1 I2 I3

Yan’s tile
(reweighted) -17.38 -25.0 -275.93 245.58

Best 10.57 -5.2 -211.03 258.86
Worst -0.62 -10.9 -254.33 249.64

Average 5.63 -7.46 -230.52 253.43

Fig. 8. Transition in best tile

178 N. Iimura et al.

structure appears to be due to introducing secondary structure prediction based
on free energy. Value I3 is not so much of a difference between SEQUIN algo-
rithm and our evaluation item. We ought to have to discuss this evaluation item
(I3). We must also consider how to weigh each value, especially I3, for example,
using normal distribution. Moreover, we have to validate weights by chemical ex-
periments. Fig. 8 shows the transition of each value in the best tile. Each value
converges within 1,000 steps. Thus, the terminal condition also can be improved,
for instance that the program stops at 1,000 steps. The best tile is demon-
strated in Table 2. Each sequence is compatible with the sequence in Fig. 11.
We validate the stability of this tile in the next section.

The optimization based on our evaluation function can thermodynamically
design stabler tiles than Yan’s tile.

Table 2. Best tile by Optimization (5’→3’)

Name Before (Initial tile) After (Optimized tile)

Core
(100mer)

ACGTGAGCAGGCTTTTTTACCACGC-
TCAGAGGGTCCGTATTTTTGGTCTG-
TCGGTCGTAGCGTCTTTTACGCTGC-
TGTCGAGAGCCTTGTTTTCTCAGCG

TCGTCAGCAGGGTATTTTAGCTCGC-
TCAGTCGGTGCCTATTTTTGGTGTG-
TGGGTGCTTGCGTGTTTTTCCCTCC-
AGTCGAGAGCCATGTTTTCACTGCG

Shell 1
(42mer)

CACCCACTCTCTGAGCGTGGTAAGC-
CTGCTCCACGGACGTCA

GACCGACACACTGAGCGAGCTTACC-
CTGCTGCACGGACCACA

Shell 2
CTCGGTCTCTACGTCGCTGAGCAAG-
GCTCTCCTCCAGACGCT

CTGGGACTCAACGACGCAGTGCATG-
GCTCTCCTCCTCACGCT

Shell 3
CTGTCGCTGTGACAGCAGCGTGACG-
CTACGACTGCCACACCA

GACACGCACTGACTGGAGGGACACG-
CAAGCACAGCCACACCT

Shell 4
CCGTCAGAGACCGACAGACCATACG-
GACCCTCAGGGAGAGCT

GCGAGAGACACCCACACACCATAGG-
CACCGACAGGCACACGA

Arm 1 AGCTCTCCCTGAGAGTGGGTG TCGTGTGCCTGTGTGTCGGTC
Arm 2 TGACGTCCGTGAGAGACCGAG TGTGGTCCGTGTGAGTCCCAG
Arm 3 AGCGTCTGGAGACAGCGACAG AGCGTGAGGAGAGTGCGTGTC
Arm 4 TGGTGTGGCAGTCTCTGACGG AGGTGTGGCTGTGTCTCTCGC

4.3 Review of Designed Sequences

We review sequences in terms of the free energy without chemical experiments.
Designed sequences (Table 2) closely compare with Yan’s tile in every evaluation
item.

Evaluation Item 1 (I1). Table 3 shows each free energy when a single strand
DNA molecule has secondary structure. As the secondary structure is not stable
and the tile forms successfully, the value grows. All values of our tile are greater
than Yan’s tile (Table 3). Every sequence is less likely to be able to have sec-
ondary structure which obstructs hybridization to form tile. For instance, Figs.
9 and 10 are the secondary structure prediction images of Yan’s Core and the
best tile’s Core by Mfold [10]. The dot on the image expresses the bond of the
base, and thus the secondary structure of Yan’s Core is slightly more stable than
the designed one. We see that secondary structure is improved by optimization.

Sequence Design for Stable DNA Tiles 179

Table 3. Breakdown of I1

Core Shell 1 Shell 2 Shell 3 Shell 4 Arm 1 Arm 2 Arm 3 Arm 4
Yan’s tile -6.9 -2.8 -3.1 -1.1 -3.3 -1.3 -2.6 -2.4 -1.5

Designed tile -2.2 -1.9 -0.3 -0.3 -0.5 0.0 0.0 0.0 0.0

Fig. 9. Core of Yan’s tile Fig. 10. Core of designed tile

Evaluation Item 2 (I2). Item 2 evaluates the bond strength of needless hy-
bridization that does not form a tile. We use the free energy when Core and Core
hybridize, Shell and Shell hybridize, and Arm and Arm hybridize. The value of
I2 increases as the tile optimizes because mis-hybridization has a larger value.

The free energy between Yan’s Cores and between the optimized tile’s Cores
were −31.19 kcal/mol, −26.13 kcal/mol, respectively. Therefore, the optimized
tile was harder to hybridize between Cores than Yan’s one. Tables 4 and 5 show
the free energy between Shells and between Arms. Although our optimization,
which differed from SEQUIN that used overlapping sequences, did not use unique
sequences, optimization could design sequences that did not mis-hybridize.

Evaluation Item 3 (I3). Finally, we must evaluate the necessary hybridiza-
tion strength to form tiles. Each sequence hybridizes with a few sequences, and
hence we use complementary subsequences, not a full sequence. The evaluated
hybridizations appear in Fig. 12. For example, S-A1 shows hybridization between
the subsequence of Shell1 and the one of Arm1. Table 6 shows the free energy of
the complementary subsequences. The complementary hybridization tightened
in 13 out of 16.

We think that increasing the continuation of the GC pair or the ratio of GC
leads to increasing I3. On the other hand, increasing those permits decreasing
unique sequences. Despite the same constraint with conventional tile, the de-
signed tile is more stable than the one.

180 N. Iimura et al.

Table 4. Free energy between Shells
(upper : Yan’s tile, lower : designed tile)

Shell 1 Shell 2 Shell 3 Shell 4

Shell 1
-18.29

(-14.16)
-18.55

(-14.13)
-14.42

(-12.59)
-16.54

(-10.44)

Shell 2 -
-20.71

(-12.80)
-14.40

(-14.65)
-17.35

(-14.77)

Shell 3 - -
-12.19
(-8.87)

-15.72
(-11.78)

Shell 4 - - -
-16.72
(-8.71)

Table 5. Free energy between Arms
(upper : Yan’s tile, lower : designed tile)

Arm 1 Arm 2 Arm 3 Arm 4

Arm 1
-9.61

(-4.73)
-8.38

(-5.67)
-6.99

(-6.56)
-7.10

(-5.60)

Arm 2 -
-10.04
(-5.20)

-8.16
(-5.10)

-7.82
(-5.50)

Arm 3 - -
-8.40

(-4.88)
-7.10

(-7.67)

Arm 4 - - -
-6.25

(-5.38)

Table 6. Breakdown of I3

S-C1 S-C2 S-C3 S-C4 S-C5 S-C6 S-C7 S-C8
Yan’s tile -16.19 -13.61 -17.40 -13.79 -15.24 -13.62 -16.98 -14.84

Designed tile -16.46 -14.93 -18.03 -13.71 -16.22 -16.02 -17.94 -15.77
S-A1 S-A2 S-A3 S-A4 S-A5 S-A6 S-A7 S-A8

Yan’s tile -14.69 -18.88 -15.76 -13.85 -14.78 -15.60 -14.21 -16.14
Designed tile -15.51 -17.97 -14.40 -16.53 -15.49 -17.21 -14.73 -17.94

Fig. 11. Definition of sequence name Fig. 12. Definition of subsequence pair

Our method designs, in short, sequences which have no secondary structure,
mis-hybridize not to form tile and gain hybridization strength to form tile, by
three evaluation items. Although this method can be applied to any kind of tile
and sticky end, we need to customize program depending on kinds of tile, tile
size, the length and constraint of sticky ends. We must normalize an evaluation
value when the length of sticky end or tile size is different. Additionally, we need
more computing power than SEQUIN because of calculating the free energy.

5 Conclusion

We designed DNA tile sequences by optimization based on our thermodynamical
stability evaluation method. As a result of our design, we illustrated that the

Sequence Design for Stable DNA Tiles 181

designed tile seems more stable than the conventional tile. Our sequence design
method has a beneficial effect on designing many evenly stable tiles, because one
can automatically design differently from semi-automatic SEQUIN.

Many very real problems remain: validity of weight, validity of evaluation
criteria, and actual construction. These problems must be solved by chemical
experiments and visualization by atomic force microscope (AFM).

Acknowledgment

Authors would like to thank to Prof.John H.Reif, Prof.Thomas H. LaBean and
Dr.Sung Ha Park for valuable advice and discussions about 4× 4 DNA tiles.

References

1. Erik Winfree, Furong Liu, Lisa A.Wenzler and Nadrian C.Seeman, “Design and self-
assembly of two-dimensional DNA crystals”, Nature, Vol.394, pp.539-544, 1998.

2. Erik Winfree, “DNA Computing by Self-assencly”, in NAE’s TheBredge 33(4):
pp.31-38, 2003.

3. Hao Yan, Liping Feng, Thomas H.LaBean, John H.Reif,“Parallel Molecular
Computations of Pairwise Exclusive-Or (XOR) Using DNA ”String Tile” Self-
Assembly”, J.Am.Chem.Soc, Vol.125(47), pp.14246-14247, 2003.

4. Hao Yan, Sungg Ha Park, Gleb Finkelstein, John H.Reif, Thomas H.LaBean “DNA-
Templated Self-Assembly of Protein Arrays and Highly Conductive Nanowires”,
Science, Vol. 301, pp. 1882-1884, 2003.

5. Nadrian C.Seeman, “De Nove Design of Sequence for Nucleic Acid Structual Engi-
neering”, Jornal of Biomolecular Structure & Dynamics, ISSNO. 739-1102, Vol.8,
1990.

6. Fumiaki Tanaka, Atsushi Kameda, Masahito Yamamoto, and Azuma Ohuchi, “De-
sign of nucleic acid sequences for DNA computing based on a thermodynamic
approach”, Nucleic Acids Research, Vol. 33(3), pp. 903-911, 2005.

7. Naoki Iimura, Masahito Yamamoto, Fumiaki Tanaka, Atsuchi Kameda, Azuma
Ohuchi, “Stability evaluation method of DNA tile Structure”, Proceedings of the
11th International Symposium on Artificial Life and Robotics (AROB 11th ’06),
CD-ROM, 2006.

8. Suppoting Online Material, www.sciencemag.org/cgi/content/full/301/5641/1882/
DC1

9. A.M.Zuker, B.D.H.Mathews, C.D.H.Turner, “ALGORITHMS AND THERMO-
DYNAMICS FOR RNA SECONDARY STRUCTURE PREDICTION : A PRAC-
TICAL GUIDEh, In RNA Biochemistryand Biotechnology, J. Barciszewski &
B.F.C. Clark, eds., NATO ASI Series, Kluwer Academic Publisers, 1999

10. Michael Zuker, “Mfold web server for nulceic acid folding and hybridization pre-
diction”, Nucleic Acids Reserch, Vol.31, No.13, pp.3406-3415, 2003.

11. Mirela Andronescu, Rosalia Aguirre-Hernandez, Anne Condon, Hologer
H.Hoos,“RNA soft : a suite of RNA secondary structure prediction and de-
sign software tools”, Nucleic Acids Research, Vol.31, No.13, pp.3416-3422,
2003.

Hairpin Structures Defined by DNA
Trajectories�

Michael Domaratzki

Department of Computer Science,
University of Manitoba,

Winnipeg, MB R3T 2N2 Canada
mdomarat@cs.umanitoba.ca

Abstract. We examine scattered hairpins, which are structures formed
when a single strand folds into a partially hybridized stem and a loop.
To specify different classes of hairpins, we use the concept of DNA tra-
jectories, which allows precise descriptions of valid bonding patterns on
the stem of the hairpin. DNA trajectories have previously been used to
describe bonding between separate strands.

We are interested in the mathematical properties of scattered hairpins
described by DNA trajectories. We examine the complexity of set of
hairpin-free words described by a set of DNA trajectories. In particular,
we consider the closure properties of language classes under sets of DNA
trajectories of differing complexity. We address decidability of recognition
problems for hairpin structures.

1 Introduction

A hairpin in a single strand of nucleotides is a structure formed by the bonding
of two complementary regions, which form the stem, joined on one end by an
intermediate, unbonded region. Together, the stem and the unbonded region are
known as the hairpin. We illustrate this concept in Figure 1.

ACAGGTACAAGTAC
TGTCCATGTTCATG

C
A A G T

G

CA
GT

G A
C

A

Fig. 1. A hairpin in a strand of nucleotides

As research into DNA computing applications and nanotechnology continues,
the formal study of hairpins gains increasing significance. Kari et al. [2,3] survey
the use of hairpins in various contexts. We also note the use of hairpins for visual
� For a full version, see [1]. Research supported in part by a grant from NSERC.

Research conducted at the Jodrey School of Computer Science, Acadia University.

C. Mao and T. Yokomori (Eds.): DNA12, LNCS 4287, pp. 182–194, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Hairpin Structures Defined by DNA Trajectories 183

contrast in evaluating successful nanotechnological constructions, as described
in, e.g., the work of Winfree et al. [4]. In some of these applications, hairpins
are desirable, while in other applications, they are problematic and are to be
avoided in sets of DNA strands. Further, hairpins serve as the basis for more
complicated secondary structures such as pseudoknots.

Recently, Kari et al. [2,3] have studied hairpins using the tools of theoretical
computer science. In particular, a single strand of nucleotides is viewed as a word
over the alphabet Δ = {A, C, G, T}. In this framework, a hairpin in a word z is
a decomposition z = uvwxy where v and x are complementary to each other,
and form the stem of the hairpin. We characterize the complementarity of v and
x using an antimorphism θ (for definitions, see Section 2). Among other results,
Kari et al. characterize the complexity and decidability results for hairpin sets
[3]. Further, Kari et al. [2] have also studied scattered hairpins, which represent
hairpins in which the stem is not completely hybridized, i.e., where an arbitrary
number of unbonded regions occur within the stem.

In this paper, we examine refinements of hairpins and scattered hairpins by in-
corporating an optional parameter—a set of DNA trajectories—to add increased
capability in describing the set of hairpins which are of potential interest. The
use of DNA trajectories has recently been employed to model bonding regions
in separate strands, called bond-free properties [5]. One main benefit of DNA
trajectories is that they enable constraints to be expressed as a formal language,
rather than graphically or otherwise. Further, DNA trajectories are capable of
adapting to minor structural changes: modifications such as enforcing a mini-
mum length of a bond are easily introduced in DNA trajectories.

In our study of DNA trajectories and hairpins, we focus on closure properties,
decidability and relations to problems from combinatorics on words. With re-
spect to closure properties, we find that the situation is more complex than the
case of hairpins and scatted hairpins studied by Kari et al., and many interest-
ing results have been obtained. Decidability problems are also more interesting,
due to the fact that regularity of a set of DNA trajectories does not imply the
regularity of the associated set of hairpins or the set of hairpin-free DNA words.

2 Definitions

For additional background in formal languages and automata theory, please see
Rozenberg and Salomaa [6]. For an introduction to DNA computing, see Păun et
al. [7]. Let Σ be a finite set of symbols, called letters. Then Σ∗ is the set of all
finite sequences of letters from Σ, which are called words. The empty word ε
is the empty sequence of letters. The length of a word w = w1w2 · · ·wn ∈ Σ∗,
where wi ∈ Σ, is n, and is denoted |w|. Note that ε is the unique word of
length 0. Given a word w ∈ Σ∗ and a ∈ Σ, |w|a is the number of occurrences
of a in w. A language L is any subset of Σ∗. We use the notation

∏n
i=1 Li to

denote L1L2 · · ·Ln, and the notation L≥k to denote LkL∗. The reversal of a
word w = x1x2 · · ·xn (xi ∈ Σ), denoted wR, is defined by wR = xn · · ·x2x1. By
extension, LR = {xR : x ∈ L}.

184 M. Domaratzki

Let Σ, Δ be alphabets and h : Σ → Δ be any function. Then h can be
extended to a morphism h : Σ∗ → Δ∗ via the condition that h(uv) = h(u)h(v)
for all u, v ∈ Σ∗. Similarly, h can be extended to an antimorphism via the
condition that condition that h(uv) = h(v)h(u) for all u, v ∈ Σ∗. An involution θ
is any function θ : Σ → Σ such that θ2 is the identity function on Σ. Let μ denote
the mirror involution (i.e., the identity function extended to an antimorphism).
Let ι denote the identity morphism.

We assume that the reader is familiar with regular languages, linear context-
free languages and context-free languages (CFLs). In particular, regular lan-
guages are accepted by deterministic or nondeterministic finite automata, while
CFLs are generated by context-free grammars.

2.1 Trajectory-Based Operations

The shuffle on trajectories operation is a method for specifying the ways in which
two input words may be interleaved to form a result. Each trajectory t ∈ {0, 1}∗
with |t|0 = n and |t|1 = m specifies one particular way in which we can shuffle
two words of length n (as the left input word) and m (as the right input word).
The word resulting from the shuffle along t will have a letter from the left input
word in position i if the i-th symbol of t is 0, and a letter from the right input
word in position i if the i-th symbol of t is 1.

Formally [8], let x and y be words over an alphabet Σ and t, the trajectory,
be a word over {0, 1}. The shuffle of x and y on trajectory t is denoted by x t y.
If t =

∏n
i=1 0ji1ki for some n ≥ 0 and ji, ki ≥ 0 for all 1 ≤ i ≤ n, then

x t y = {
n∏

i=1

xiyi : x =
n∏

i=1

xi, y =
n∏

i=1

yi,

with |xi| = ji, |yi| = ki for all 1 ≤ i ≤ n}
if |x| = |t|0 and |y| = |t|1, and x t y = ∅ if |x| 	= |t|0 or |y| 	= |t|1. We extend the
operation of shuffle on trajectories to sets of trajectories T ⊆ {0, 1}∗ as follows:

x T y =
⋃
t∈T

x t y.

Further, if L1, L2 ⊆ Σ∗ are languages, then

L1 T L2 =
⋃

x∈L1
y∈L2

x T y.

As an example, note that if T = 0∗1∗, then T is the concatenation operation:
L1 T L2 = {xy : x ∈ L1, y ∈ L2}.

We will also require the notion of the natural binary relation defined by shuffle
on trajectories [9]. For T ⊆ {0, 1}∗, define ωT as follows: for all x, y ∈ Σ∗,
x ωT y ⇐⇒ y ∈ x T Σ∗. For example, if T = 0∗1∗, then ωT is the prefix
order, defined by x ωT y if and only if y ∈ xΣ∗. If T = {0, 1}∗, then x ωT y is
the embedding order, defined by x ωT y if and only if y ∈ x Σ∗ (i.e., x can be
obtained by from y by deleting zero or more letters). We denote the embedding
order by ≤e; note that if x ≤e y then x is a scattered subword of y.

Hairpin Structures Defined by DNA Trajectories 185

2.2 DNA Trajectories and Hairpins

We now consider DNA trajectories, defined by Kari et al. [5]. A DNA trajectory
is a word over the alphabet VD =

{(
b
b

)
,
(
f
f

)
,
(
f
ε

)
,
(

ε
f

)}
. The original use of a set of

DNA trajectories was to define bonding between two separate single strands of
DNA. The occurrence of

(
b
b

)
implies a bond at a certain position, while

(
f
f

)
(resp.,(

f
ε

)
,
(

ε
f

)
) denotes two bases which are free (resp., an extra unbonded nucleotide

on the top strand, an extra unbonded nucleotide on the bottom strand). DNA
trajectories are used to define so-called bond-free properties in DNA code word
design [5], and we adopt them here for modelling the bonding of hairpins.

For hairpins, we can view words over V ∗
D as designating where bonds can

occur and cannot occur when viewing the strands with the loop at the right
end. For instance, the DNA trajectory t =

(
f
ε

)(
f
f

)2(b
b

)3(f
f

)3(f
ε

)
represents the

bonding depicted in Figure 2. Note that the pairs x4 and x16, x5 and x15, as
well as x6 and x14 must be bonded together.

x3

x14x15x16x17x18

x1

x2 x4 x5 x6

x7

x8
x9

x10

x11x12
x13

Fig. 2. A DNA bond specified by t. The letters xi represent arbitrary letters from the
alphabet.

Let ϕu, ϕd : V ∗
D → {0, 1}∗ be morphisms defined by

ϕu(
(

b
b

)
) = 0, ϕu(

(
f
y

)
) = 1, for y ∈ {f, ε}, ϕu(

(
ε
f

)
) = ε,

ϕd(
(

b
b

)
) = 0, ϕd(

(
y
f

)
) = 1, for y ∈ {f, ε}, ϕd(

(
f
ε

)
) = ε.

We now give our main definition. Let Σ be an alphabet, θ : Σ → Σ be an
arbitrary involution, extended to a morphism or antimorphism, and S ⊆ V ∗

D.
Then a word w is said to be S-θ-hairpin-free, or simply shpΣ(S, θ)-free, if the
following condition holds

∀u, v, x,∈ Σ∗, s ∈ S, (w = uv, x ωϕu(s) u, and θ(x) ωϕd(s)R v)⇒ x = ε. (1)

That is, if we can write w as w = uv and there exists a word x—which represents
the portions of u and v which are bonded together—such that x appears in
u according to the bonding prescribed by ϕu(s) and similarly for θ(x),v and
ϕd(s)R, then x = ε. Note that ϕd(s) is reversed since v runs backwards from the
right-to-left in our hairpin. We say that a language L is shpΣ(S, θ)-free if w is
shpΣ(S, θ)-free for all w ∈ L.

Let shpfΣ(S, θ) denote the set of shpΣ(S, θ)-free words. Let shpΣ(S, θ) =
Σ∗ − shpfΣ(S, θ). Clearly, L is shpΣ(S, θ)-free if and only if L ⊆ shpfΣ(S, θ).

186 M. Domaratzki

The definition of shpΣ(S, θ)-freeness is an extension of the notions of hairpin-
freeness and scattered-hairpin-freeness, investigated by Kari et al. [2,3].

Note that in the above definition θ can be an arbitrary involution, extended
to either a morphism or antimorphism. This is similar to the work on bond-free
properties [5] and hairpin-freeness [2,3]. In practice, an antimorphic involution
yields hairpin and scattered-hairpin structures, while morphic involutions yield
structures where the scattered stem is bonded in a parallel, rather than an anti-
parallel, orientation. Of course, the antimorphic involution τ over the alphabet
Δ = {A, C, G, T} defined by τ(A) = T, τ(T) = A, τ(C) = G and τ(G) = C
is of particular interest in practice. This involution is called the Watson-Crick
involution. In this paper, we study results applying to morphic involutions and
antimoprhic involutions, as both give rise to interesting problems and results.

2.3 Examples of Hairpin Languages

Consider the following examples of hairpin languages:

(a) Let k ≥ 1 and

Sk =
{(

f

ε

)∗
∪
(

ε

f

)∗}(
f

f

)∗(
b

b

)≥k(
f

f

)∗{
ε,

(
f

ε

)}
. (2)

The shape of this set of DNA trajectories is given by Figure 3(a). That is,
only one bonded region (the stem) is formed in this simple hairpin structure,
and the length of this stem is at least k. The set shpfΣ(Sk, θ) is the set of
all θ-k-hairpin-free words, studied by Kari et al. [3].

(b) Let k, m1, m2 ≥ 1. Jonoska et al. [10,11] define θ(k, m1, m2)-subword com-
pliant languages, which are characterized by the following set of trajectories
Sk,m1,m2 :

Sk,m1,m2 =
((

f

ε

)∗
∪
(

ε

f

)∗)(
f

f

)∗(
b

b

)≥k
(

m2⋃
m=m1

(
f

ε

)m
)

.

In particular, a language L ⊆ Σ∗ is θ(k, m1, m2)-subword compliant for a
morphic or antimorphic involution θ if L ⊆ shpfΣ(Sk,m1,m2 , θ).

(c) Let k ≥ 1 and Sk be defined by

Sk =
(((

f

ε

)∗
∪
(

ε

f

)∗)(
f

f

)∗(
b

b

))≥k (
f

f

)∗{
ε,

(
f

ε

)}
. (3)

The shape described by this set of trajectories is called scattered hairpins
by Kari et al. [2]. In particular, the condition is equivalent to the following:
x ≤e u and θ(x) ≤e v imply |x| < k. An example of the type of scattered
hairpins described by Sk is given in Figure 3(b). The set shpfΣ(Sk, θ) is
denoted by shpf(θ, k) by Kari et al. [2].

Hairpin Structures Defined by DNA Trajectories 187

(a) (b)

Fig. 3. (a) A simple hairpin structure. (b) A scattered hairpin structure.

By adding DNA trajectories to scattered hairpins, we can also define familiar
languages which have been studied by researchers in formal language theory.
We begin by demonstrating that the classical languages of palindromes (mod-
ulo short palindromes) and squares are definable by a trajectory-based hairpin
condition:

Example 1. Let Sp =
(
b
b

)∗{ε, (fε)}. Then shpΣ(Sp, μ) = {x ∈ Σ∗ : |x| ≥ 2, x =
xR}. Let Ss =

(
b
b

)∗
. Then shpΣ(Ss, ι) = {xx : x ∈ Σ+}.

3 Preliminary Results

We first consider the implications of choosing alternate definitions for hairpin-
freeness using DNA trajectories. In the first case, we show that, with DNA
trajectories, there is no increase in power by adding a parameter k ≥ 1 which
enforces a minimum length of the (scattered) stem of the hairpin. In the second
case, we show that if separate DNA trajectories are allowed to be chosen for the
bonding on both sides of the stem, the result can destroy the structure described
by the set of DNA trajectories.

In particular, let k ≥ 1 and S ⊆ V ∗
D. Say a word w is said to be θ-k-S-hairpin-

free (or shpΣ(S, θ, k)-free) if the following condition holds

∀u, v, x,∈ Σ∗, s ∈ S, (w = uv, x ωϕu(s) u, θ(x) ωϕd(s)R v)⇒ (|x| < k).

This definition more closely mirrors the definitions provided by Kari et al. [2,3].
Let shpfΣ(S, θ, k) denote the set of shpΣ(S, θ, k)-free words. We now show that
sets of DNA trajectories are sufficiently powerful to eliminate the need for con-
sidering S-θ-k-hairpin-free words.

Lemma 1. Let k ≥ 1 and S ⊆ V ∗
D. Then there exists S′ ⊆ V ∗

D such that
shpfΣ(S, θ, k) = shpfΣ(S′, θ).

For fixed k, the construction in Lemma 1 does not alter the complexity of S if S
lies in a language class which is closed under finite modification1. Now we note
the following relationship between inclusion of sets of DNA trajectories and the
associated hairpin languages.
1 A language class C is closed under finite modification if for all L ∈ C and all words

x, L ∪ {x}, L − {x} ∈ C. Most common language classes are closed under finite
modification; an example of a class that is not is the class of 0L languages.

188 M. Domaratzki

Proposition 1. Let S1, S2 ⊆ V ∗
D with S1 ⊆ S2. Then for all Σ and all θ,

shpΣ(S1, θ) ⊆ shpΣ(S2, θ).

Finally, we note that distinct trajectories may represent the same bonding pat-
tern. For instance, note that an occurrence of

(
f
f

)
is equivalent to an occurrence

of
(

f
ε

)(
ε
f

)
. Due to this equivalence, we show the existence of a normal form for

sets of DNA trajectories which is sometimes useful.

Lemma 2. For all sets of DNA trajectories S ⊆ V ∗
D there exists a set of DNA

trajectories S′ ⊆
(((

f
ε

)∗ ∪ (ε
f

)∗) (f
f

)∗(b
b

)∗)∗ (f
f

)∗ {(f
ε

)
, ε
}

such that shpΣ(S, θ) =
shpΣ(S′, θ).

If S is in the form specified by Lemma 2, we say that S is in normal form.
Further, if S ⊆ V ∗

D, then by [S] we mean the set of all DNA trajectories which
can be rewritten to a DNA trajectory s ∈ S by using the above rules.

4 Closure Properties

In this section we examine the closure properties of hairpin languages based on
the complexity of S. Example 1 immediately yields the following lemma:

Lemma 3. There exist a regular set of DNA trajectories S and an antimorphic
involution θ (resp., morphic involution σ) such that shpΣ(S, θ) is not a regular
language (resp., shpΣ(S, σ) is not a CFL).

Note that this is in contrast to the case of hairpin languages and scattered
hairpin languages, studied by Kari et al. [2], where the associated languages are
regular. Despite the fact that regularity is not preserved when using a set of DNA
trajectories to describe hairpin trajectories, we can show that for all regular sets
of trajectories S and all antimorphic involutions θ, the language shpΣ(S, θ) is at
worst context-free:

Theorem 1. If θ is an antimorphic involution and S is a regular set of DNA
trajectories, then shpΣ(S, θ) is a linear context-free language.

We note that if we relax the condition that S is regular, Theorem 1 does not
hold.

Lemma 4. Let Σ be an alphabet with |Σ| ≥ 3. There exists a (linear) context-
free set of DNA trajectories S ⊆ V ∗

D such that shpΣ(S, μ) is not a CFL.

Further, if we consider shpfΣ(S, θ) for regular S and antimorphic θ the result
may not be context-free. We expect this result, as the CFLs are not closed under
complement.

Theorem 2. Let Σ be an alphabet with |Σ| ≥ 3. There exist a regular set of
DNA trajectories S ⊆ V ∗

D and an antimorphic involution θ such that shpfΣ(S, θ)
is not a CFL.

Hairpin Structures Defined by DNA Trajectories 189

Thus, in general, shpfΣ(S, θ) is not a CFL if S is regular and θ is an antimor-
phism. However, we can find conditions on S such that shpfΣ(S, θ) is a CFL for
all antimorphic involutions θ.

Call a language L slender if there exists a constant c such that L has at most
c words of length n for all n ≥ 0. A regular language R over Σ is slender if and
only if there exist k ≥ 1, and xi, yi, zi for 1 ≤ i ≤ k such that R =

⋃k
i=1 xiy

∗
i zi.

(see, e.g., Szilard et al. [12]). We can now demonstrate a nontrivial class of sets
of DNA trajectories for which the set of hairpin-free words will be guaranteed
to be a CFL:

Theorem 3. Let S ⊆ V ∗
D be a slender regular set of DNA trajectories. Then for

all antimorphic involutions θ, shpfΣ(S, θ) is a CFL.

Theorem 3 shows the power of using trajectories for characterizing hairpins. By
using a well-studied property of languages—their density—and applying it to the
set of DNA trajectories, we can observe important properties of the associated
hairpin language. However, in this case, we find that in addition to the complexity
of the set of DNA trajectories, it is also another measure of the complexity—the
density of the language—that yields the result.

We can now turn to the complexity of shpfΣ(S, θ) for morphic involutions θ.
By Lemma 3, we know that shpΣ(S, θ) can fail to be a CFL, even if S is regular.
However, the example given (Example 2.1) yields a language whose complement
shpfΣ(S, θ) is a CFL. However, we can find an example of a regular set S such
that shpfΣ(S, θ) is not a CFL.

Theorem 4. Let Σ be an alphabet with |Σ| ≥ 3. There exist a regular set of
DNA trajectories S ⊆ V ∗

D and an morphic involution θ such that shpfΣ(S, θ) is
not a CFL.

4.1 Regularity of Hairpin Languages

In the previous section, we have seen that for some regular set of DNA trajecto-
ries S and antimorphic involution θ, the associated hairpin language shpfΣ(S, θ)
is not context-free. If we restrict S to be slender, then we can guarantee that
shpfΣ(S, θ) is context-free for all antimorphic involutions θ. In this section, we
consider restrictions on S which will guarantee that shpfΣ(S, θ) (and shpΣ(S, θ))
is regular. Instead of further constraining S by beginning with slender sets of
DNA trajectories, we look at relations on S that ensure regularity of shpfΣ(S, θ).

First, say that a set S ⊆ V ∗
D is b-finite if max{|s|(b

b) : s ∈ S} < ∞. The
following lemma is easily proven:

Lemma 5. Let S ⊆ V ∗
D be a b-finite regular set of DNA trajectories. Then for

all morphic and antimorphic involutions θ, shpΣ(S, θ) is regular.

We now define a partial order ≺ on words over V ∗
D. This partial order will

help us define a significant class of sets of DNA trajectories where the language
shpΣ(S, θ) is regular. Let s1, s2 ∈ V ∗

D with

190 M. Domaratzki

ϕu(s1) =
n∏

i=1

1ji0ki , and ϕd(s1) =
n∏

i=1

1�i0ki ,

for n ≥ 0 and ji, ki, �i ≥ 0 for all 1 ≤ i ≤ n. Then s2 ≺ s1 if there exist
α1, . . . , αn ∈ {0, 1}∗ such that the following three conditions hold:

(i) ϕu(s2) =
∏n

i=1 1jiαi and ϕd(s2) =
∏n

i=1 1�iαi;
(ii) |αi| = ki for all 1 ≤ i ≤ n; and
(iii)

∏n
i=1 αi /∈ 1∗.

We note that ≺ is also used to investigate bond-free properties between separate
single strands of DNA [13].

The situation is illustrated in Figure 4. The figure illustrates that if s2 ≺ s1,
then we can get from s1 to s2 by replacing a bonding region of length ki in s1

with a region which is not completely bonded, but is of length ki, in s2.

ik

ik

Fig. 4. A portion of s1 is shown on the left, and a portion of s2 is shown on the right

Example 2. Consider s1, s2 ∈ V ∗
D given by

s1 =
(

b

b

)(
b

b

)(
f

ε

)(
b

b

)(
f

f

)
, s2 =

(
b

b

)(
f

f

)(
f

ε

)(
f

ε

)(
f

f

)(
ε

f

)
.

Note that ϕu(s1) = 00101, ϕu(s2) = 01111, ϕd(s1) = 0001, and ϕd(s2) = 0111.
Thus, s2 ≺ s1 holds with α1 = 01 and α2 = 1.

Note that Example 2 demonstrates that the relation ≺ is not simply defined
by the idea “possibly replace

(
b
b

)
with

(
f
f

)
”. This is due to the equivalence of

trajectories seen in the normal form of Lemma 2. However, the replacement
intuition is formalized in the following result.

Proposition 2. Let π : V ∗
D → 2V ∗

D be the substitution defined by π(x) = x if
x 	= (

b
b

)
and π(

(
b
b

)
) = {(b

b

)
,
(
f
f

)}. Then for all S ⊆ V ∗
D,

[
π(S) ∩ (V ∗

D

(
b

b

)
V ∗

D)
]

= {x ∈ V ∗
D : ∃s ∈ S, x ≺ s}.

We now define the minimal set of DNA trajectories with respect to ≺. For all
S ⊆ V ∗

D, let min(S) = {s ∈ S : ∀t(= s) ∈ S, t 	≺ s}.

Hairpin Structures Defined by DNA Trajectories 191

Example 3. Consider the k-hairpin languages (2):

Sk =
{(

f

ε

)∗
∪
(

ε

f

)∗}(
f

f

)∗(
b

b

)≥k(
f

f

)∗{
ε,

(
f

ε

)}
.

Note that if we put min(Sk) in normal form, we get

min(Sk) =
{(

f

ε

)∗
∪
(

ε

f

)∗}(
f

f

)∗(
b

b

)k(
f

f

)∗{
ε,

(
f

ε

)}
.

We now show that S and min(S) describe the same hairpin languages:

Theorem 5. Let S ⊆ V ∗
D. For all Σ and all morphic or antimorphic involutions

θ, we have shpΣ(S, θ) = shpΣ(min(S), θ).

Corollary 1. Let S ⊆ V ∗
D. If min(S) is a b-finite regular set of trajectories,

shpΣ(S, θ) is regular for all Σ and all morphic or antimorphic involutions θ.

Example 4. Continuing with the previous example, we note that shpΣ(Sk, θ) is
regular for all morphic or antimorphic involutions θ. This was established by
Kari et al. [3, Prop. 3].

Example 5. The k-scattered hairpin languages (see (3)) are given by

Sk =
({(

f

ε

)∗
∪
(

ε

f

)∗}(
f

f

)∗(
b

b

))≥k (
f

f

)∗{
ε,

(
f

ε

)}
.

Note that if min(Sk) ⊆ Sk is put in normal form, we get

min(Sk) =
({(

f

ε

)∗
∪
(

ε

f

)∗}(
f

f

)∗(
b

b

))k (
f

f

)∗{
ε,

(
f

ε

)}
.

Note that min(Sk) is b-finite and regular. Thus, shpΣ(Sk, θ) is regular for all
k ≥ 1 (this was established by Kari et al. [2, Prop. 13(ii)]).

4.2 Finiteness of Hairpin Classes

We continue or investigation of conditions on S and θ that ensure the complexity
of shpΣ(S, θ) and shpfΣ(S, θ) lie within a certain class of languages by consid-
ering conditions on S to ensure that shpfΣ(S, θ) is finite. Kari et al. [3] have
studied conditions which ensure finiteness of hairpin-free languages. (we note
that Rampersad and Shallit [14] have independently established similar results).

Problems concerning finiteness of hairpin languages are sometimes related to
problems in combinatorics on words. Using tools from the study of combinatorics
on words, we can instantly conclude the finiteness of some scattered-hairpin
languages by virtue of their coinciding with known unavoidable patterns. In
particular, we use the results of Cassaigne [15], who gives a list of avoidability of
patterns over 2- and 3-letter pattern alphabets, to derive finiteness results. These

192 M. Domaratzki

results are limited to the case where θ = ι, due to the emphasis on repetition of
subwords in the study of combinatorics on words.

As an example, every sufficiently long word over any alphabet contains two
occurrences of some letter. In terms of hairpins, we can phrase this equivalently
as follows: the language shpfΣ(S, ι) is finite for all Σ, where

S =
{(

f

ε

)∗
∪
(

ε

f

)∗}(
f

f

)∗(
b

b

)(
f

f

)∗{(
f

ε

)
, ε

}
.

Using the tools of avoidability, we can also conclude the following:

Lemma 6. Let S1 = (
(
f
ε

)∗∪(ε
f

)∗)(f
f

)∗(b
b

)+(f
ε

)+(b
b

)+
. The languages shpfΣ(S1, ι)

are finite for all Σ with |Σ| ≤ 2.
Similarly, if S2 = (

(
f
ε

)∗ ∪ (ε
f

)∗)(f
f

)∗(b
b

)+(ε
f

)+(b
b

)+
, the languages shpfΣ(S2, ι)

are finite for all Σ with |Σ| ≤ 2.

Fig. 5. Hairpins described by S1 in Lemma 6

On the other hand, we can interpret the classic result of Entringer et al. [16] on
avoidability of long squares in terms of hairpins:

Theorem 6. Let S ⊆ V ∗
D be defined by S =

{(
f
ε

)∗ ∪ (ε
f

)∗} (f
f

)∗(b
b

)≥3
. Then the

language shpfΣ(S, ι) is infinite if |Σ| ≥ 2.

Of course, there are both well-studied and novel problems in combinatorics on
words and avoidability which cannot be expressed in terms of hairpins. How-
ever, the interaction between classical avoidability problems and hairpins is
compelling, and the expressive power of hairpins suggests many problems, likely
difficult, involving avoidability of patterns.

5 Decidability

Theorem 7. Given an antimorphism θ, a regular set of DNA trajectories S and
a regular language L, it is decidable whether L is shpΣ(S, θ)-free.

For undecidability, we show that there exists a regular set of trajectories S such
that determining whether context-free languages are shpΣ(S, θ)-free for morphic
or antimorphic involutions.

Hairpin Structures Defined by DNA Trajectories 193

Theorem 8. There exists a fixed regular set of DNA trajectories S such that
the following problem is undecidable: “Given an alphabet Σ, an antimorphic
involution θ : Σ∗ → Σ∗ and a CFL L ⊆ Σ∗ (resp., a morphic involution θ :
Σ∗ → Σ∗) , is L ⊆ shpfΣ(S, θ)?”

6 Conclusions

In this paper, we have considered modelling hairpin conditions on DNA words
by using DNA trajectories. We have investigated the closure properties and
decidability questions. In order to ensure positive closure properties, restrictions
must be placed on the sets of DNA trajectories. In particular, if S is a slender
regular set of DNA trajectories, then shpfΣ(S, θ) is a context-free language
for antimorphic involutions θ. On the other hand, for all regular sets of DNA
trajectories S, the set shpΣ(S, θ) is a context-free language for all antimorphic
involutions θ.

To ensure regularity of scattered hairpin sets, we have considered a partial
order ≺ and the minimal set of DNA trajectories with respect to ≺. Using
the minimal set of DNA trajectories, we are able to ensure that shpΣ(S, θ) is
regular for all involutions for a large class of sets of trajectories, including those
representing previously studied hairpin classes.

With respect to decidability, we have shown that hairpin-freeness of a regular
language is decidable for regular set of trajectories and antimorphic involutions.
However, there exists a fixed regular set of trajectories S such that it is unde-
cidable, given an antimorphic involution and a context-free language L, whether
or not L is shpΣ(S, θ)-free.

Acknowledgements. We thank the referees for their valuable comments.

References

1. Domaratzki, M.: Hairpin structures defined by dna trajectories. Technical Report
TR-2006-001, Jodrey School of Computer Science, Acadia University (2006)

2. Kari, L., Konstantinidis, S., Losseva, E., Sośık, P., Thierrin, G.: Hairpin structures
in DNA words. In Carbone, A., Daley, M., Kari, L., McQuillan, I., Pierce, N.,
eds.: The 11th International Meeting on DNA Computing: DNA 11, Preliminary
Proceedings. (2005) 267–277

3. Kari, L., Konstantinidis, S., Sośık, P., Thierrin, G.: On hairpin-free words and
languages. In Felice, C.D., Restivo, A., eds.: Developments in Language Theory:
9th International Conference. Volume 3572 of Lecture Notes in Computer Science.,
Springer (2005) 296–307

4. Rothemund, P., Papadakis, N., Winfree, E.: Algorithmic self-assembly of DNA
Sierpinski triangles. PLoS Biol. 2(12) (2004) e424

5. Kari, L., Konstantinidis, S., Sośık, P.: On properties of bond-free DNA languages.
Theor. Comp. Sci. 334 (2005) 131–159

6. Rozenberg, G., Salomaa, A., eds.: Handbook of Formal Languages. Springer (1997)
7. Păun, G., Rozenberg, G., Salomaa, A.: DNA Computing: New Computing

Paradigms. Springer (1998)

194 M. Domaratzki

8. Mateescu, A., Rozenberg, G., Salomaa, A.: Shuffle on trajectories: Syntactic con-
straints. Theor. Comp. Sci. 197 (1998) 1–56

9. Domaratzki, M.: Trajectory-based embedding relations. Fund. Inf. 59(4) (2004)
349–363

10. Jonoska, N., Kephart, D., Mahalingam, K.: Generating DNA code words. Con-
gressus Numerantium 156 (2002) 99–110

11. Jonoska, N., Mahalingam, K.: Languages of DNA based code words. In Chen,
J., Reif, J., eds.: DNA Computing, 9th International Workshop on DNA Based
Computers. Volume 2943 of Lecture Notes in Computer Science, Springer (2004)
61–73

12. Szilard, A., Yu, S., Zhang, K., Shallit, J.: Characterizing regular languages with
polynomial densities. In Havel, I., Koubek, V., eds.: Mathematical Foundations
of Computer Science 1992. Volume 629 of Lecture Notes in Computer Science.,
Springer (1992) 494–503

13. Domaratzki, M.: Characterizing DNA bond shapes using trajectories. In Ibarra,
O., Dang, Z., eds.: Developments in Language Theory. Volume 4036 of Lecture
Notes in Computer Science, Springer (2006) 180–191

14. Rampersad, N., Shallit, J.: Words avoiding reversed subwords. J. Combin. Math.
and Combin. Comput. 54 (2005) 157–164

15. Cassaigne, J.: Motifs évitables et régularités dans les mots. PhD thesis, Université
Paris 6 (1994)

16. Entringer, R., Jackson, D., Schatz, J.: On nonrepetitive sequences. J. Combin.
Theory. Ser. A 16 (1974) 159–164

Design and Simulation of Self-repairing DNA
Lattices

Urmi Majumder, Sudheer Sahu, Thomas H LaBean, and John H Reif

Department of Computer Science, Duke University, Durham, NC, USA
{urmim, sudheer, thl, reif}@cs.duke.edu

Abstract. Self-repair is essential to all living systems, providing the
ability to remain functional in spite of gradual damage. In the context of
self-assembly of self-repairing synthetic biomolecular systems, recently
Winfree developed a method for transforming a set of DNA tiles into
its self-healing counterpart at the cost of increasing the lattice area by
a factor of 25. The overall focus of this paper, however, is to develop
compact designs for self-repairing tiling assemblies with reasonable con-
straints on crystal growth. Specifically, we use a special class of DNA
tiling designs called reversible tiling which when carefully designed can
provide inherent self-repairing capabilities to patterned DNA lattices.
We further note that we can transform any irreversible computational
DNA tile set to its reversible counterpart and hence improve the self-
repairability of the computational lattice. But doing the transform with
an optimal number of tiles, is still an open question.

1 Introduction

Currently, many scientists are in the process of substituting existing top-down
techniques used in conventional manufacturing processes with bottom-up as-
sembly techniques. This involves, among other things, developing self-assembly
methods for patterning nano-materials as an alternative to using lithographic
techniques. However, eventually, nanostructures can be damaged. What can we
do when a self-assembled nanostructure is damaged?

1.1 The Challenge of Self Repairing Biomolecular Systems

This question leads us to realize that nature’s capability to self-repair still far
exceeds the self-healing capability of synthetic biochemical systems. As nanosci-
entists are building more complex systems at the molecular scale each day, this
challenge of Self-Repairing Biomolecular Systems will become increasingly im-
portant. In fact, an interdisciplinary team at the University of Illinois at Urbana-
Champagne has already developed a polymer composite that has the ability to
self heal microcracks[24]. In the context of self-assembled nano-structures, such
a system will provide a transition from the existing simple one-time assemblies
to self-repairing systems, yielding capabilities that have broad impact to nano-
engineering and provide numerous feasible practical applications.

C. Mao and T. Yokomori (Eds.): DNA12, LNCS 4287, pp. 195–214, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

196 U. Majumder et al.

One interesting specific challenge in the area of self-repair to be addressed in
this paper is to develop a molecular architecture for self-repairing memory. The
interesting feature of this architecture is that, in spite of partial destruction of
the nanostructure storing the memory, its bits can be restored.

1.2 Use of DNA Lattices to Demonstrate Self-repairing Processes

While the ultimate goal here is to build and experimentally demonstrate self-
repairing capabilities for a variety of biomolecular systems, we need to begin
first with well-understood chemistries. DNA has emerged as an ideal material
for constructing self-assembled nanostructures because of its well defined struc-
tural properties, immense information encoding capacity and excellent Watson-
Crick pairing. Exciting progress has been made on many frontiers of DNA
self-assembled structures recently, especially in constructing DNA Lattices formed
of DNA nanostructures known as DNA Tiles [4,3,2,6,1]. Thus we feel this pro-
vides an ideal platform on which self-repair at the molecular scale can be
demonstrated.

1.3 Programmable Self-assembly and Self-repairability

One of the important goals of nanotechnology is to develop a method for as-
sembling complex, aperiodic structures. Algorithmic self-assembly(AA) achieves
this goal. AA has a strong theoretical foundation due to Winfree[4] but its ex-
perimental demonstration is quite limited by assembly errors, because while the
theoretical model assumes a directional growth, crystals in reality can grow in all
possible directions. This results in ambiguities at the binding sites. Consequently
mismatch errors prevent further growth of the computational lattices. This is ev-
ident from the few experimental demonstrations of algorithmic assembly we have
so far[17,18].

There have been several designs of error-resilient tile sets [9,7,10] that perform
“proofreading” on redundantly encoded information [7] to decrease assembly
errors. However, they too assume the notion of forward directional growth of the
tiling lattice. Hence self-repair is not always feasible with such tile sets because
of errors due to possible re-growth of the lattice in reverse direction.

Winfree[8], however, recently proposed an ingenious scheme that makes use of
modified DNA tiles that force the repair reassembly to occur only in a forward
manner. He converted an original tile set into a new set of self-healing tiles that
perform the same construction at a much larger scale (5-fold larger scale in each
direction and hence the new lattice requires a multiplicative factor of 5× 5 = 25
more area) However, the much larger scale appears to make his construction
more of theoretical interest than of practical use. The challenge is to limit the
number of new tiles required, so that such a procedure can be applied in practice.

1.4 Our Paper’s Results and Organization

The goal of this paper is to use a class of DNA tile sets with a certain property we
call reversibility which will allow the reassembly of DNA tiles within a damaged

Design and Simulation of Self-repairing DNA Lattices 197

lattice to occur in all possible directions without error with respect to at least
two adjacent binding sites.

In section 2 of this paper we discuss how carefully designed reversible com-
putations can improve self-repairing capability of the tiling with a specific in-
stance called Reversible XOR. We observe that this lattice allows the first known
molecular architecture for a self-repairing memory by storing bits in a two di-
mensional(2D) spatial domain which due to its self-healing properties is capable
of restoring the bits in case of its partial destruction. We further introduce a
new measure for computing the self-repairability of a tile set.

In section 3, we discuss two models for the extent of damage a DNA lattice
suffers when acted upon by an external impulse in two different environments:
1)when it has a solid support and 2)when its free-floating in aqueous solution.

Section 4 of this paper provides DNA tile designs for RXOR tiling lattices. In
the light of these designs, we discuss our experimental results with just the rule
tiles. However, in order to have interesting patterns in the computational lattice
we are currently designing a completely addressable nucleating structures for AA.

In section 5, we discuss techniques from theory of computation to transform
irreversible CA to reversible CA that in theory improves the self-repairability of
the corresponding computational DNA lattice. We also observe that doing the
transformation with minimum number of tiles is still an unsolved problem.

2 Reversible Tiling Lattices and Their Self-repairing
Properties

2.1 Reversible Computations and Reversible Tiling Lattices

A computation is said to be reversible if each step of the computation can be
reversed, so that the computation can proceed in both forward or reverse manner.
What is the relevance of reversible computation to the problem of self-repairing
molecular assembly? Reversible computations have some unique properties, since
they allow a partial computation to complete in a unique manner. A molecular
assembly using DNA tiles can be viewed as a computation, where each step is
executed by a given tile that is assembled adjacent to other previously assembled
tiles. Each tile takes as its inputs the matching tiles of adjacent already placed
tiles and provides as output the available free pads. Essentially, the tile computes
an individual step mapping the values of its attached pads to the values of its
still unattached pads. In general, forward-only tilings assume we are adding to a
growing aggregate that started from within a concavity, and where further tiles
can only be added to the lattice within the concavity. In contrast, some of the
reversible tilings discussed here are also able to extend via tiles added to convex
edges of the growing lattice. A careful tile design along with the reversibility
property, allows a partially destroyed tiling lattice to be easily repaired, so long in
the repair reassembly tiles are added with at least two adjacent matching binding
sites. The reversible XOR tile set described just below is an interesting example
of reversible self-assembly. It realizes a complex pattern that can achieve self-
healing without increasing assembly time or number of tile types. In addition,

198 U. Majumder et al.

such a self-healing assembly can act as a scaffold for other elements, for e.g.
protein and would ensure self healing of the substance to which the self-assembled
lattice acts as a scaffold. We now formally define self-repair in the context of self-
assembly with square abstract tiles with four sticky ends on four sides, before
discussing how reversibility can improve self-repairability.

Definition 1. We call a tile set self-repairing, if any number of tiles are re-
moved from a self-assembled aggregate to generate convex hole(s) such that all
the remaining tiles still form a connected graph1, then subsequent growth is guar-
anteed to restore every removed tile without error so long as repair reassembly
happens with respect to at least two adjacent binding sites

Note: This is a more restricted version of self-repairing tile set compared to the
one that is described in [8]. Throughout the paper, we’ll use this definition of
self-repairing tile set and we also use the terms self-healing and self-repairing
interchangeably.

2.2 The Reversible XOR Operation

We will now consider an interesting example of a reversible operation known as
Reversible XOR(RXOR).

The exclusive OR (known as XOR) operation takes as input two Boolean
arguments (each can be true(T) or false (F)) and returns T if one, and only
one, of the two inputs is true. Also, the XOR operation combined with one
further simple Boolean operation (that does not alter values between input and
output) makes the unit reversible and is known to provide a logical basis to do
any Boolean computation. We call this Reversible XOR(RXOR).

2.3 RXOR: A Family of Reversible Tiling Lattices

We describe a family of lattices called RXOR lattices that uses the XOR opera-
tion at each tile to form an interesting patterned lattice with reversible tiles. In
the DNA tile implementation, each tile has two sticky ends on each side which
is central to the lattice formation. Figure 1(a+b) gives the template and the set
of rule tiles for one instance of reversible XOR.

Periodic and Nonperiodic Patterns RXOR Tiling Lattices. The figures
in 1(c) illustrate some of the great variety of (periodic and nonperiodic) patterns
that can be generated via RXOR operations at each tile. The rule tiles, the color-
ing scheme and the ideal lattice formed (when there are no errors) in each case is
given in figure 1(c). (Note: All the simulations assume a tile assembly model with
τ = 2, where τ is the number of binding sites for a tile to bind to the growing tiling
lattice.) The lattices with triangular patterns(figure 1(c):(ii)+(iv)) are interest-
ing and complex, but it is difficult to determine errors in this lattice. The lattices
1 In the context of tile assembly, each tile is a vertex and the sticky end connections

among the tiles denote the edges. An aggregate is connected if every tile can be
reached from every other tile in the aggregate following the sticky end connections.

Design and Simulation of Self-repairing DNA Lattices 199

yy

0

0

0

0

0

1

1

1

1

0

1

0

1

0

1

(a)

(b)

x

1

x ⊕ y

0
1

1
1 1

1

0

1 11

0
0

0

0 0

1
0

1
0 0

Rule Tiles (i)

0
0

0

0 0

1
0

1
1 1

Rule Tiles

0
1

1
0 0

1

0

1 11

(ii)

0
0

0

0 0

1
0

1
0 1

Rule Tiles

0
1

1
1 1

1

0

1 10

(iii)

0
0

0

0 0

1
0

1
1 1

Rule Tiles

0
1

1
0 1

1

0

1 10

(iv)

0
0

0

0 0

1
0

1
0 1

Rule Tiles

1
1

1
1 0

0

0

1 11

(v) (vi)

(c)

Fig. 1. (a)RXOR template, (b)Four Rule Tiles for RXOR, (c)Assembly of rule tiles
within a frame defining the boundary of lattice growth according to aTAM:Rule
tiles(left)+ resultant lattice(right):(i) propagation of the input y, (ii) propagation of
the input x, (iii) propagation of input y but coloring of the tile based on the xor value
in the tile, (iv) propagation of input x but coloring of the tile based on the xor value in
the tile, (v)propagation of both inputs but coloring of the tile based on the xor value
in the tile, (vi)Assembly of only the rule tiles, portion of error-free lattice(inset)

with band structure(figure 1(c):(i)+(iii)+(v)) are interesting since they can re-
dundantly store bits in one/two dimension (by this we mean a bit is propagated
through the linear lattice). In general such a n×n lattice can store n bits (by this
we mean n bits are propagated through the n×n lattice)(figure 1(c):(i)+(iii)) and
2n bits as in figure 1(c):(v). Note that although figure 1(c):(ii)+(iv), demonstrate
reversible computation they are not self-repairing. However, in figure 1(c):(i)+(iii)
+(v) if some of the lattice tiles are removed, the self-repair will restore the lattice
and preserve the bits. Error in the lattices from figure 1(c):(i)+(iii) occurs when-
ever there is a discontinuity in the horizontal bands. Error analysis of the lattice in
figure 1(c):(v) is also quite simple(except when two blue bands intersect and the
color reverses, any discontinuity in the band structure corresponds to a mismatch
error).

Various RXOR Tiling Lattices with Errors. Although all the tiling lattices
shown in figure 1 are reversible, we will use the tiling lattice given in Figure
1(figure 1(c):(v)) as the example RXOR lattice in our further discussions below
of self-repair and experimental demonstrations.

As the AFM images of lattices in preliminary lab experiments did not have
a frame, and self-assembly is error-prone, the lattice formed is not ideal. Hence,
to estimate error rates, one can observe the largest portions of the lattice which
are error-free[Figure 1(figure 1(c):(vi))].

200 U. Majumder et al.

(a)

0
0

0
0
0

0
1

0
1 11

1

1
1 0

1
0 0

1
1

0
1

0
1 1

0
1

0
1 1 1

1

1
1 0

0
0

0
0
0

0
0

0
0
0

0
0

0
0
0

0
0

0
0
0

1
0 0

1
1

0
0

0
0
0

0
0

0
0
0

0
1

0
1 1

0
1

0
1 1

1
0 0

1
1

1
0 0

1
1

1
1

1
1 0

0
1

0
1 1

0
0

0
0
0

0
0

0
0
0

0
0

0
0
0

0
1

0
1 1

0
0

0
0
0

0
0

0
0
0

1
0 0

1
1

1
0 0

1
1

1
1

1
1 0

0
1

0
1 1

0
1

0
1 1

0
1

0
1 1 1

1

1
1 0

0
1

0
1 1

0
0

0
0
0

0
0

0
0
0

0
0

0
0
0

0
0

0
0
0

0
0

0
0
0

0
0

0
0
0

0
1

0
1 1

1
0 0

1
10

0
0

0
00

0
0

0
0

1
0 0

1
10

0
0

0
00

0
0

0
0

1
0 0

1
10

0
0

0
00

0
0

0
0

0
0

0
0
0 0

0
0

0
0

1
0 0

1
1

0
0

0
0
0

1
0 0

1
1

0
1

0
1 1 1

1

1
1 0

0
0

0
0
0 0

0
0

0
0

0
0

0
0
0 0

0
0

0
0

1
0 0

1
1

1
0 0

1
1 0

0
0

0
0

0
1

0
1 1

0
1

0
1 1

0
1

0
1 1 1

1

1
1 0

0
0

0
0
0 0

0
0

0
0

1
0 0

1
1 0

0
0

0
0 0

0
0

0
0

1
0 0

1
1 0

0
0

0
0 0

0
0

0
0

1
0 0

1
1

0
0

0
0
0

0
0

0
0
0

0
1

0
1 1

0
0

0
0
0

0
0

0
0
0

0
1

0
1 1

1
0 0

1
1 0

0
0

0
0 0

0
0

0
0

0
0

0
0
00

0
0

0
0

1
0 0

1
1

1
1

1
1 0

0
1

0
1 1

0
1

0
1 1

1
0 0

1
1

1
0 0

1
1

1
1

1
1 0

0
0

0
0
0 0

0
0

0
0

1
0 0

1
1

0
0

0
0
0 0

0
0

0
0

1
0 0

1
1

1
1

1
1 0

0
1

0
1 1

0
1

0
1 1

(a)

(b) (i)

0
1

0
1 1

0
1

0
1 1 1

1

1
1 0

0
0

0
0
0

0
0

0
0
0

0
0

0
0
0

0
1

0
1 1

0
1

0
1 1

0
0

0
0
0 0

0
0

0
0

1
0 0

1
1

1
0 0

1
1

0
1

0
1 1 1

1

1
1 0

0
0

0
0
0

0
0

0
0
0

0
0

0
0
0

0
0

0
0
0

0
1

0
1 1

1
0 0

1
10

0
0

0
00

0
0

0
00

0
0

0
0

0
0

0
0
0

0
0

0
0
0

1
0 0

1
1

0
1

0
1 1 1

1

1
1 0

0
0

0
0
0

0
0

0
0
0

0
1

0
1 1

0
1

0
1 1

0
0

0
0
0

1
0 0

1
1 0

0
0

0
0

0
0

0
0
0 0

0
0

0
0

0
0

0
0
0

0
1

0
1 1

0
0

0
0
0 0

0
0

0
0

1
1

1
1 0

0
1

0
1 1

0
1

0
1 1

1
0 0

1
1

1
0 0

1
1

1
1

1
1 0

0
0

0
0
0

1
0 0

1
1

1
0 0

1
1

0
0

0
0
0

(ii)
(b)

0
1

0
1 1

0
1

0
1 1 1

1

1
1 0

0
0

0
0
0

0
0

0
0
0

0
0

0
0
0

0
1

0
1 1

0
1

0
1 1

0
0

0
0
0 0

0
0

0
0

1
0 0

1
1

1
0 0

1
1

0
1

0
1 1 1

1

1
1 0

0
0

0
0
0

0
0

0
0
0

0
0

0
0
0

0
0

0
0
0

0
1

0
1 1

1
0 0

1
10

0
0

0
00

0
0

0
00

0
0

0
0

0
0

0
0
0

0
0

0
0
0

1
0 0

1
1

0
1

0
1 1 1

1

1
1 0

0
0

0
0
0

0
0

0
0
0

0
1

0
1 1

0
1

0
1 1

0
0

0
0
0

1
0 0

1
1 0

0
0

0
0

0
0

0
0
0 0

0
0

0
0

0
0

0
0
0

0
1

0
1 1

0
0

0
0
0 0

0
0

0
0

1
1

1
1 0

0
1

0
1 1

0
1

0
1 1

1
0 0

1
1

1
0 0

1
1

1
1

1
1 0

0
0

0
0
0

1
0 0

1
1

1
0 0

1
1

0
0

0
0
0

0
0

0
0
0 1

1

1
1 0

0
1

0
1 1

1
0 0

1
1

0
0

0
0
0

1
0 0

1
1

0
0

0
0
0

0
0

0
0
0

0
0

0
0
0

0
0

0
0
0

0
0

0
0
0

0
0

0
0
0

0
0

0
0
0

1
0 0

1
10

0
0

0
0

1
1

1
1 0

0
0

0
0
0

0
0

0
0
0

0
0

0
0
0

1
1

1
1 0

1
0 0

1
1

0
0

0
0
0

1
0 0

1
1

0
1

0
1 1

0
1

0
1 1

(a)

(b) (i)

0
1

0
1 1

0
1

0
1 1 1

1

1
1 0

0
0

0
0
0

0
0

0
0
0

0
0

0
0
0

0
1

0
1 1

0
1

0
1 1

0
0

0
0
0 0

0
0

0
0

1
0 0

1
1

1
0 0

1
1

0
1

0
1 1 1

1

1
1 0

0
0

0
0
0

0
0

0
0
0

0
0

0
0
0

0
0

0
0
0

0
1

0
1 1

1
0 0

1
10

0
0

0
00

0
0

0
00

0
0

0
0

0
0

0
0
0

0
0

0
0
0

1
0 0

1
1

0
1

0
1 1 1

1

1
1 0

0
0

0
0
0

0
0

0
0
0

0
1

0
1 1

0
1

0
1 1

0
0

0
0
0

1
0 0

1
1 0

0
0

0
0

0
0

0
0
0 0

0
0

0
0

0
0

0
0
0

0
1

0
1 1

0
0

0
0
0 0

0
0

0
0

1
1

1
1 0

0
1

0
1 1

0
1

0
1 1

1
0 0

1
1

1
0 0

1
1

1
1

1
1 0

0
0

0
0
0

1
0 0

1
1

1
0 0

1
1

0
0

0
0
0

0
0

0
0
0

1
0 0

1
1

0
0

0
0
0

0
0

0
0
0

0
0

0
0
0

0
0

0
0
0

0
0

0
0
0

0
0

0
0
0

0
0

0
0
0

1
0 0

1
10

0
0

0
0

1
1

1
1 0

0
0

0
0
0

0
0

0
0
0

0
0

0
0
0

1
1

1
1 0

1
0 0

1
1

0
0

0
0
0

1
0 0

1
1

0
1

0
1 1

0
1

0
1 1

0
0

0
0
0 1

1

1
1 0

0
1

0
1 1

1
0 0

1
1

0
1

0
1 1

0
0

0
0
0

1
0 0

1
1

1
0 0

1
1

0
0

0
0
0

0
1

0
1 1

0
0

0
0
0

0
0

0
0
0

0
1

0
1 1

1
0 0

1
1

0
0

0
0
0

0
1

0
1 1

1
1

1
1 0

1
0 0

1
1

0
0

0
0
0

0
0

0
0
0

0
1

0
1 1

(a)

(b) (ii)

0
1

0
1 1

0
1

0
1 1 1

1

1
1 0

0
0

0
0
0

0
0

0
0
0

0
0

0
0
0

0
1

0
1 1

0
1

0
1 1

0
0

0
0
0 0

0
0

0
0

1
0 0

1
1

1
0 0

1
1

0
1

0
1 1 1

1

1
1 0

0
0

0
0
0

0
0

0
0
0

0
0

0
0
0

0
0

0
0
0

0
1

0
1 1

1
0 0

1
10

0
0

0
00

0
0

0
00

0
0

0
0

0
0

0
0
0

0
0

0
0
0

1
0 0

1
1

0
1

0
1 1 1

1

1
1 0

0
0

0
0
0

0
0

0
0
0

0
1

0
1 1

0
1

0
1 1

0
0

0
0
0

1
0 0

1
1 0

0
0

0
0

0
0

0
0
0 0

0
0

0
0

0
0

0
0
0

0
1

0
1 1

0
0

0
0
0 0

0
0

0
0

1
1

1
1 0

0
1

0
1 1

0
1

0
1 1

1
0 0

1
1

1
0 0

1
1

1
1

1
1 0

0
0

0
0
0

1
0 0

1
1

1
0 0

1
1

0
0

0
0
0

0
0

0
0
0

1
0 0

1
1

0
0

0
0
0

0
0

0
0
0

0
0

0
0
0

0
0

0
0
0

0
0

0
0
0

0
0

0
0
0

0
0

0
0
0

1
0 0

1
10

0
0

0
0

1
1

1
1 0

0
0

0
0
0

0
0

0
0
0

0
0

0
0
0

1
1

1
1 0

1
0 0

1
1

0
0

0
0
0

1
0 0

1
1

0
1

0
1 1

0
1

0
1 1

0
1

0
1 1

0
0

0
0
0

1
0 0

1
1

1
0 0

1
1

0
0

0
0
0

0
1

0
1 1

0
0

0
0
0

0
0

0
0
0

0
1

0
1 1

1
0 0

1
1

0
0

0
0
0

0
1

0
1 1

1
1

1
1 0

1
0 0

1
1

0
0

0
0
0

0
0

0
0
0

0
1

0
1 1

0
0

0
0
0 1

1

1
1 0

0
1

0
1 1

1
0 0

1
1

0
1

0
1 1

0
0

0
0
0

1
0 0

1
1

0
0

0
0
0

0
1

0
1 1

0
0

0
0
0

1
0 0

1
1

1
0 0

1
1

(a)

(b) (iii)

0
1

0
1 1

0
1

0
1 1 1

1

1
1 0

0
0

0
0
0

0
0

0
0
0

0
0

0
0
0

0
1

0
1 1

0
1

0
1 1

0
0

0
0
0 0

0
0

0
0

1
0 0

1
1

1
0 0

1
1

0
1

0
1 1 1

1

1
1 0

0
0

0
0
0

0
0

0
0
0

0
0

0
0
0

0
0

0
0
0

0
1

0
1 1

1
0 0

1
10

0
0

0
00

0
0

0
00

0
0

0
0

0
0

0
0
0

0
0

0
0
0

1
0 0

1
1

0
1

0
1 1 1

1

1
1 0

0
0

0
0
0

0
0

0
0
0

0
1

0
1 1

0
1

0
1 1

0
0

0
0
0

1
0 0

1
1 0

0
0

0
0

0
0

0
0
0 0

0
0

0
0

0
0

0
0
0

0
1

0
1 1

0
0

0
0
0 0

0
0

0
0

1
1

1
1 0

0
1

0
1 1

0
1

0
1 1

1
0 0

1
1

1
0 0

1
1

1
1

1
1 0

0
0

0
0
0

1
0 0

1
1

1
0 0

1
1

0
0

0
0
0

0
0

0
0
0

1
0 0

1
1

0
0

0
0
0

0
0

0
0
0

0
0

0
0
0

0
0

0
0
0

0
0

0
0
0

0
0

0
0
0

0
0

0
0
0

1
0 0

1
10

0
0

0
0

1
1

1
1 0

0
0

0
0
0

0
0

0
0
0

0
0

0
0
0

1
1

1
1 0

1
0 0

1
1

0
0

0
0
0

1
0 0

1
1

0
1

0
1 1

0
1

0
1 1

0
1

0
1 1

0
0

0
0
0

1
0 0

1
1

1
0 0

1
1

0
0

0
0
0

0
1

0
1 1

0
0

0
0
0

0
0

0
0
0

0
1

0
1 1

1
0 0

1
1

0
0

0
0
0

0
1

0
1 1

1
1

1
1 0

1
0 0

1
1

0
0

0
0
0

0
0

0
0
0

0
1

0
1 1

0
1

0
1 1

0
0

0
0
0

1
0 0

1
1

0
0

0
0
0

0
1

0
1 1

0
0

0
0
0

1
0 0

1
1

1
0 0

1
1

0
0

0
0
0 1

1

1
1 0

0
1

0
1 1

1
0 0

1
1

1
1

1
1 0

1
0 0

1
1

0
0

0
0
0

(a)

(b) (iv)

Fig. 2. a: Original self-assembled lattice(i) and damaged lattice(ii) b: A possible Self
Healing Lattice Growth from (i) to (iv)

RXOR Tiling Lattices as an Example of Self-Healing Patterned Lat-
tices. Previous work suggested that reversible self assembly can perform ”proof-
reading” on redundantly encoded information[7]. Carefully designed RXOR is an
interesting example of reversible self-assembly that achieves self-healing, with-
out increasing assembly time or number of tile types as required by Winfree’s
Self-Healing construction [8]. For instance, consider the original 10× 10 lattice
in figure 2(a(i)). Suppose this lattice is damaged and the resulting structure
looks like the one in figure 2(a(ii)). Since the tile set is self-healing, so one can
recover the original lattice gradually. Ideally in the first step, all the tiles in the
damaged lattice with at least two free binding site are available for attaching
new tiles which are shown in different shades of the original color scheme[Figure
2(b(i))]. In the subsequent steps, the lattice grows further based on the newly
incorporated tiles[Figure 2(b):(ii)+(iii)] and finally one obtains the original lat-
tice[Figure 2(b):(iv)].

Use of RXOR Tiling Lattices to Redundantly Store/Copy Bits. Note
that a row or a column in any rectangular window of the lattice in figure 1c(v)
is entirely determined by a single cell. For instance, if a tile propagates 0 in the
north-south direction and 1 in the east-west direction, then the corresponding
column will have tiles with 0 in the north-south direction and the corresponding
row will have tiles with 1 in the east-west direction. Thus a m × n lattice can
store a total of m + n bits and can be used as a self-healing memory because
if damaged the m × n memory is capable of recovering all the m + n bits as is
shown in figure 2.

Design and Simulation of Self-repairing DNA Lattices 201

2.4 Reversibility Improves Self-repairability

In figure 3b we present three examples of computation in the increasing order
of their reversibility. While computations for RXOR and Sierpinski Triangle
pattern generation(ST) are self-explanatory, Binary Counter(BC) computation
is reversible 50% of the time since out of the four possible combinations of the
two inputs, we can retrieve them from the output sum and output carry only in
two cases(when sum is zero and carry is either zero or one). However, in terms
of self-repairability, RXOR tiling lattice completely self-heals, since for every
possible open site in the latter lattice, there is a unique tile that can be bound
to it given the constraints on crystal growth. But both BC and ST tiling lattices
create ambiguity for tile attachment in a convex lattice site[Figure 3a]

Based on [27], we conclude that in general a tile set is self-healing, if the fol-
lowing constraints are satisfied. Let the inputs be x and y and the corresponding
outputs be f(x, y) and g(x, y) with the arrangement of the input output ends in
an abstract square tile starting from the north end in a clockwise direction as
g(x, y), x, y, f(x, y). The tile set is self-repairing if and only if

– if f(x, y) is input sensitive to x if y is constant and g(x, y) is input sensitive
to y if x is constant and

– if both change then at least one of f(x, y) or g(x, y) also changes, the tile
set is self-repairing

2.5 A Measure for Error-Resilience and Self-repairability

In general, when we design a tile set for algorithmic self-assembly it would be
very useful if we can estimate its robustness against mismatch errors so long
crystal growth occurs with respect to at least two adjacent binding sites. This
also applies to the self-healing of a damaged lattice. Thus, we introduce a new
measure for self-repairability of a tile set which we call ”corner site ambiguity”.
This is inspired by [22] where the authors address the question of how the prop-
erties of a tile system are related to the periodicity of the resultant self-assembled
nanostructures. We now define a corner site and corner site ambiguity

Definition 2. A corner site is a pair of adjacent binding sites in a growing
aggregate or in a convex hole in a damaged lattice.

To reiterate, our abstract tiles are squares as in the original tile assembly model
and the inputs are at the south and east ends. Thus the total number of possible
corner sites with the number of tiles in the tile set T as w is 4w.

Definition 3. We define corner site ambiguity C(T) as the average number of
tiles in a tile set T that can bind to an available corner site.

To measure C(T), we compute the number of tiles that can bind to each corner
site first and then compute the average.

202 U. Majumder et al.

(a) Reversible XOR

x

y

x+y

x+y

Template

0

0

00 01
0

0

0

1

1

1

1

1 1

1

x

y

x+y

xy

Template

0

0

00 00
0

0

1

1

1

1

1

0 1

1

x

y

x+y

y

Template

0

0

00 00
0

0

1

1

1

1

1

1 1

1

Irreversible computation(no self-healing)

Partially reversible computation
(50% of the time the lattice self-heals)

Fully reversible computation
Completely self-heals

reason for ambiguity for backward computation

another reason for ambiguity for backward computation

reason for ambiguity for backward computation

XOR

Binary Counter

(b)

Fig. 3. (a)Concrete Self-healing comparison during lattice growth for completely re-
versible assembly and completely irreversible assembly, (b) Degree of reversibility com-
parison based on ambiguity of adjacent binding sites for the rule tiles of traditional
assemblies

Corner Site Ambiguity and Self-Repairability. A tile set is self-repairing
if and only if,

C(T) = ∀T, min{C(T)}
In other words, if all of the 4w corner sites are distinct, then exactly one tile can
bind to it and hence C(T) = 1. In terms of concrete examples, the RXOR tile
set has C(T) = 1 while each of ST and BC tile set has C(T) = 1.25. Obviously,
the higher the value of C(T), the more error-prone is the resultant assembly and
re-assembly after lattice damage.

3 Models for Lattice Damage and Self-repair

Since we are yet to estimate the extent of damage that can happen in reality
through concrete experiments, we developed a damage model to bridge the gap.
Two different situations are considered: first when the lattice has a rigid support
and second when its free floating in aqueous solution. Further we present a
probabilistic model for self-repair given a damaged lattice.

3.1 Models for Lattice Damage

Probabilistic Model for Mechanical Damage on a Rigid Surface. Here
we are concerned with the problem of estimating the extent of damage when the
lattice with a rigid support is acted upon by an external impulse, for e.g damage
created when the AFM tip hits the DNA lattice lying on mica during imaging .
We model the lattice as a crystal as in [12]. Thus the force F1 in a tile located
at a distance of r from the tile receiving the impulse is proportional to 1√

r
. F2

is the resistive force from the sticky end connections of the tiles. So long for any
tile F1 > F2, the probability that a tile gets knocked off the lattice is greater

Design and Simulation of Self-repairing DNA Lattices 203

than zero given that the shock wave has traveled to it from origin of damage. To
estimate the fraction of the lattice damaged, we first compute the probability of a
damage path of length i. The latter is defined as a path that originates in the tile
which is directly hit by the tip say O, meanders outwards through its successors
< S1, S2, S3, . . . Si−1 > and stops at Si. Here each of O, S1, S2, S3, . . . Si−1 are
knocked off the lattice except for Si[Figure6(a) in the Appendix]. Let us denote
the probability of the damage path that stops at Si by P (i). Now Si is located
at a Manhattan distance of i from O. As F1 drops off as 1√

r
, so the probability

that a tile will fall off, given that at least one of its neighbors is already knocked
off, is given by p√

r
where 0 < p < 1 is a function of F1 and can be evaluated

from the probability distribution for the damage path. Then,

P (i) =
pi

√
i− 1!

(1 − p√
i
) (1)

Since P (i) is a probability mass function, thus

l∑
i=1

P (i) = 1 (2)

Now we can estimate the expected fractional damage size D(n, l) for a lattice L
with n tiles, by summing the probabilities of a damage path from O to each Si in
the lattice. For ease of computation, we achieve this by calculating the number
of tiles at a Manhattan distance of i from O, ∀i, 1 . . . l.

D(n, l) =
(1− p) +

∑l
i=1 4i× P (i)
n

The first term account for the event when the damage path probabilistically
stops at O and 4i is the number of tiles located at a Manhattan distance i from
O. The simulation results are discussed in the appendix.

Model for Damage in a DNA Lattice in Aqueous Solution. Here we
model the rectangular DNA lattice of size m×n as a simple mass spring system
similar to cloth dynamics in computer graphics[23]. Here each tile is positioned
at grid point (i, j), i = 1, 2, . . . , m and j = 1, 2, . . . n. For simplicity, the external
mechanical impulse F hits the lattice at a single tile location and the internal
tension of the spring linking tile Ti,j with each of its neighbor Tk,l is given
by F inti,j = −∑(k,l)∈R Ki,j,k,l[li,j,k,l − l0i,j,k,l

li,j,k,l

||li,j,k,l||
] where R is the set of

Ti,j ’s neighbors such that Ti,j is linked to Tk,l for all (k, l) in the neighbor set,
li,j,k,l =

−−−−→
Ti,jTk,l, l0i,j,k,l is the natural length of the spring linking tiles Ti,j and

Tk,l and Ki,j,k,l is the stiffness of that spring. The value of Ki,j,k,l is dependent
on the type of bases that are involved at the sticky end match for the pair of
tiles. We however, assume that the stiffness K and the unextended spring length
l0 are the same for every pair of adjacent tiles.

Since it is difficult to obtain a closed form solution for the expected number of
tiles that gets knocked off the lattice because of the impulse, we outline a simple

204 U. Majumder et al.

simulation algorithm for estimating the number of tiles removed when an impulse
hits the lattice. The basic idea is as follows: Treat the lattice as a connected
graph where the state of the tiles is updated every Δt time. To that extent,
start a breadth first search from the tile receiving the original impulse. The tile
under consideration moves in Δt extending the springs with its neighbors. If
the extension is beyond some threshold value, the tile snaps off the lattice and
there’s no change of state for its neighbors. Otherwise, at the end of the Δt
interval, a component of the spring force pulls each of the neighbor in the same
direction as this tile while the same spring force tries to make this tile go in the
opposite direction. Continue the breadth first search and update the state of all
the tiles in the lattice. Repeat this whole set of events at every Δt time until the
lattice stabilizes or has completely fallen apart.

Obviously, as Δt → 0 we simulate the real situation. Some of the important
assumptions we make are follows: Δt is negligibly small, such that the velocity
of each tile remains constant in this interval. Further, it is difficult to model
collisions with water molecules, so we assume a damping force on each tile with
the damping constant of water α. The pseudocode for this algorithm is given in
the appendix.

The model captures the overall behavior of a free floating lattice when acted
upon by an external impulse, but it is rather sensitive to the parameter values
such as the stiffness constant of the spring and the fracture threshold. Another
important drawback is that our model does out consider tiles colliding spring
extension/contraction. This changes their relative velocity and may affect the
total number of tiles that actually get knocked off the lattice.

3.2 Probabilistic Model for Self-repair

Given a damaged lattice it is useful to estimate the likelihood of the lattice being
self-healed. The probability that an aggregate of size n will be formed is given
by 1 − 2ne−Gse[13] according to the kinetic Tile Assembly Model(kTAM). The
same expression can be used for computing the extent of self-repair. Hence the
probability that a damage of size n will be self-healed is 1− 2ne−Gse.

4 DNA Implementation of Self-repairing Lattices

4.1 The Computational Tiles

We used cross tile, sometimes also called a 4 x 4 tile [6] for the physical implemen-
tation of our RXOR lattice. This tile contains 4-armed branch junction oriented
in four directions in the lattice plane. [6] developed a method for further pro-
gramming the assembly of these DNA tiles to form large extents of highly regular
lattices which cancels out imperfections in individual tiles by a “corrugation”
technique[Figure 4]. The sticky ends implementation is also given in figure 4.
Two RXOR tiles, RXOR3 and RXOR4 were modified by incorporating a biotin
group into a T4 loop at the center of the tile structure for visualizing an out-
put of 1 bit. Streptavidin was then added to the solution of the self-assembled

Design and Simulation of Self-repairing DNA Lattices 205

RXOR lattice. Consequently, the interaction of streptavidin-biotin led to binary
streptavidin patterns that can be readily imaged. Details of the experimental
protocols is included in the appendix.

(a)

0
0

0

0

a1 a2

a3

a4

a
′

4 1

b
′
3

1

1

1

b
′
1

b4

b3b
′
4

b
′
2

1
0

1

0

b1 b2

a3

a4

b
′
1

a
′

4

a
′

3

b
′
2

0
1

0

1

a
′
1

b
′

3

b
′

4

b4

b3

a
′
2

a
′
2 a

′

1

a
′

3
RXOR2

RXOR3 RXOR4

RXOR1

b1 b2

a1 a2 (b)

Fig. 4. (a)Corrugated cross Sequence Design and Lattice, (b)Corrugated RXOR Tiles
with sticky ends. x

′

is the Watson Crick complement of x.

4.2 AFM Imaging of our Self-repairing Lattices

Our immediate goal was to verify the correct formation of the original lattice.
We observed some micron sized lattices but they are probably formed by the
self-association of either all zero tiles or all one tiles(both are without unary
markers and are capable of forming nanogrids)[Figure 5](a+b). Although both
patterns are valid in our computational lattice, as is evident from figure1c(v), we
would prefer to observe some more interesting structures such as crisscrossing
bands. This can be ensured through the use of a pre-assembled boundary for the
computation[Figure 5c].

We also observed single tile mismatches. Our model assumes that tiles will
attach with respect to at least two adjacent binding sites. Although in theory
this can be achieved by manipulating the physical conditions, in reality, tiles still
bind with respect to one matching binding site. One possible mechanism to deal
with this will be the compact error-resilient design in [9], although it is likely to
introduce new ambiguities.

4.3 Completely Addressable Nucleating Structure for Algorithmic
Assembly

The ultimate goal of boundary formation in programmable assembly is to pro-
vide input for subsequent two dimensional growth. Until now we have been able
to form specific structures but we have not been able to control their poly-
merization. Schulman, et al. demonstrated in [11] it is difficult to create large
uniformly sized ”V” and ”X” boundaries with their DX tile[29] set. However,
Pistol, et al. recently demonstrated [25,20] a 140nm×140nm fully synthetic and
programmable 64-motif DNA nanostructure using cross tile. In the light of these
findings, our current research focus involves meeting halfway between algorith-
mic assembly and addressable assembly with a fully programmable multi-tile
seed and algorithmic rule tiles. Full addressability in a multi-tile system will

206 U. Majumder et al.

guarantee it forms correctly and would also make our search for correct struc-
tures easier during AFM imaging. Using hierarchical assembly, a nanotrack of
AB tile system[26] can further assemble onto the seed and provide an arbitrary
combination of zero-one inputs to the computational tiles.

(a) (b)

0

1

0

0 0 1 1

1

1

Seed

Fully addressable boundary
Generates finite sized memory

Fully addressable boundary
Generates finite sized memory

(b)(a)

01 by hierarchical assembly

1

0

0 0 1 1

1

1

Seed

Stage 1

1

0

0 0 1 1

1

1

Seed

Stage 2

0 0 0

0

1

Generates bigger memory
Minimizes the number of unique tiles required

(c)

Generates finite sized memory

More likely to grow
than corner nucleating
strand

Fully addressable diagonal nucleating strand

for self−healing
tile set

Suitable only

1

1

1 1

0

0 0

1

1

(c)

Fig. 5. a)Computational Lattice, 5μm× 2.5μm formed by the association of zero tiles,
b)Computational Lattice, 2μm × 2μm formed again by the association of zero tiles.
This reveals the beneficial effect of corrugation but the computational lattice lacks
interesting band structure, c)Pre-assembled Nucleating Structure Design:Use of fully
addressable lattice design

5 Self-repairing Transformation for any Tile Set

One of the major goals of algorithmic self-assembly is to provide compact de-
signs for self-repairing error-resilient tile set. In this paper we demonstrated
that a carefully designed tile set performing reversible computation can be self-
repairing. Unfortunately, not all reversible tile sets are self-repairing. However,
since reversibility ensures uniqueness for the adjacent pair of outputs, it definitely
does improve the self-repairability of the tile set. So transforming an irreversible
tile set into a reversible tile set improves its error-resilience. In fact we can show
that reversible tiling is Turing Universal and thus any tile set will benefit from
such a transformation.

It was shown by Winfree[14] that a two dimensional tiling lattice can be used
to simulate any 1 dimensional Cellular Automata(CA). We can similarly prove
that if the given CA is reversible, then the resulting tiling lattice is reversible.

Theorem 1. A two dimensional DNA lattice with reversible tiles and size n×T
can be used to simulate a one dimensional reversible CA with n cells running in
time T .

The proof of this theorem is given in the appendix.

Morita in [21], outlines a transformation technique for converting a 1D 3
neighbor CA to a 1D 3 neighbor partitioned CA. We can directly map this
technique to DNA self-assembly.

Design and Simulation of Self-repairing DNA Lattices 207

If we restrict ourselves to one function instead of two, as in ordinary CA, one
can have an abstract tile which has six sticky ends, three for inputs and three
for outputs. In case of the ordinary CA, the three inputs denotes the values
of the cell and its left and right neighbors while the three outputs contain the
same output value which serve as inputs to the triplet directly above in the next
computation step in a τ = 3 Abstract Tile Assembly Model[13][Figure 9a in the
appendix].

In case of a partitioned CA, the inputs are right output of the left cell, cen-
ter output of the middle cell and the left output of the right cell directly be-
low(corresponds to the previous computation step) and the three outputs are
respectively the left, center and right outputs of the cell. The latter serve as the
right input of the left cell, the center input of the middle cell and the left input
of the right cell directly above(corresponds to the next computation step)[Figure
9b in the appendix].

Theorem 2. A 2D DNA lattice performing reversible computation and size
(2n + 7)T can simulate a DNA lattice performing irreversible computation and
size nT

Proof. Morita in [21] further showed that the number of steps T (n) to simulate
one step of an ordinary 1D 3 neighbor CA A by a partitioned D 3 neighbor CA
P is 2n + 7 in the worst case. When combined with the previous theorem, this
implies the result.

One observation here is that, although the size of the transformed tile set is still
asymptotically the same as before(A CA with alphabet C and |C|3 rules will
have O(|C|3) for its reversible counterpart crystal growth in a τ = 3 model),
the blow up for all practical purposes is fairly high. For instance, if we consider
a binary alphabet then a tile set with 8 tiles yield a set of 58 tiles in its re-
versible counterpart. Accommodating this seven fold increase in a biomolecular
implementation is not very practical yet.

This motivates us to investigate redundancy based self-repairing schemes
where redundancy is created by encodings in the pads of the tiles with no scale
up of the assembly. Unfortunately this direction is no more promising.

Theorem 3. There is no compact reversible transformation to generate a self-
healing tile set for any irreversible computation using redundancy based scheme.

Proof. Following the notation in [27], in order to make any tile set reversible
we can incorporate the inputs at the corresponding output ends. In order to
maintain consistency on the choice of inputs, we need to transform the orig-
inal tile V (i, j + 1), U(i, j), V (i, j), U(i + 1, j)(from north in a clockwise fash-
ion)[Figure 10a in the Appendix] to V (i, j+1), V (i, j), V (i−1, j) at the north end,
U(i, j), U(i−1, j), U(i−1, j−1) at the east end, V (i, j), V (i, j−1), V (i−1, j−1)
at the south end and U(i + 1, j), U(i, j), U(i, j − 1) at the west end[Figure 10b
in the Appendix] . However, then the U(i, j) and the V (i, j) at the input ends
become a function of the rest of the inputs and hence this tile does not represent

208 U. Majumder et al.

a valid computational unit. Further, even if we accept the dependency the trans-
formation incorporates 4 sets of computation in the new tile as opposed to one
in the original tile and reversibility only helps for a single level[Figure 10c in the
Appendix] . Thus for instance say keeping the values of (U(i− 1, j), V (i, j − 1))
constant, two choices for the tuple (U(i−1, j−1), V (i−1, j−1)) yield the same
output (U(i, j − 1), V (i − 1, j)). Now the latter are input to the (i − 1, j) and
(i, j − 1) original modules. Since the values of (U(i − 1, j), V (i, j − 1)) pair is
constant, thus the outputs from the (i, j) original module will also be the same
and hence such a construction will not be self-repairing.

Thus it still remains to be answered whether an irreversible tile set can be trans-
formed to its reversible counterpart using a minimal tile set. However, reversible
computation has its own merits in quantum computing, optical computing, nan-
otechnology and low power CMOS design. In fact, if we can have 3D DNA
assembly, that would allow us to propagate the redundant bit in the third di-
mension, we can hope to improve the self-repairability of the resultant assembly
given that crystal growth occurs with respect to at least three adjacent matching
binding sites.

6 Discussion

Although molecular self-assembly appears to be a promising route to bottom-up
fabrication of complex objects, to direct growth of lattices, error-free assembly
cannot be assumed. Thus in this paper with our compact design of self-repairing
tile sets, we addressed the basic issue of fault tolerant molecular computation by
self-assembly. Our design exploited the reversibility property to provide inherent
self-repairing capabilities with some constraints on crystal growth. We described
the detailed design of DNA cross tiles for a particular reversible tiling lattice
called the RXOR lattice. We observed that this lattice will allow the first known
molecular architecture for self-repairing memory. We further discussed models
for lattice damage when acted upon by external impulses and presented some
experimental results with DNA tiles. Finally we observed that although in theory
we can construct 2D reversible computational DNA lattices for 1D irreversible
CAs and hence improve the self-healing capability of resultant computational
lattice. Doing the transformation, however, with a minimal tile set is still an
open question.

Acknowledgments

The authors are supported by NSF EMT Grants CCF-0523555 and CCF-0432038.
We thank all our reviewers for their very useful comments and suggestions. We
also thank Prof. Jie Liu, Chemistry Department, Duke University, for providing
access to a Nanoscope IIIa AFM. Majumder also thanks Hanying Li for her
help with the experimental protocols and Erik Halvorson for many stimulating
discussions and immense support.

Design and Simulation of Self-repairing DNA Lattices 209

References

1. D. Liu, M. S. Wang, Z. X. Deng, R. Walulu, and C. D. Mao, J. Am. Chem. Soc.,
126:2324–2325, 2004.

2. T. H. LaBean, H. Yan, J. Kopatsch, F. Liu, E. Winfree, J. H. Reif, and N. C. See-
man, The construction, analysis, ligation and self-assembly of DNA triple crossover
complexes, J. Am. Chem. Soc., 122:1848–1860, 2000.

3. C. Mao, W. Sun, and N. C. Seeman, J. Am. Chem. Soc., 121:5437–5443, 1999.
4. E. Winfree, F. Liu, L. A. Wenzler, and N. C. Seeman, Design and self-assembly of

two-dimensional DNA crystals, Nature, 394(6693):539–544, 1998.
5. H. Yan, T. H. LaBean, L. Feng, and J. H. Reif, Directed nucleation assembly of

DNA tile complexes for barcode patterned DNA lattices, Proc. Natl. Acad. Sci.
USA, 100(14):8103–8108, 2003.

6. H. Yan, S. H. Park, G. Finkelstein, J. H. Reif, and T. H. LaBean, DNA-
templated self-assembly of protein arrays and highly conductive nanowires, Science,
301(5641):1882–1884, 2003.

7. Erik Winfree and Renat Bekbolatov, Proofreading tile sets: Error correction for
algorithmic self-assembly, DNA Computing , 2943:126-144

8. Erik Winfree Self Healing Tile Sets Nanotechnology: Science and Computation,
pages 3-21, 2006

9. J H Reif, S Sahu and P Yin, Compact error-resilient computational DNA tiling
assemblies, Tenth International Meeting on DNA Based Computers (DNA10), 2004

10. HL Chen and A Goel, Error Free Self-Assembly using error-prone tiles, DNA
Computing 10, 2004

11. R Schulman, E Winfree, Controlling nucleation rate in algorithmic self-assembly,
DNA Computing 10, 2004

12. Hertzberg R, Deformation and Fracture Mechanics of Engineering Materials, John
Wiley and Sons, NY 1996

13. Winfree E, Simulations of Computing by Self-Assembly, Caltech CS Tech Report
1998.22

14. Winfree E, On the Computational Power of DNA Annealing and Ligation, DNA
Based Computers, pgs 199-221, 1996

15. Matthew Cook, Paul W.K. Rothemund and Erik Winfree, Self-Assembled circuit
patterns, DNA Computers 9 LNCS volume 294:91-107, 2004

16. Toffoli T Reversible Computing, Automata, Languages and Programming,
Springer Verlag, pp.632-644

17. Rob D. Barish, Paul W. K. Rothemund, and Erik Winfre,e Two Computational
Primitives for Algorithmic Self-Assembly: Copying and Counting, Nano Letters
5(12): 2586-2592

18. Paul W.K. Rothemund, Nick Papadakis and Erik Winfree. Algorithmic Self-
Assembly of DNA Sierpinski Triangles, PLoS Biology 2 (12) e424, 2004

19. Paul W. K. Rothemund, Folding DNA to create nanoscale shapes and patterns,
Nature, 440:297-302,2006

20. S. H. Park, C. Pistol, S. J. Ahn, J. H. Reif, A. R. Lebeck, C. Dwyer and T. H.
LaBean Finite-size, Fully-Addressable DNA Tile Lattices Formed by Hierarchical
Assembly Procedures, Angewandte Chemie, 45:735-739, 2006

21. Morita K, Reversible simulation of one-dimensional irreversible cellular automata,
Theoret. Comput. Sci., 148:157-163, 1995

22. Hönberg B and Olin H, Programmable Self-Assembly-Unique Structures and Bond
Uniqueness, J. Comput. Theor. Nanosci. 2006, Vol 3, 1-7, 2006

210 U. Majumder et al.

23. Provot X, Deformation Constraints in a Mass Spring Model to Describe Rigid
Cloth Behavior, In Proc. Graphics Interface 95, pp 147-154. 1995.

24. S.R. White, N.R. Sottos, P.H. Geubelle, J.S. Moore, M.R. Kessler, S.R. Sriram,
E.N. Brown and S. Viswanathan, Autonomic healing of polymer composites, Na-
ture, 409, 794-797, 2001

25. C. Pistol, A. R. Lebeck and C. Dwyer, Design Automation for DNA Self-Assembled
Nanostructures, Proceedings of the 43rd Design Automation Conference (DAC),
July 2006.

26. S-H. Park, P. Yin, Y. Liu, J.H. Reif, T.H. LaBean and Hao Yan, Programmable
DNA Self-assemblies for Nanoscale Organization of Ligands and Proteins, Nano
Letters 5, 729-733, 2005

27. Sudheer Sahu and John Reif, Capabilities and Limits of Compact Error Resilience
Methods for Algorithmic Self-Assembly in Two and Three Dimensions, Twelfth
International Meeting on DNA Based Computers (DNA12), Seoul, Korea, June
5-9, 2006.

28. Seeman, N. C, J. Biomol. Struct. Dyn. 1990, 8, 573.
29. E Winfree, F Liu, LA Wenzler and NC Seeman, Nature, Vol: 394, 1998

A Appendix

A.1 Damage Model

Pseudocode of Algorithm for Computing Damage in a DNA Lattice
Freely Floating in Aqueous Solution due to Mechanical Impulse. We
estimate the number of tiles m that are knocked off the lattice of size n when an
impulse F hits the lattice. The mass of each tile is μ, the velocity at time τ = 0,
vi,j of each tile Ti,j except for the one which receives the impulse is zero and
the threshold extension for fracture is dthres. We’ll use a queue Q for efficiency
purposes and below is the pseudocode for the algorithm is given in section 3.1.
Program estimateDamage(F, n, Δt)

Choose with probability 1
n , a tile Tp,q for the initial impulse F

∀i, j, color[Ti,j] = white

Compute velocity of Tp,q as vp,q =
√

2FΔt
μ

Enqueue(Q, Tp,q)
Repeat until m = n or vi,j , ∀i, j is zero

While Q 	= φ
do Ta,b =Dequeue(Q, Ta,b)
For each neighbor Tk,l of Ta,b and color[Tk,l] = white

color[Tk,l] = gray

Compute extended length da,b,k,l =
√|va,bΔt|2 + (l0)2

Enqueue(Q, Tk,l)
color[Ta,b] = black
If mink,l{da,b,k,l} >= dthres

m = m + 1
Remove Ta,b

else

Design and Simulation of Self-repairing DNA Lattices 211

Compute va,b = va,b + (F inta,b,k,l−αva,b)Δt
μ

For each neighbor Tk,l of Ta,b and color[Tk,l] = gray
Compute F inta,b,k,l = K[da,b,k,l − l0]
Compute velocity vk,l of each neighbor Tk,l as vk,l = vk,l +

(Finta,b,k,l−αvk,l)Δt
μ

τ = τ + Δt

return m

O

S2

S3

S4 S5 S6

S1
Origin of
Damage

This tile does
not get knocked
off. Hence shock
wave terminates
here

Wave propagation)
Damage Path(Instance of Shock

(a)

0.4

60

0.2

0
4020

1

100

0.8

80

0.6

p vs l (a)

Fig. 6. (a)Instance of shock wave propagation and creation of damage path,
(b)Estimation of p

Damage of a Lattice with Rigid Support due to a Mechanical Impulse

Simulation Results. Based on equation 1 and 2, we can solve for p and as the
plot in figure6(b) reveals that the value of p stabilizes to 0.7316 beyond a relative
hitting force of 10. Even the drop from an initial value of 0.87 to 0.75 occurs
before the relative hitting force even reach a value of 5. So for all practical
purposes we consider the value of p to be 0.73. Note that l is determined by the
distance where F1 and F2 equalize. In essence, if F1 = c√

r
, where c is a constant,

(a) (b) (c)

Fig. 7. a)Snapshot of a computer simulation of a damage(red region) by an AFM tip in
a rectangular lattice(white region), b)Plot of Actual Damage vs relative hitting force of
the AFM. The plot reveals the pseudo-geometric nature of the probability distribution
of damage, c)Plot of percentage damage as a function of lattice size and relative hitting
force.

212 U. Majumder et al.

then l = (c
F2

)2. So l is a measure of the relative hitting force and we will address
it the same in all our plots.

A simulation snapshot for damage by an AFM tip in the lattice is shown in
Figure 7a. We study the effect of relative hitting force on the lattice in isolation.
Since the probability model is pseudo-geometric in nature, so the amount of ac-
tual damage reaches a constant value beyond a value of 10 for the former[Figure
7b]. We also compared the average fractional damage size from several simu-
lation runs with the expected damage size as estimated from the probabilistic
model as a function of relative hitting force and lattice size. They seem to agree
well, as is evident from Figure 7c. The verification of the model by comparisons
with experimental data is yet to be done.

A.2 Physical Implementation of RXOR Tiling with DNA Tiles

Experimental Protocols. Complex design, sample preparation, and stepwise
assembly: The design of cross-tiles was based on the structure of immobile 4-
arm branched junctions. The subsequence used for all bulged loops was four Ts,
TTTT. Sequences were designed to minimize the chance of undesired comple-
mentary association and sequence symmetry[28]. Synthetic oligonucleotides were
purchased from Integrated DNA Technologies (Coralville, IA) and purified by
polyacrylamide gel electrophoresis (PAGE). Complexes were formed by mixing
a stoichiometric quantity of each strand in physiological buffer, 1× TAEMg2+

(40 mM Tri acetate (pH 8.0), 2 mM EDTA, and 12.5 mM magnesium acetate).
The final concentration of DNA was between 0.125 and 1.0μM. For the first step
high-temperature annealing of unit tiles, equimolar mixtures of strands were
cooled slowly from 95◦C to 20◦C by placing the tubes in 2 L of boiled water in
a styrofoam box for at least 40 hours to facilitate hybridization. For the second
step low-temperature annealing, DNA tiles mixtures were cooled slowly from
42◦C to 20◦C by placing the tubes in 1 L of water at room temperature for
about 4 hours. After each step of annealing, samples were incubated overnight
at 4◦C before AFM imaging.

Streptavidin attachment: After 2nd-step DNA RXOR assembly, add strep-
tavidin purchased from Rockland (www.rockland-inc.com, code no: S000 − 01,
Lot no: 12088) of same volume of equal concentration of biotin in annealed
DNA sample. Leave it an hour at room temperature, and then incubate 4◦C for
overnight before AFM experiment.

AFM imaging: AFM imaging was performed in tapping mode under 1 ×
TAEMg2+ buffer. A 5μL annealed-sample was dropped on freshly cleaved mica
for 3 minutes. 30μL of 1×TAEMg2+ buffer was then placed onto the mica and
another 30μL of 1×TAEMg2+ buffer was placed onto the AFM tip. AFM images
were obtained on a Digital Instruments Nanoscope IIIa with a multimode fluid
cell head by tapping mode under buffer using a NP-S oxide-sharpened silicon
nitride tips (Vecco).

Design and Simulation of Self-repairing DNA Lattices 213

A.3 Self-repairing Transformation for Any Tile Set

Proof of Theorem 1

Proof. Following Winfree[14]. we use a special kind of CA : Blocked Cellular
Automaton where for each row, cells are read in pair and two symbols are written
guided by the rule table. For each rule, (x, y) −→ (u, v), we create a tile whose
sticky ends on the input side(south and east sides of a cross tile) are x and y and
that at the output ends(west and north sides of a cross tile) are u and v. We also
have an initial assembly of tiles simulating the initial BCA tape. We add the
rule tiles to the solution containing the initial tape. As figure 8 demonstrates,
rule tiles anneal into position if and only if both sticky ends match. Thus we
can simulate forward computation with DNA assembly. As described in [14]
we access the output using a special ”halting” tile gets incorporated in the
lattice.

x y

u v

BCA Rule

DNA Rule Tiles

(b)

(a)

Tape
Input Level 0

Level 1

Level 2

Level 3

Level 4

Level 5

A A B B B A BA

BA

B A

A A

BAB AB AA AB BB B

BA

BA

BA

B B

B A

BA

A A

B AB A

BA

B A

B B B B

A A BBA A B B

B A

B B A A

B B B A B B

B B A B B B B A

B B B A A B A B A A

A B A B A A B A B A B B

Fig. 8. (a)BCA rule in an abstract DNA tile,(b)DNA Rule Tiles for RXOR Computa-
tion, (c)Both forward and backward computation takes place starting from the initial
tape

For a reversible CA, by definition, there’s exactly one prior configuration for
every current configuration. In terms of DNA assembly this implies that if we
treat u and v as our inputs(north and west ends of a cross tile) and x and y as
our outputs(south and east ends of the cross tile), then also the rule tiles will
anneal into position abiding by the sticky ends match constraint. Thus we can
simulate backward computation with reversible DNA assembly. For instance, if
we remove the tiles which are crossed in Figure 8, since the two functions are
invertible, so the correct rule tiles will reassemble, thus demonstrating reversible
computation.

In particular, each horizontal row of n tiles of the tiling lattice simulates
a given step of the CA, and the values from each automata step to step are
communicated from a prior row of tiles to the next row of tiles above it. Thus,
a two dimensional DNA lattice with reversible tiles and size n× T can be used
to simulate a one dimensional reversible CA with n cells running in time T .

214 U. Majumder et al.

Figure for the reversible transformation according to [21]

i

time T

time T−1

time T+1

i

i−1 i i+1

i+1ii−1

(b)

(a)

x y z

f(x,y,z) f(x,y,z)f(x,y,z)

i

time T

time T−1

time T+1

i

i−1 i i+1

i+1ii−1

(b)

(a)

x y z

C(x,y,z) R(x,y,z)L(x,y,z)

Fig. 9. a)Abstract Tile for original CA and its tiling simulation, b)Abstract Tile for
corresponding PCA and its tiling simulation

Figure for Theorem 3

U(i+1,j)

(a)

T(i,j)
U(i,j)

V
(i,j)

V
(i,j+

1)
(b)

T(i,j)

U(i,j)

U(i−1,j)

U(i−1,j−1)

U(i+1,j)

U(i,j)

U(i,j−1)

V
(i,j−

1)

V
(i−

1,j−
1)

V
(i,j+

1)

V
(i,j)

V
(i−

1,j)

V
(i,j)

T(i,j)

T(i,j−1)

T(i−1,j)

T(i−1,j−1)

U(i,j) U(i−1,j)

U(i−1,j−1

V(i−1,j−1)V(i,j−1)

U(i+1,j)

V(i,j+1)

V
(i,j)

(c)

Fig. 10. a)Original Abstract Tile according to [27], b)Transformed Abstract Tile ca-
pable of reversible computation, c)A single computational unit in the transformed tile
corresponds to four sets of computation in the original tile

On Times to Compute Shapes in 2D Tile Self-assembly

Yuliy Baryshnikov1, Ed Coffman2, and Boonsit Yimwadsana2

1 Bell Labs, Lucent Technologies, Murray Hill, NJ 07974
ymb@research.bell-labs.com

2 Department of Electrical Engineering, Columbia University, NY 10027
{egc, teddy}@ee.columbia.edu

Abstract. We study the times to grow structures within the tile self-assembly
model proposed by Winfree, and the possible shapes that can be achieved during
the self-assembly. Our earlier work was confined to the growth of rectangular
structures, in which the border tiles are prefabricated. By varying the relative rates
between the border-tile and rule-tile attachment, one can engineer interesting new
shapes, which have been observed in the laboratory. We show that the results
from an extension of our earlier stochastic models agree remarkably closely with
experimental results. This is an important further demonstration of the validity
and usefulness of our stochastic models, which have also been used successfully
in studies of error correction in DNA self assembly.

1 The Tile Self-assembly Model

The focus of the work here is on mathematical foundations of self assembly based on Win-
free’s DNA tile model [1] which will be described shortly. More precisely, the emphasis is
on the analysis of stochastic models. Although such insightful models and reference theo-
ries are ubiquitous in the physical sciences, they remain a fertile ground for self-assembly
research in DNA-Based Computing, where stochastic analysis has only recently begun.
The early work of Adleman [2] and colleagues, and that of the authors [3, 4, 5] sets the
stage in this area, and serves as the point of departure for the analysis here.

The seminal mathematical tile model of DNA self-assembly, as developed by Win-
free [1] and pursued by many others, has led to a much improved understanding of
DNA self-assembly in two dimensions. At the physical layer being modeled, single-
strand DNA molecules are manipulated to form complex DNA molecules (e.g., double-
crossover molecules [6, 7]) which are designed to assemble (bond) with other such
molecules in a two-dimensional crystal-growth process obeying bonding rules deter-
mined by the molecular motifs [1]. These building-block molecules are modeled as tiles.

There are three types of tiles involved in a self-assembly process: seed tiles, border
tiles, and rule tiles. They participate in a growth process beginning at the origin of the
positive lattice where the seed tile is located; the rest of the unit squares of the lattice
are the potential sites occupied by tiles.

– The seed tile occupies the lower-left corner of the positive lattice (the origin) and
is responsible for initiating the tile self-assembly process. Only border tiles, as de-
scribed next, can stick to the two free (upper and right-hand) sides of the seed tiles.

C. Mao and T. Yokomori (Eds.): DNA12, LNCS 4287, pp. 215–222, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

216 Y. Baryshnikov, E. Coffman, and B. Yimwadsana

– A border tile can join the structure only by attaching to the seed tile or to another
border tile along the horizontal and vertical boundaries of the positive lattice, each
such attachment extending one of the borders of the structure assembled so far.

– A rule tile can attach to the growing structure at any available site which is adjacent
to occupied sites both to the left and below the available site, where either site may
contain another rule tile or, initially, a border tile.

In the probability model governing growth (cf. [4, 5]), as soon as a site becomes
available to a rule tile (for attachment to the left and below) its waiting time for such
a tile is exponentially distributed with mean 1. All such waiting times are independent.
The attachment of new border tiles is also subject to independent exponential waiting
times, but with a different rate parameter α. In the analysis of the first such model [4],
the border (input) tiles were assumed to be prefabricated, occupying sites, let us say,
from (0,0) to (M,0) and to (0,N), the so-called L input; the problem was to estimate the
time CM,N necessary for a rule tile to attach to the site at (M,N).

One of the principal tools used in solving this type of problem has been the analysis of
the TASEP (Totally Asymmetric Simple Exclusion Process) [8]; the main result is given
below in terms of fluid limits where the discrete position variables M and N are replaced
by continuous variables x and y. This gives us, with the obvious change in notation,

C(x,y) ∼
(√

x +
√

y
)2

(1)

as x→∞ with x/y → k where k is a constant. In [4], we show that the time it takes to
place a tile at position (x, y) is the maximum of the times taken to place tiles along all
possible paths from the origin to position (x, y). The path is the straight line connecting
the origin, the location of the seed tile, to point (x, y) in the fluid limit case.

In the more general setting, where border tiles are not prefabricated, but take part in
the self-assembly process, the problem becomes much more interesting and entails the
assembly of a much larger class of shapes, particularly when α < 1, i.e., the border-tile
attachment rate is less than that of the rule tiles.1 The more general extremal problem is
illustrated in Figure 1. Since α < 1, a path along which the sum of expected attachment
times is maximum must first move along one of the axes; the slow growth rate of the
borders is less than the rate of tiling the rectangles bounded by the borders. At point K ,
which is where these rates balance, the trajectory is determined by the rectangle tiling
result of (1).

In Figure 1(b), the dotted line shows the shape of the self-assembled structure before
the border reaches point K . When the crystal boundary is below point K , the rule tiles
can completely fill in the rectangle covered by the length of the border before a new
border tile arrives, since the border tiles’ interarrival times are greater than the time that
the rule tiles take to fill in small rectangles. This means that the time it takes to place a
tile depends on the speed of border-tile attachment. When the boundary grows beyond
point K , the rule tiles cannot complete the rectangle before the next arrival of a border

1 K. Fujibayashi working in E. Winfree’s lab at Cal Tech notes that α ≈ 1/2 was common in
certain of his experiments, where α is a stoichiometric parameter giving the concentration of
border tiles. In this case he found that the profile of the self-assembly structure is triangular, a
fact that will also emerge in our purely mathematical framework.

On Times to Compute Shapes in 2D Tile Self-assembly 217

(x , y)1 1

(x , y)2 2

bo
un

da
ry

 g
ro

w
th

αx

α

boundary growth

b

d

y

y=x

z

zí

a

c

(a)

bo
un

da
ry

 g
ro

w
th

αx

α

boundary growth

(x,y)

a

b

K

y

(b)

Fig. 1. (a) The paths that contribute to the time required for a tile to attach to the position (x, y).
The path ba is followed when x ≤ y, and the path dc is followed when x ≥ y. (b) The dotted line
illustrates the boundary of the shape of a self-assembled structure before the border tiles reach
point K during the process. When the crystal boundary is below point K, the rule tiles (in the
fluid limit) fill in the rectangle covered by the length of the border before a new border tile arrives.
Beyond point K, the rule tiles cannot complete the rectangle before the next arrival of a border
tile, so the attachment of rule tiles determines the speed of the approach to (x, y).

tile (in the fluid limit); hence the attachment of rule tiles contributes to the speed of the
self-assembly process.

This argument holds true for the case where x ≥ y and x ≤ y (point K can be either
on the vertical or horizontal axis). Thus, in the figure, to compute a path to (x, y) along
which expected total attachment time is maximum, one must find this maximum among
paths like ba, if x ≤ y; dc, if x ≥ y, and the path connecting the origin directly to (x, y)
(for the case where the maximum time does not depend on the placement of border tiles).

With z as defined in the figure, the extremal path of tile attachments will start from
the origin, go to position (0, y − z) in expected time (y − z)/α for x ≤ y or go to
position (x − z, 0) in expected time (x − z)/α for x ≥ y, and then go on to reach
(x, y). We need only find the supremum over z to identify the extremal path. Thus, for
finding the time to reach point (x, y) where x ≥ y,

Cx,y ∼ sup
z

((√
x +

√
z
)2 +

y − z

α

)
(2)

as (x, y)→ (∞,∞). A calculation for Cx,y then shows that

Cx,y ∼ x

(
1 +

α

1− α

)2

+
y

α
− xα

(1− α)2
=

y

α
+

x

1− α
(3)

as (x, y)→ (∞,∞), where z = x
(

α
α−1

)2

, x < y and z < y.

An analysis of the alternate path dc for x ≥ y follows the same arguments and
yields the same result with x and y interchanged. By fixing the computing time Cx,y ,

218 Y. Baryshnikov, E. Coffman, and B. Yimwadsana

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

a

Fig. 2. Intermediate shapes of self-assembly structures for different border growth rates. Both
horizontal and vertical lengths of the L-shape borders of the structures represent the border growth
rates (a). The shapes of the structures are different for each value of the border growth rate.

(a) α = 0.3 (b) α = 0.5

(c) α = 0.8 (d) α = 1.2

Fig. 3. Simulation of 2D structures with various values of α

we can plot the values of x and y corresponding to different values of α as shown in
Figure 2.

Note that the lines produced by (3) are always tangent to the curve described by (1).
As a result, for 0 ≤ α ≤ 1/2, the intermediate shape of the self-assembled crystal looks
like those shown in Figure 2. When α = 1/2, the shape of the self-assembled crystal is

On Times to Compute Shapes in 2D Tile Self-assembly 219

triangular. However, when 0.5 < α < 1, the shape of self assembly crystal has a linear
shape near the border and a hyperbolic shape in the middle of the body since the time
from (3) is the maximum time to place a tile near the border of the structure, and (1) is
the maximum time to place a tile in the middle of the body of the structure.

Then when α ≥ 1, the intermediate shape of the self-assembled structure is no longer
linear. It is described by the equation suggested in [4], which analyzed systems whose
border tiles and seed tiles are prefabricated, or equivalently, systems where the rate of
growth for the border tiles is greater than or equal to that for the rule tiles.

Remarkably, the simulations of self-assembled structures agree with our prediction
for all values of α ≤ 1. Figure 3 was produced by Fujibayashi from simulation data
based on kTAM model and shows results for various values of α.

We also simulated two dimensional self-assembled structures with one million tile at-
tachments for α = 0.2, 0.5, 0.8, 1.0. The shapes of the structures are plotted in Figure 4.
The shapes of the structures are in remarkably good agreement with those described by
equations (3) and (2).

It is possible to extend the scope of our discussion even further by allowing the rates
of border growth to differ on the vertical and horizontal axes.

0

200

400

600

800

1000

1200

0 200 400 600 800 1000 1200

y

x

α = 0.2

simulation
y = -0.25*x+1100

y = -4*x+4400

(a) α = 0.2

0

200

400

600

800

1000

1200

1400

0 200 400 600 800 1000 1200 1400

y

x

α = 0.5

simulation
y = -x+1400

(b) α = 0.5

0

500

1000

1500

2000

2500

0 500 1000 1500 2000 2500

y

x

α = 0.8

simulation
y = -0.25*x+1100

y = -4*x+4400
y = (sqrt(2000)-sqrt(x))2

(c) α = 0.8

0

500

1000

1500

2000

2500

0 500 1000 1500 2000 2500

y

x

α = 1.0

simulation
(sqrt(2450.0)-sqrt(x))2

(d) α = 1.0

Fig. 4. Simulation of 2D structures with various values of α. The simulation was performed for
one million attachments of tiles. The shapes of the structures are also plotted along with the
equations obtained from (3) and (2).

220 Y. Baryshnikov, E. Coffman, and B. Yimwadsana

2 Different Rates of Border Growth

Let α1 be the ratio of the attachment rate of the vertical border tiles to that of the rule
tiles, and let α2 be the ratio of the attachment rate of the horizontal border tiles to that
of the rule tiles. The paths that determine the time taken by a tile to arrive at position
(x, y) with x ≤ y (or, respectively, with x ≥ y) do not depend on the border tiles that
are growing in the horizontal (or, respectively, vertical) direction because the attachment
of the border tiles in the horizontal (respectively vertical) direction does not contribute
to the maximum time it takes to place a tile at (x, y) where x ≤ y. We arrive at

Cx,y =
y

α1
+

x

1− α1
for x < y

Cx,y =
y

1− α2
+

x

α2
for x > y

as (x, y) → (∞,∞). Figure 5 shows the shape of the self-assembly structures with
different border growth rates.

1
α

2
α

Fig. 5. Expected shapes of 2D self-assembly for different border growth rates: α1 and α2. The
shapes are no longer symmetric along y = x.

Crystal self-assembly is typically designed to grow indefinitely, yielding congruent
shapes at different times. A problem arises when we want a specific finite shape. Al-
though we can design tile sets so that the growth process will stop at some pre-specified
point, the complexity of the tile sets is high (cf. [9,10,11,12]). In order to create shapes
that are useful and economically efficient, a small number of simple tiles is desirable.
A straightforward method of creating desired shapes is simply to remove the supply
of tiles completely when we know that the desired crystal size has been reached. This
method works since the shape (fluid limit) approximation illustrated in Figure 5 above
allows one to estimate the size of the structure and the time it takes to create a specific
structure.

3 Conclusions

As is well known, essentially arbitrary 2D shapes can be created by tile self assembly
(cf. [12, 1]). For example, one technique is to create a domino pattern that serves as a

On Times to Compute Shapes in 2D Tile Self-assembly 221

skeleton on which to grow some given shape; the length L of a leg of the pattern can be
determined by a counter structure of O(log L) width. Figure 6 shows an example which
begins with a (blue) seed from which growth proceeds in each of the four directions.
At the ends of legs, new (purple) seed structures can self-assemble to give the domino
branching patterns. Once the domino pattern is in place, or as it self assembles, the
growth, as described earlier, can flesh out the desired shape as shown in Figure 6(b).
The domino patterns define independent, elementary growth regions as illustrated in
Figure 6(a). In simple cases, expected times to compute such shapes may be expressible
as the expected maximum of the times to grow the independent regions (cf. [4]). But in
general, the computations of overall expected growth times are complicated.

(a) skeleton (b) body

Fig. 6. The shape of a tile self-assembly model built on a predesigned skeleton

Acknowledgement. We are grateful to K. Fujibayashi for pointing out and discussing
the problem of (slowly) self assembling border tiles including the intermediate shapes
of self-assembly of the Sierpinski triangle based on the kTAM model (see e.g., [1])
shown in Figure 3.

References

1. Winfree, E.: Algorithmic Self-Assembly of DNA. PhD thesis, California Institute of Tech-
nology, Pasadena, CA (1998)

2. Adleman, L., Cheng, Q., Goel, A., Huang, M.D., Wasserman, H.: Linear self-assemblies:
Equilibria, entropy, and convergence rates. In Elaydi, Ladas, Aulbach, eds.: New progress in
difference equations, Taylor and Francis, London (2004)

3. Baryshnikov, Y., Coffman, E., Momčilović, P.: Incremental self-assembly in the fluid limit.
In: Proc. 38th Ann. Conf. Inf. Sys. Sci., Princeton, NJ (2004)

4. Baryshnikov, Y., Coffman, E., Momčilović, P.: DNA-based computation times. In: Proc. of
the Tenth International Meeting on DNA Computing, Milan, Italy (2004)

5. Baryshnikov, Y., Coffman, E., Seeman, N., Yimwadsana, B.: Self correcting self assembly:
Growth models and the hammersley process. In: Proc. of the Eleventh International Meeting
on DNA Computing, London, Ontario (2005)

222 Y. Baryshnikov, E. Coffman, and B. Yimwadsana

6. Ding, B., Sha, R., Seeman, N.: Pseudohexagonal 2D DNA crystals from double crossover
cohesion. J. Am. Chem. Soc. 126 (2004) 10230–10231

7. Fu, T.J., Seeman, N.: DNA double crossover structures. Biochemistry 32 (1993) 3211–3220
8. Liggett, T.M.: Interacting Particle Systems. Springer-Verlag, New York (1985)
9. Adleman, L., Cheng, Q., Goel, A., Huang, M.D., Kempe, D., de Espanés, P.M., Rothemund,

P.: Combinatorial optimization problems in self-assembly. In: Proc. ACM Symp. Th. Com-
put., Montreal, Canada (2002) 23–32

10. Adleman, L., Cheng, Q., Goel, A., Huang, M.D.: Running time and program size for self-
assembled squares. In: Proc. ACM Symp. Th. Comput. (2001) 740–748

11. Rothemund, P., Winfree, E.: The program-size complexity of self-assembled squares. In:
Proc. ACM Symp. Th. Comput. (2001) 459–468

12. Soloveichik, D., Winfree, E.: Complexity of self-assembled shapes. In: Proc. of the Tenth
International Meeting on DNA Computing. (2004)

Capabilities and Limits of Compact Error Resilience
Methods for Algorithmic Self-assembly in Two and

Three Dimensions�

Sudheer Sahu and John H. Reif

Department of Computer Science, Duke University
Box 90129, Durham, NC 27708-0129, USA
{sudheer, reif}@cs.duke.edu

Abstract. Winfree’s pioneering work led the foundations in the area of error-
reduction in algorithmic self-assembly [26], but the construction resulted in in-
crease of the size of assembly. Reif et. al. contributed further in this area with
compact error-resilient schemes [15] that maintained the original size of the as-
semblies, but required certain restrictions on the Boolean functions to be used
in the algorithmic self-assembly. It is a critical challenge to improve these com-
pact error resilient schemes to incorporate arbitrary Boolean functions, and to
determine how far these prior results can be extended under different degrees
of restrictions on the Boolean functions. In this work we present a consider-
ably more complete theory of compact error-resilient schemes for algorithmic
self-assembly in two and three dimensions. First we consider two-dimensional
algorithmic self-assembly. We present an error correction scheme for reduction
of errors from ε to ε2 for arbitrary Boolean functions in two dimensional algo-
rithmic self-assembly. Then we characterize the class of Boolean functions for
which the error reduction can be done from ε to ε3, and present an error correc-
tion scheme that achieves this reduction. Then we prove ultimate limits on cer-
tain classes of compact error resilient schemes: in particular we show that they
can not provide reduction of errors from ε to ε4 is for any Boolean functions.
Further, we develop the first provable compact error resilience schemes for three
dimensional tiling self-assemblies. We also extend the work of Winfree on self-
healing in two-dimensional self-assembly [25] to obtain a self-healing tile-set for
three-dimensional self-assembly.

1 Introduction

Self-assembly is the ubiquitous process in which smaller objects combine together to
form larger complex objects. Recently, it has been demonstrated as an efficient mech-
anism for bottom-up construction of nanostructures in nanotechnology [19, 27, 11, 8,
32, 31, 3, 10]. The potential of self-assembly is not limited to nanofabrication. The abil-
ity of two-dimensional and three-dimensional assemblies to perform parallel univer-
sal computations has been explored in development of self-assembly of DNA tiles as
a tool for nanocomputation [9, 14, 23, 28, 30]. Self-assembly has been demonstrated at

� The work is supported by NSF EMT Grants CCF-0523555 and CCF-0432038.

C. Mao and T. Yokomori (Eds.): DNA12, LNCS 4287, pp. 223–238, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

224 S. Sahu and J.H. Reif

larger scales (meso-scale) using capillary forces for interactions between meso-scale
tiles [2, 16]. However, major hurdle in harnessing the capabilities of algorithmic self-
assembly are the errors that occur during the assembly. Incorrect tiles are incorporated
in the growing structure with error rate ranging from 1% to 5% [26]. There are two ap-
proaches to combat the errors. The first is to reduce the inherent error rate by optimizing
the physical conditions [24] or using newer molecular mechanisms [4], while the other
approach is to improve the tile design so that the total number of errors in the final struc-
ture is reduced in spite of the intrinsic error-rate remaining the same [26, 15, 5].

Winfree’s pioneering work in error-correction [26] laid the foundations towards im-
proving the tile-design to reduce the errors in assembly. Though it resulted in the total
size of assembly to be 2 × 2 times for error reduction to ε2 and 3 × 3 times for error
reduction to ε3, it paved the way for further work in error-reduction using the concept
of redundancy. The basic idea was that an error in the assembly of a tile forced more
errors in the immediate neighborhood of that tile, making it extremely prone to detach-
ment, and hence reducing the error. Later, the snaked proof-reading scheme that could
correct both growth and nucleation errors in the self-assembly was built upon this con-
struction [5]. However, it required replacing a tile by a k × k block of tiles. Later a
method was proposed to control nucleation errors programmably [18]. However, each
of these schemes significantly scaled up the overall size of assembly. In applications
like molecular fabrication tasks where the scale of final pattern is of critical impor-
tance, this scaling up is undesirable. Reif et al. [15] proposed a compact error-resilient
tiling schemes in which errors could be reduced to ε2 (2-way overlay redundancy) and
ε3 (3-way overlay redundancy) without increasing the size of the assembly. The anal-
ysis of error was done in the equilibrium state of the assembly. Another distinction of
this scheme was that it considered the error resilience in the whole pattern and not only
in the output row. It means that this scheme had a tendency to remove any incorrectly
placed tile from the assembly even if the ongoing computation was not affected by that
tile. This is important in the assembly of a nanostructure of desired pattern, where any
incorrect placement of any tile is a defect (even though it might not have interfered with
the subsequent growth of assembly). But it had its limitations on the Boolean functions
that could be used for the error-resilient algorithmic assembly. In particular, it required
one of the function to be XOR, and for reduction to ε3 the additional requirement was
that the other function should be input-sensitive to one of the inputs. A Boolean func-
tion f(x) is called input-sensitive to a Boolean variable x if whenever x changes f(x)
also changes. It is thus a critical challenge to improve these compact error-correction
schemes to incorporate any arbitrary Boolean functions. In case that is not possible, it is
important to characterize the class of Boolean functions to which these error-correction
schemes can be extended. Recently Winfree [20] presented a compact error resilient
scheme based on Chen et al [5]. They also overlooked the errors that did not affect the
ongoing computation.

Self-assembly in three dimensions is extremely promising in the field of microelec-
tronics assembly, where independent manipulation of each component is required. It is
already being seen as promising candidate for heterogeneous three-dimensional integra-
tion of next-generation microsystems [29,12,6,22]. In light of the inherent parallelism,
three-dimensional nature and larger range (nanoscale to mesoscale) of application of

Capabilities and Limits of Compact Error Resilience Methods 225

self-assembly, it has a great potential as tool for building complex systems from mi-
croscaled templates. Apart from this, the utility of three-dimensional structures for com-
puting has been known for a long time [7]. Simple examples of algorithmic computation
in three dimensions includes the generalization of Pascal triangle to 3D [1] and three di-
mensional multiplexers (the latter would provide a mechanism for 3D memory address-
ing with the appropriate affixed molecular electronic components). Analogous to the
simulation of a finite state automata through two-dimensional self-assembly, three di-
mensional self-assembly can be used to simulate a two-dimensional cellular automata,
where the third spatial dimension of the 3D tiling is the time step of the cellular au-
tomata. The tiles in a horizontal plane will represent the current state of all the cells of a
two-dimensional cellular automata, then the tiles assembled in horizontal plane on top
of it will be states at next time instance. This allows one to derive 3D tiling assemblies
from a wide variety of known two-dimensional cellular automata designs, including
matrix multiplication, integer multipliers, context free language recognition, etc. Re-
cently crystal structure of three-dimensional DNA lattices formed by self-assembly was
demonstrated [13]. The question of fault-tolerance naturally arises with the increasing
popularity of self-assembly for construction of three dimensional self-assembled struc-
tures. It will be critical to determine how successfully can the error-correction tech-
niques used for two-dimensional assemblies be extended to three-dimensions.

Self-healing is a very important process in nature. The damage to the living cells can
be caused by an external intruder or some mechanical impulse or unfavorable physical
conditions. The one property of biological systems that make them robust is their abil-
ity to self-heal in case of damages. It would be really interesting to design the DNA
tiles that forms the lattices having the ability to self-heal, thereby imparting them the
much desired robustness. Winfree [25] gave a construction in which he replaced a sin-
gle tile with 3 × 3 (for simple assemblies like Sierpinski triangles) , 5 × 5 (for general
assemblies) and 7 × 7 (for additional robustness to nucleation errors) block of tiles for
self-healing in a two-dimensional assembly. It would be interesting to know if compact
self-healing tilesets can be formed and whether the techniques given by Winfree can be
extended to three dimensions.

In this paper, we follow the notion of compactness as presented in [15], which re-
quires the new error-resilient tiling assembly to be of no larger size than the original
assembly. Like [15] we consider any incorrect placement of a tile anywhere in the as-
sembly as an error and aim at reducing them as well, even though these errors might not
affect the ongoing computation. As mentioned earlier, this is important for construction
of nanostructures of desired pattern. In this paper, the analysis of the error in the assem-
bly is done in the equilibrium state of the assembly. Throughout this paper redundancy
based compact error resilient scheme refers to any error resilient scheme that does not
scale up the assembly and in which the encodings on the pads of the tiles are used to
create redundancy. In the event of an error this redundancy forces more errors, which
makes the incorrectly placed tiles and their neighborhoods more unstable and prone to
removal from assembly, thereby reducing the error. Also we refer to k-expansive error
resilient schemes as the error correction schemes that work by replacement of a tile by a
block of multiple tiles. In case of three dimensional tiling, we carry forward this notion
of redundancy based compact error resilient schemes.

226 S. Sahu and J.H. Reif

In this paper, we present a comprehensive theory of redundancy based compact error
resilient tiling schemes and examine the prospects of constructing compact self-healing
tile sets in two and three-dimensions. The error analysis throughout this paper is in the
equilibrium state of the assembly. In Section 2, first we present a compact error cor-
rection schemes in two dimensional self-assembly that reduces the error from ε to ε2

for arbitrary Boolean functions. Then we characterize the class of Boolean functions
for which error reduction from ε to ε3 is possible using redundancy based compact er-
ror resilient schemes. Also we prove that error reduction from ε to ε4 is impossible
using redundancy based compact error resilient schemes. Next in Section 3 we exam-
ine three-dimensional self-assembly. First we present a compact error resilient scheme
that reduces error to ε2 for arbitrary Boolean functions and ε3 for a restricted class of
input-sensitive Boolean functions. We also prove that error reduction to ε4 can not be
obtained for arbitrary Boolean functions using redundancy based compact error resilient
schemes. In Section 4 we extend the idea of Winfree’s construction for self-healing in
two-dimensions [25] to three-dimensional assembly. In the conclusion, we review our
results and state various open problems and conjectures. We conjecture stronger results
that error reduction to ε3 in three dimensions can not be achieved outside the previously
characterized class, and error reduction to ε4 is impossible to achieve for any Boolean
functions using these error resilient techniques.

2 Error Correction in Self-assembly in Two Dimensions

2.1 Assembly in Two Dimensions

We will consider a general assembly problem in two

U(i,j)U(i+1,j)

V(i,j)

V(i,j+1)

Fig. 1. Two dimensional algorithmic
self-assembly

dimensions consisting of the assembly of a two-
dimensional Boolean array of size N ×M , where
the elements of each column are indexed from 0 to
N − 1 from right to left and rows are indexed from
0 to M−1 from bottom to top. The bottom row and
the rightmost column provide the inputs to the as-
sembly. Let V (i, j) be the value of the ith column
(from the right) in the jth row(from the bottom).
Let V (i, j + 1) be the value communicated to the
position (i, j +1) and U(i+1, j) be the value com-
municated to the position (i + 1, j). We define U(i + 1, j) = U(i, j)OP1V (i, j) and
V (i, j + 1) = U(i, j)OP2V (i, j) for two Boolean functions OP1 and OP2.

Figure 1 shows a computational tile that can be used for constructing two dimen-
sional self-assembly. Bottom and right pads are the input pads, while the pads on top
and left are output pads. A pad matches with the neighbor’s contiguous pad if the values
communicated by these pads are the same. U(i, j) and V (i, j) are the right and bottom
input pads, respectively, to the ith column from right and jth row from bottom. Then
U(i + 1, j) the left output pad is given by U(i + 1, j) = U(i, j)OP1V (i, j), while
V (i, j + 1) the top output pad is given by V (i, j + 1) = U(i, j)OP2V (i, j). Examples
of simple two dimensional assemblies: sierpinski triangle and binary counter, are given

Capabilities and Limits of Compact Error Resilience Methods 227

in [15]. Highly complex two-dimensional assemblies are possible due to the universal
computability of two-dimensional self-assembly [21, 28].

2.2 The Error Model

We assume that error probability ε is defined as the probability that there is mismatch
between two tiles and they still stay together in the equilibrium. This probability is
independent of any other match or mismatch and hence we term this probabilistic model
the independent error model. We also want to put emphasis on the correct assembly of
all the tiles in the assembly (and hence on the correctness of complete pattern), and
not just on the correctness of final output only. There might be wrong placement(s) of
tile(s), that do not affect the ongoing computation. But in our error model, we count
them as errors and need the error correction schemes to reduce such errors as well. In
this way we differ from [20], who overlooked the errors that did not affect the ongoing
computation.

Consider a tile T (i, j) in a N ×M tiling as-

U(i,j+1),
U(i,j),
V(i,j)

V(i+1,j+1),V(i,j+1),U(i,j+1)

T(i,j)

V(i+1,j),V(i,j),U(i,j)

U(i+1,j+1),
U(i+1,j),
V(i+1,j)

Fig. 2. Construction for error reduction
to ε2

sembly where 0 < i < N − 1, 0 < j < M − 1.
We define the immediate neighborhood of a tile
T (i, j) as 8 tiles surrounding it, whose coordi-
nates differ from (i, j) by at most 1. Formally
speaking, {T (i′, j′) : |i′− i| ≤ 1, |j′− j| ≤ 1} \
{T (i, j)}. Tile T (i′, j′) is said to be a-dependent
(for assembly dependent) on tile T (i, j) if i′ ≥ i
and j′ ≥ j and a-independent otherwise. Next
we examine the schemes to reduce the errors in
self-assembly. To reiterate, throughout this paper,
we refer to redundancy based compact error re-
silient scheme as error reduction scheme, where
redundancy is created by encodings in the pads with absolutely no scale up of the
assembly.

Proposition 1. Under our independent error model, if an error in a pad in a tile en-
forces k further mismatches in the assembly in the immediate neighborhood of that tile,
then error probability is reduced to εk+1.

Proof. If one error guarantees k more errors, then the probability that the tile and its
neighborhood in the assembly will stay together in the equilibrium in spite of these
k + 1 errors is εk+1. And hence the error reduction.

2.3 Error Reduction to ε2

It is known that if an error in a tile can guarantee another error in immediate neigh-
borhood, then it reduces the rate of errors from ε to ε2 [26, 15]. Next we describe our
construction to achieve this goal in the form of Theorem 1.

Theorem 1. There exists a compact error correction scheme that will reduce the error
from ε to ε2 for two-dimensional algorithmic self-assembly for any arbitrary Boolean
functions OP1 and OP2.

228 S. Sahu and J.H. Reif

Proof. Construction. Before we begin the proof we would like to emphasize the
wholeness of the pad. Each side of the tile has one pad in Figure 2, and it encodes
the triplet shown in the Figure. Disagreement between corresponding elements of two
such triplets in any two pads results in the total mismatch between those two pads. Con-
sider the tile with input U(i, j) and V (i, j) at the right and bottom pads respectively.
Our goal is to guarantee one more error in the immediate vicinity of this tile if there is
one error. For that, we construct an error checking portion (V (i, j)) in the right side pad
and one error checking portion (U(i, j)) in the bottom pad. We will need corresponding
parts in the pads on the top (U(i, j + 1)) and the left side (V (i + 1, j)) also, which will
match with the error checking parts in the bottom pad of the top neighbor T (i, j + 1)
and right pad of the left neighbor T (i + 1, j) respectively. Now since top output pad

V(i+1,j),V(i,j),U(i,j)

U(i,j+1),
U(i,j),
V(i,j)

U(i+1,j+1),
U(i+1,j),
V(i+1,j)

V(i+2,j),V(i+1,j),U(i+1,j)

U(i+1,j+1),
U(i+1,j),
V(i+1,j)

U(i+1,j),
U(i+1,j-1),
V(i+1,j-1)

V(i+1,j),V(i,j),U(i,j)

U(i+1,j),
U(i+1,j-1),
V(i+1,j-1)

V(i+2,j),V(i+1,j),U(i+1,j)

T(i,j)

T(i,j-1)

T(i+1,j)

T(i-1,j+1)

U(i,j+1),
U(i,j),
V(i,j)

T(i-1,j)

Mismatch

case i
Further
mismatch

case iia
Further
mismatch

case ii b
Further mismatch

Fig. 3. Case 1 b) A further mismatch is caused by an error in the input pads

depends on the value of U(i, j + 1) (which is the right input of the top neighbor) we
need to incorporate it in our input pads. It is necessary otherwise there will be multiple
type of tiles for any given set of input pads. But for successful functioning of algorith-
mic self-assembly it is required that there should be only one possible tile-type for every
set of input pads. So, we need one more portion in the right input pad (U(i, j + 1)) and
hence a corresponding part in the left output pad (U(i + 1, j + 1)). Similarly, the need
for another portion in bottom input pad (V (i + 1, j)) and subsequently, in top output
pad (V (i + 1, j + 1)) can be explained.

This completes our description of a tile in the required tile-set. It should be noted that
the number of different tile types in this tile-set will be 4 times as compared to number
of tiles in a tileset without any error-correction. It can be attributed to the two possible
values for each of U(i, j + 1) and V (i + 1, j), for every value of the inputs U(i, j) and
V (i, j).

Error-Analysis: We show that if the neighborhood tiles a-independent of T (i, j) are
assembled correctly then a pad binding error in any of the input pads in T (i, j) causes
an additional mismatch error in its neighborhood in equilibrium. We need to consider

Capabilities and Limits of Compact Error Resilience Methods 229

only the cases where the pad binding error occurs in either the bottom or the right pad
of tile T (i, j). Otherwise, if the error occurs in left (or top) pad of T (i, j) then we can
consider the right pad of T (i + 1, j) (or bottom pad of T (i, j + 1) for the analysis. The
following case analysis provides the required proof.

1. If the bottom pad of T (i, j) has a mismatch:
(a) If V (i, j) on the bottom pad has a mismatch, then V (i, j) on right pad is incor-

rect, which causes an additional mismatch.
(b) If V (i, j) on the bottom pad is correct and V (i + 1, j) on right pad has a mis-

match, V (i + 1, j) on left pad is incorrect. Now we will prove that it causes a
further mismatch by exactly same technique as used by Reif et al [15]. We have
assumed that all the rows and columns that are a-independent of tile T (i, j) are
correctly assembled so T (i + 1, j − 1) is correctly assembled and has correct
values of its top output pad. Hence T (i, j)’s left neighbor T (i + 1, j) is de-
pendent upon the incorrect value communicated by the left pad of T (i, j) and
correct values communicated by top pad of T (i + 1, j − 1). Now consider the
pads of T (i+1, j). The right pad includes U(i+1, j+1), U(i+1, j), V (i+1, j)
and bottom pads include V (i + 2, j), V (i + 1, j), U(i + 1, j). Since the value
V (i+1, j) communicated by T (i+1, j−1) is correct and the value V (i+1, j)
communicated by T (i, j) is wrong, this implies there will be a mismatch at the
right or bottom pad of Tile T (i + 1, j).

2. If there is no error in bottom pad, but the right pad of T (i, j) has mismatch:
(a) If U(i, j) on the right pad has a mismatch, then U(i, j) on bottom pad is incor-

rect, which causes an additional mismatch.
(b) If U(i, j) on right pad is correct but U(i, j + 1) on right pad is incorrect,

then U(i, j + 1) on top output pad is incorrect. Now we will show that it
causes a further mismatch as argued above. Since we assume that all the rows
and columns that are a-independent of tile T (i, j) are correctly assembled
T (i − 1, j + 1) is correctly assembled and has correct values of its left out-
put pad. Hence T (i, j)’s top neighbor is dependent upon the incorrect value
communicated by the top pad of T (i, j) and correct values communicated by
left pad of T (i − 1, j + 1). Now consider the pads of T (i, j + 1). The right
pad includes U(i, j + 2), U(i, j + 1), V (i, j + 1) and bottom pads include
V (i + 1, j + 1), V (i, j + 1), U(i, j + 1). Since V (i + 1, j) communicated by
T (i− 1, j + 1) is correct and the value V (i + 1, j) communicated by T (i, j) is
wrong, this implies there will be a mismatch at the right or bottom pad of Tile
T (i, j + 1).

Hence any mismatch on the right or bottom pad of tile T (i, j) causes one more
mismatch in the vicinity of the tile. Together with the Proposition 1 this implies that
this scheme can reduce the pad mismatch errors from ε to ε2.

2.4 Error Reduction to ε3

At this point we would like to reiterate that redundancy based compact error resilient
scheme refers to any error resilient scheme that does not scale up the assembly and in
which only the encodings on the pads of the tiles are used to create redundancy. Also, a

230 S. Sahu and J.H. Reif

Boolean function f(x) is said to be input-sensitive to Boolean input x if it changes for
every change in the value of x.

Theorem 2. For arbitrary OP1 and OP2, there does not exist any redundancy based
compact error resilient scheme for two-dimensional self-assembly that can reduce the
error from ε to ε3.

Proof.

U(i,j)

V(i,j)

f(V(i,j))

f(V(i,j-1)

V(i,j-1)

g(V(i,j-1))

U(i,j)

V(i,j)f(V(i,j))
f(V(i,j-1)

V(i,j-1)

g(V(i,j-1))

Fig. 4.

For errors to reduce from ε to ε3, an error in any input pad, say V (i, j) should cause
two further mismatches in the immediate neighborhood. At least one of those mis-
matches should be caused because of an error on one of the output pads. It should be
noted that if OP1 and OP2 are arbitrary Boolean functions then the output U(i + 1, j)
or V (i, j + 1) cannot be guaranteed to be wrong for incorrect value of V (i, j). Hence,
in at least one of the output pads an additional error checking portion f(V (i, j)) (that is
input-sensitive to V (i, j) and hence can reflect the error in V (i, j)) is required. It can
be located on the top or left output pad.

– Assume that f(V (i, j)) is located on top side, which implies f(V (i, j − 1)) is
located on the bottom side.
1. If V (i, j−1) does not exist within the input pads, then we need to consider the

case when f(V (i, j − 1)) has a mismatch. Since we require two further errors
in the neighborhood of T (i, j), as argued above it requires an additional error
checking function g(f(V (i, j − 1))) (that is input-sensitive to f(V (i, j − 1)))
on at least one of the top or left output pad.

2. If V (i, j − 1) exists in the input pads, then in case when V (i, j − 1) is mis-
matched, and two further errors in the neighborhood of T (i, j) are required,
it needs an additional error checking function g′(V (i, j − 1)) (that is input-
sensitive to V (i, j − 1)) on at least one of the top or left output pad.

– Assume that f(V (i, j)) is located on left side, which implies f(V (i − 1, j)) is
located on the right side.
1. If V (i−1, j) does not exist within the input pads, we need to consider the case

when f(V (i − 1, j)) is mismatched. Since two further errors are required, as
argued above it requires an additional error checking function h(f(V (i−1, j)))
(that is input-sensitive to f(V (i−1, j))) to be located on at least one of the top
or left output pad.

Capabilities and Limits of Compact Error Resilience Methods 231

2. If V (i − 1, j) exists in the input pads, then in case when V (i − 1, j) is mis-
matched, and two further errors are required, it requires an additional error
checking function h′(V (i− 1, j)) (that is input-sensitive to V (i − 1, j)) to be
present on at least one of the top or left output pads.

Hence, an additional error checking pad (g(f(V (i, j−1))), g′(V (i, j−1)) or h(f(V (i−
1, j)))or h(V (i − 1, j))) is required on at least one of the output pads. Arguing in the
same manner as above it can concluded that this cycle will keep on repeating. Hence, it
is not possible to construct tile with a bounded number of parameters in the pads and we
conclude that redundancy based compact error resilient schemes can not reduce error
from ε to ε3.

However, it will be proved that for a rather restricted class of Boolean functions OP1

and OP2, error can be reduced to ε3 by using the construction of Figure 2, which is
stated as Theorem 3.

Before we proceed with the error-analysis, it will be use- Table 1. An example of the
OP1 and OP2

U V UOP1V UOP2V
0 0 1 0
0 1 1 1
1 0 0 0
1 1 0 1

ful to understand the function class characterized in the
Theorem 3. OP1 and OP2 are such that:(1) U(i, j) OP1

V (i, j) is input-sensitive to U(i, j), if V (i, j) is kept con-
stant and U(i, j) OP2 V (i, j) is input-sensitive to V (i, j)
if U(i, j) is kept constant. (2) When both of them change at
least one of the U(i, j) OP1 V (i, j) or U(i, j) OP2 V (i, j)
should also change. For U(i, j) = 0, there are 2 possible
assignments to U(i, j)OP1V (i, j) maintaining its input-
sensitivity to V (i, j). Similarly, for U = 1 there are 2 possible assignments to
U(i, j)OP1V (i, j) conditioned to its input-sensitivity to V (i, j). Similarly for
V (i, j)=0 and V (i, j)=1 there are 2 independent assignments each. But among these
half of the assignments do not satisfy the second condition. Hence the total number of
Boolean functions in this class are 8. An example of such a function is given in the
Table 1.

Theorem 3. For restricted class of Boolean functions OP1 and OP2 such that at least
one of the U(i+1, j) or V (i, j +1) changes for any change in U(i, j) or V (i, j), there
exists a redundancy based compact error resilience scheme that can reduce the error to
ε3, and one such scheme is as shown in Figure 2.

Proof. If OP1 and OP2 are restricted to be as described, and if the neighborhood tiles
that are a-independent of T (i, j) are assembled correctly, then a pad binding error in any
of the input pads in T (i, j) causes two additional mismatch errors in its neighborhood.
As explained earlier, we need to consider only the cases where the pad binding error
occurs in either the bottom or the right pad of tile T(i,j). The following case analysis
provides the required proof.

1. If the bottom pad of T (i, j) has a mismatch:
(a) If V (i, j) in bottom pad of T (i, j) has a mismatch, then the V (i, j) in the right

pad of T (i, j) is incorrect. This causes a mismatch because according to our
assumption, all the tiles a-independent of T (i, j) are assembled correctly. Also:

232 S. Sahu and J.H. Reif

i. If U(i, j) on right pad is correct, V (i, j + 1) on top pad is incorrectly
computed because of restrictions on OP1 and OP2. This will cause further
mismatch at the right or bottom pad of the top neighbor T (i, j + 1), as
argued in the proof of Theorem 1.

ii. If U(i, j) on right pad has a pad-mismatch, then at least one of the V (i, j+
1) on top pad or U(i + 1, j) on left pad is incorrectly computed, be-
cause of the restrictions on OP1 and OP2. This will cause a further mis-
match at right or bottom pad of the left neighbor (T (i + 1, j)) or top
neighbor(T (i, j + 1)) in the same way as argued earlier.

(b) If V (i, j) on bottom pad is correct and V (i+1, j) on bottom pad has mismatch,
then V (i + 1, j) on the left pad is incorrect, which causes a further mismatch
in the right or bottom pad of the left neighbor T (i + 1, j). Also:

i. If U(i, j) on right pad is incorrect, then this causes a mismatch on the
right pad of T (i, j), because according to our assumption, all the tiles a-
independent of T (i, j) are assembled correctly.

ii. If U(i, j) on right pad is correct, then U(i + 1, j) on left output pad is
correct. But since V (i + 1, j) has a mismatch, V (i + 1, j + 1) on the top
pad is incorrectly computed, because of the restriction on OP1 and OP2.
This causes a further mismatch on the bottom or the right pad of the top
neighbor tile T (i, j + 1).

2. If there is no error in the bottom pad and there is mismatch in right pad:

(a) If U(i, j) on right pad has a pad-mismatch, then at bottom U(i, j) is incorrect,
and causes a mismatch. However since V (i, j) on the bottom pad is correct so
U(i + 1, j) on left pad is incorrectly computed because of the restriction on
OP1 and OP2. This causes a further mismatch on right or bottom pad of left
neighbor as explained earlier.

(b) If U(i, j) on right pad is correct and U(i, j+1) has a mismatch, then U(i, j+1)
on top pad is incorrect., which causes a further mismatch in right or bottom pad
of the top neighbor tile T (i, j + 1). Also since V (i, j) is correct, V (i, j + 1)
is also correct, and hence U(i + 1, j + 1) on left pad is incorrectly computed
because of restriction on OP1 and OP2. This causes a further mismatch in the
right or bottom pad of the left neighboring tile T (i + 1, j).

Hence any mismatch on the right or bottom side of the tile T (i, j) causes two further
mismatches in the vicinity of tile T (i, j) and this results in error reduction from ε to ε3.

For any other combination of Boolean functions OP1 and OP2, which do not satisfy the
conditions of Theorem 3, the redundancy based compact error resilient schemes fail to
achieve the reduction from ε to ε3. It can be proven along the similar lines of reasoning
as the proof of Theorem 2. Therefore we state it without proof.

Theorem 4. For any combination of Boolean functions OP1 and OP2 outside the re-
stricted class of Theorem 3, there exists no redundancy based compact error correction
schemes that can reduce the error from ε to ε3 in two-dimensional self-assembly.

Capabilities and Limits of Compact Error Resilience Methods 233

2.5 Error Reduction to ε4

Theorem 5. For any Boolean functions OP1 and OP2, there exists no redundancy
based compact error correction scheme that can reduce error from ε to ε4 in two-
dimensional self-assembly.

Proof. For the reduction of error from ε to ε4, a mismatch in any input pad should
cause 3 more mismatches. It means that for any error in one of the input pads both
the output pads should have errors. In case an output pad requires any additional error
checking portion to detect an error in an input, then by arguments similar to the proof
of Theorem 2, it can be shown that such a tile cannot be constructed.

Hence, the only possibility is when, the left and top outputs U(i+1, j) and V (i, j+1)
both change for any change in the input U(i, j) or V (i, j). This means that we have
different values for each of U(i + 1, j) and V (i, j + 1) for 4 different values of input
pair, which is not possible as U(i + 1, j) and V (i, j + 1) are Booleans.

3 Error Correction in Self-assemblies in Three Dimensions

Three dimensional self-assembly is being described as the most promising tool for het-
erogeneous integration of next generation microsystems. Its potential to build complex
systems from microscale templates can not be overlooked [29, 12, 6, 22]. Besides the
assembled three-dimensional structures can be extremely useful in computations [7].
It is possible to simulate a two-dimensional cellular automata, using three-dimensional
self-assembly, which then paves way to perform a rich class of computations including
matrix multiplication, integer multiplications, context-free language recognition etc.

3.1 Assembly in Three Dimensions

The assembly problem in three-dimensions can V(i,j+1,k)

V(i,j,k)

W(i,j,k)

W(i,j,k+1)

U(i,j,k) U(i+1,j,k)

Fig. 5. Three dimensional algorithmic
self-assembly

be generalized from the two-dimensional as-
sembly as the assembly of a three-dimensional
Boolean array of size N×M×P , where the el-
ements are indexed from 0 to N − 1 from right
to left, 0 to M − 1 from bottom to top, and 0 to
P − 1 from front to back. The rightmost plane,
bottommost plane and frontmost plane provide
the inputs to the assembly.

Let V (i, j, k) be the i-th value from right,
j-th from bottom, and k-th from front. Let
U(i, j, k) be the value communicated to the po-
sition (i+1, j, k), V (i, j, k) be communicated to the position (i, j+1, k), and W (i, j, k)
be communicated to the position (i, j, k + 1). Figure 5 shows a computational tile that
can be used for construction of three-dimensional assembly. U(i, j, k), V (i, j, k) and
W (i, j, k) are inputs at right pad, bottom pad and front pad respectively, to the tile lo-
cated at position (i, j, k). Then U(i + 1, j, k), V (i, j + 1, k) and W (i, j, k + 1) are the
output values at left, top and back pads, respectively. Also,U(i, j, k) = f1(U(i−1, j, k),

234 S. Sahu and J.H. Reif

V (i, j−1, k), W (i, j, k−1)), V (i, j, k) = f2(U(i−1, j, k), V (i, j−1, k), W (i, j, k−
1)), W (i, j, k) = f3(U(i − 1, j, k), V (i, j − 1, k), W (i, j, k − 1)) where f1, f2 and
f3 are the ternary Boolean functions that take as input three Boolean values and give a
Boolean output. It is assumed that initially a frame is assembled, with M × P tiles in
rightmost plane, N × P tiles in bottommost plane and N × P tiles in frontmost plane.
Next we examine the error resilience in three-dimensional self-assembly.

3.2 The Error Model

We extend the error model in two-dimensions to three-dimensional assembly in an ob-
vious way. We follow the independent error model for three dimensional assembly. We
also want to emphasize on the correct assembly of all the tiles in the assembly (and
hence on the correctness of complete pattern), and not just on the correctness of final
output only. We want to emphasize that the error analysis is done in the equilibrium
state of the assembly. Consider a tile T (i, j, k) in a N ×M × P tiling assembly where
0 < i < N − 1, 0 < j < M − 1, 0 < k < P − 1. We define the immediate neighbor-
hood of a tile T (i, j, k) as 26 tiles surrounding it, whose coordinates differ from (i, j, k)
by at most 1. Formally speaking, {T (i′, j′, k′) : |i′ − i| ≤ 1, |j′ − j| ≤ 1, |k′ − k| ≤
1} \ {T (i, j, k)}. Tile T (i′, j′, k′) is said to be a-dependent on tile T (i, j, k) if i′ ≥ i,
j′ ≥ j, and k′ ≥ k and a-independent otherwise. Next we examine the schemes to re-
duce the errors in self-assembly. As mentioned earlier redundancy based compact error
resilient scheme refers to an error resilient scheme that does not scale up the assembly
and in which the encodings on the pads of the tiles are used to create redundancy.

3.3 Error Reduction to ε2

Theorem 6. There exists a redundancy based compact error resilient tiling scheme in
three dimensional assembly which can reduce the error from ε to ε2 for any arbitrary
Boolean functions f1, f2, and f3, and it is shown in Figure 6.

Construction. Before we describe the construction, we would like to emphasize on the
wholeness of pad. Each side of the tile has one pad in Figure 6, that encodes a 5-tuple
as shown in the Figure. Disagreement between corresponding elements of two such 5-
tuples in any two pads results in the total mismatch between those two pads. Consider
the tile T (i, j, k) with inputs U(i, j, k), V (i, j, k) and W (i, j, k) on the right, bottom
and front pads respectively. Our goal is to guarantee one more error in the vicinity of
this tile if there is one error in any of the input pads.

We add error checking parts to the right, bottom and front pads as shown in the
Figure 6: V (i, j, k) and W (i, j, k) on right pad, W (i, j, k) and U(i, j, k) on bottom
pad and U(i, j, k) and V (i, j, k) on front pad. Corresponding to these, we need to add
V (i + 1, j, k) and W (i + 1, j, k) on left pad, W (i, j + 1, k) and U(i, j + 1, k) on
top pad and U(i, j, k + 1) and V (i, j, k + 1) on back pad, as explained in the case of
two-dimensional tile.

As described in two-dimensional assembly, every value in the output pads should
be uniquely derivable from the values on the input pads. For V (i + 1, j, k) and W (i +
1, j, k) on the left pad we add V (i+1, j, k) on the bottom pad, and W (i+1, j, k) on the
front pad. For U(i, j + 1, k) and W (i, j + 1, k) on the top pad, we add U(i, j + 1, k) to

Capabilities and Limits of Compact Error Resilience Methods 235

V(i,j,k) , V(i+1,j,k) , V(i,j,k+1),

W(i,j,k),U(i,j,k)W(i,j+1,k),W(i,j,k) , W(i+1,j,k) ,

V(i,j,k),U(i,j,k)

U(i,j+1,k),U(i,j,k) ,U(i,j,k+1),

V(i,j,k) ,W(i,j,k)

W(i,j+1,k+1),W(i,j,k+1) , W(i+1,j,k+1) ,

V(i,j,k+1),U(i,j,k+1)

U(i+1,j+1,k),U(i+1,j,k) ,U(i+1,j,k+1),

V(i+1,j,k) ,W(i+1,j,k)

V(i,j+1,k) , V(i+1,j+1,k) , V(i,j+1,k+1),

W(i,j+1,k),U(i,j+1,k)

Fig. 6. Construction for error reduction to ε2

the right pad and W (i, j +1, k) to the front pad. For U(i, j, k+1) and V (i, j, k+1) on
the back pad, we add U(i, j, k+1) to the right pad and V (i, j, k+1) to the bottom pad.
The construction is complete with addition of U(i + 1, j + 1, k) and U(i + 1, j, k + 1)
to left pad, V (i + 1, j + 1, k) and V (i, j + 1, k + 1) to top pad, and W (i + 1, j, k + 1)
and W (i, j + 1, k + 1) to back pad.

This completes our description of a tile in the required tile-set. It should be noted that
the number of different tile types in this tile set will be 64 times as compared to number
of tiles in a tileset without any error-correction. It can be attributed to the two values for
each of the U(i, j + 1, k), U(i, j, k + 1), V (i + 1, j, k), V (i, j, k + 1), W (i + 1, j, k)
and W (i, j + 1, k), for every value of the inputs U(i, j, k), V (i, j, k) and W (i, j, k).

Refer to [17] for detailed error analysis.

3.4 Error Reduction to ε3

Theorem 7. If Boolean functions f1, f2, and f3 satisfy the following conditions:

– for fixed V (i, j, k) and W (i, j, k), f1(U, V, W) is input-sensitive to U(i, j, k).
– for fixed U(i, j, k) and W (i, j, k) , f2(U, V, W) is input-sensitive to V (i, j, k).
– for fixed U(i, j, k) and V (i, j, k), f3(U, V, W) is input-sensitive to W (i, j, k).

Then there exists a compact error resilient scheme to reduce error from ε to ε3 for
three-dimensional self-assembly, and it is shown in Figure 6.

Refer to [17] for detailed proof.

3.5 Error Reduction to ε4

Theorem 8. For arbitrary Boolean functions f1, f2, and f3, there exists no redun-
dancy based compact error resilient scheme that can reduce error from ε to ε4 in three-
dimensional self-assembly.

Refer [17] for proof.

236 S. Sahu and J.H. Reif

4 Self-healing Tile Set for Three Dimensional Assembly

Winfree [25] provided the basis for studying self-healing in the self-assembly in a rig-
orous manner. We need to consider the repairability of a self-assembled structure in
the face of a damage. A tile-set is called self-healing, if at any point during error-free
growth, when n tiles are removed, subsequent error free growth will repair the damage
rapidly [25]. Winfree’s scheme of correctly repairing the damage (hole) is by ensuring
that the holes are filled in the original forward direction of the algorithmic assembly
and there is no backward growth in the holes.

Winfree proposed constructions of self-healing tile-sets for two dimensional algo-
rithmic self-assembly by replacing a single tile by a 3 × 3 (for simple assemblies like
sierpinsky triangles) , 5 × 5 (for general assemblies) and 7 × 7 (for additional robust-
ness to nucleation errors) block. We can extend his construction to three-dimensions.
We have discussed the construction of self-healing tile set by replacing a tile by 3×3×3
block of tiles in [17].

5 Discussion

In this paper, we presented a theoretical analysis of redundancy based compact error
resilient tiling in two and three dimensions. We conjecture the following stronger results
for three-dimensional assemblies. Currently these conjectures are open questions. We
state them without proofs as follows:

Conjecture 1. For arbitrary Boolean functions f1, f2, and f3, there exists no redun-
dancy based compact error correction scheme that will reduce error from ε to ε3 in
three-dimensional self-assembly.

Conjecture 2. For any functions f1, f2, and f3 that are outside the restricted class of
the functions defined in Theorem 7 there exists no redundancy based compact error
correction scheme that will reduce error from ε to ε3 in three-dimensional self-assembly.

Conjecture 3. For any Boolean functions f1, f2, and f3, , there exists no redundancy
based compact error resilient scheme that can reduce error from ε to ε4 in three-
dimensional self-assembly.

The immediate future work will be to prove or disprove these conjectures. We have pre-
sented a three-dimensional extension to Winfree’s self-healing tile set in two-dimensions.
It remains an open question if it is possible to design a compact self-healing tile set for
two and three-dimensional self-assembly.

References

1. B.A. Bondarenko. Generalized Pascal Triangles and Pyramids, Their Fractals, Graphs and
Applications. The Fibonacci Association, 1993. Translated from Russion and edited by R.C.
Bollinger.

2. N. Bowden, A. Terfort, J. Carbeck, and G.M. Whitesides. Self-assembly of mesoscale objects
into ordered two-dimensional arrays. Science, 276(11):233–235, 1997.

Capabilities and Limits of Compact Error Resilience Methods 237

3. N. Chelyapov, Y. Brun, M. Gopalkrishnan, D. Reishus, B. Shaw, and L. Adleman. DNA
triangles and self-assembled hexagonal tilings. J. Am. Chem. Soc., 126:13924–13925, 2004.

4. H.L. Chen, Q. Cheng, A. Goel, M.D. Huang, and P.M. de Espanes. Invadable self-assembly:
Combining robustness with efficiency. In Proceedings of the 15th annual ACM-SIAM Sym-
posium on Discrete Algorithms (SODA), pages 890–899, 2004.

5. H.L. Chen and A. Goel. Error free self-assembly using error prone tiles. In DNA Based
Computers 10, pages 274–283, 2004.

6. T. D Clark, R Ferrigno, J Tien, K E Paul, and G M Whitesides. Template-directed self-
assembly of 10-microm-sized hexagonal plates. J Am Chem Soc., 124(19):5419–26, 2002.

7. N. Jonoska, S.A. Karl, and M. Saito. Three dimensional DNA structures in computing.
BioSystems, 52:143–153, 1999.

8. T.H. LaBean, H. Yan, J. Kopatsch, F. Liu, E. Winfree, J.H. Reif, and N.C. Seeman. The
construction, analysis, ligation and self-assembly of DNA triple crossover complexes. J. Am.
Chem. Soc., 122:1848–1860, 2000.

9. M.G. Lagoudakis and T.H. LaBean. 2-D DNA self-assembly for satisfiability. In DNA
Based Computers V, volume 54 of DIMACS, pages 141–154. American Mathematical Soci-
ety, 2000.

10. D. Liu, M. Wang, Z. Deng, R. Walulu, and C. Mao. Tensegrity: Construction of rigid DNA
triangles with flexible four-arm dna junctions. J. Am. Chem. Soc., 126:2324–2325, 2004.

11. C. Mao, W. Sun, and N.C. Seeman. Designed two-dimensional DNA holliday junction arrays
visualized by atomic force microscopy. J. Am. Chem. Soc., 121:5437–5443, 1999.

12. B. R. Martin, D. C. Furnange, T. N. Jackson, T. E. Mallouk, and T. S. Mayer. Self-alignment
of patterned wafers using capillary forces at a water-air interface. Advanced Functional
Materials, 11:381–386, 2001.

13. P.J. Paukstelis, J. Nowakowski, J.J. Birktoft, and N.C. Seeman. Crystal structure of a contin-
uous three-dimensional DNA lattice. Chemistry and Biology, 11:1119–1126, 2004.

14. J.H. Reif. Local parallel biomolecular computation. In H. Rubin and D.H. Wood, editors,
DNA-Based Computers 3, volume 48 of DIMACS, pages 217–254. American Mathematical
Society, 1999.

15. J.H. Reif, S. Sahu, and P. Yin. Compact error-resilient computational DNA tiling assemblies.
In Proc. 10th International Meeting on DNA Computing, pages 248–260, 2004.

16. P.W.K. Rothemund. Using lateral capillary forces to compute by self-assembly. Proc. Natl.
Acad. Sci. USA, 97(3):984–989, 2000.

17. S. Sahu and J.H.Reif. Capabilities and limits of compact error resilience methods for al-
gorithmic self-assembly in two and three dimensions. Technical Report CS-2006-04, Duke
University, 2006.

18. R. Schulman and E. Winfree. Programmable control of nucleation for algorithmic self-
assembly. In DNA Based Computers 10, LNCS, 2005.

19. N.C. Seeman. DNA in a material world. Nature, 421:427–431, 2003.
20. D. Soloveichik and E. Winfree. Complexity of self-assembled shapes. In DNA Based Com-

puters 10, LNCS, 2005.
21. H. Wang. Proving theorems by pattern recognition ii. Bell Systems Technical Journal, 40:1–

41, 1961.
22. George M. Whitesides and Bartosz Grzybowski. Self-assembly at all scales. Science,

295:2418 – 242, 2002.
23. E. Winfree. Complexity of restricted and unrestricted models of molecular computation. In

R. J. Lipton and E.B. Baum, editors, DNA Based Computers 1, volume 27 of DIMACS, pages
187–198. American Mathematical Society, 1996.

24. E. Winfree. Simulation of computing by self-assembly. Technical Report 1998.22, Caltech,
1998.

238 S. Sahu and J.H. Reif

25. E. Winfree. Self-healing tile sets. Nanotechnology: Science and Computation, 2006.
Preprint. One-page abstract in proceedings of FNANO 2005.

26. E. Winfree and R. Bekbolatov. Proofreading tile sets: Error correction for algorithmic self-
assembly. In DNA Based Computers 9, volume 2943 of LNCS, pages 126–144, 2004.

27. E. Winfree, F. Liu, L.A. Wenzler, and N.C. Seeman. Design and self-assembly of two-
dimensional DNA crystals. Nature, 394(6693):539–544, 1998.

28. E. Winfree, X. Yang, and N.C. Seeman. Universal computation via self-assembly of DNA:
Some theory and experiments. In L.F. Landweber and E.B. Baum, editors, DNA Based Com-
puters II, volume 44 of DIMACS, pages 191–213. American Mathematical Society, 1999.

29. X. Xiong, Y. Hanein, J. Fang, Y. Wang, W. Wang, D. Schwartz, and K. Bohringer. Con-
trolled multibatch self-assembly of microdevices. Journal Of Microelectromechanical Sys-
tems, 12:117–127, 2003.

30. H. Yan, L. Feng, T.H. LaBean, and J.H. Reif. Parallel molecular computation of pair-wise
xor using DNA string tile. J. Am. Chem. Soc., 125(47), 2003.

31. H. Yan, T.H. LaBean, L. Feng, and J.H. Reif. Directed nucleation assembly of DNA tile
complexes for barcode patterned DNA lattices. Proc. Natl. Acad. Sci. USA, 100(14):8103–
8108, 2003.

32. H. Yan, S.H. Park, G. Finkelstein, J.H. Reif, and T.H. LaBean. DNA-templated self-assembly
of protein arrays and highly conductive nanowires. Science, 301(5641):1882–1884, 2003.

A Mathematical Approach to Cross-Linked
Structures in Viral Capsids:

Predicting the Architecture of Novel Containers
for Drug Delivery

Thomas Keef

Department of Mathematics
Univerity of York
tk506@york.ac.uk

Abstract. Understanding the structure of viruses is an important first
step in terms of many applications in virology, including the protein en-
gineering of containers to enable more effective drug delivery. In partic-
ular, the viral capsids, i.e. the protective shells on the exterior of viruses
containing the important genetic code, play an important role in the
context of gene therapy, where small amounts of therapeutic DNA is
packaged into a capsid which then penetrates the cell membrane and
delivers its payload. Cross-linking structures are particular additional
covalent bonds that can occur in addition to the already present hy-
drophobic interactions and hydrogen bonds between the proteins. Their
importance lies in the fact that they render the capsid particularly sta-
ble. Here we shall introduce a mathematical method to predict possible
locations for these additional bonds of cross-linking. We will give ex-
amples of failed cases as well as of cases where cross-linking structures
are possible. These results serve as a pointer for experimentalists as to
which types of cross-linking structures may possibly be engineered and
exploited in the framework of drug delivery.

1 Introduction

Viruses are fascinating micro-organisms, consisting of a very compact genome
and a protective protein shell that hijack host cells typically between one hundred
or one thousand times their size. Viral capsids are shells constructed from many
copies of one, or a few, identical protein subunits. In order to encode the locations
of these proteins, viruses use symmetry so that the subunits are located in as
few as possible equivalent locations. The most common symmetry observed in
viral capsids is icosahedral, a structure with five-, three-, and two-fold rotational
symmetries encoding 60 equivalent regions called fundamental domains, three
per triangular face of an icosahedron. This naturally predicts the locations of
the subunits in a capsid, with 60 copies of each protein in the corners of each
of the triangular faces, clustered in groups of five around the vertices where the
clusters are known as capsomeres. For viruses with more than 60 subunits in

C. Mao and T. Yokomori (Eds.): DNA12, LNCS 4287, pp. 239–249, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

240 T. Keef

their capsids it is neccessary to subdivide each of the 60 fundamental domains
into smaller areas. The first model which satisfactorally predicted a way to do
this and also the possible numbers of protein subunits allowed in a capsid was
suggested by Caspar and Klug [1] and concerns the division, or triangulation,
of the 20 triangular faces of the icosahedral capsid into smaller triangular facets
with protein subunits at the corners of each facet, and is known as Caspar-Klug
Theory. This leads to a series of polyhedra, called the Caspar Klug series, that
encode the surface structures of viruses in this way.

The allowed subdivisions are based on the possible ways of superimposing a
smaller regular hexagonal lattice onto the larger lattice used for the overall icosa-
hedron subdividing the triangular faces of an icosahedron into smaller triangular
facets. The resulting members of the Caspar-Klug series are T = h2 + hk + k2

where h, k ∈ Z≥0 with the first three shown diagramatically in Fig. 1. The re-
sulting shell encodes a virus with twelve capsomeres of five protein subunits,
called pentamers, and 10(T − 1) capsomeres with six protein subunits, called
hexamers, located on the vertices as predicted by the above lattice.

Fig. 1. The first three members of the Caspar-Klug series are (a) T = 1, (b) T = 3
and (c) T = 4 with two of the icosahedral triangles sketched to show the introduction
of more protein subunits. All figures have been adapted from [2].

This model, widely accepted and used for classification and for three-
dimensional reconstructions of viral capsids based on experimental results, can-
not explain all viral structures, for example Papovaviridae fall out of the scope
of this theory (see Rayment et al.[3] and Liddington et al.[4] for examples).

Viral Tiling Theory (VTT) has been introduced to close this gap and provides
a more general framework to model the structures of viral capsids in terms of
tessellations [5]. The dividing of a surface into a number of shapes is called
a tiling with each individual shape known as a tile. These tiles are not only
mathematical objects, but are geometric representations for inter-subunit bonds
where the tilings encode the bonding structure between subunits. This suggests
that also other types of bonds, such as covalent bonds, where two atoms share
an electron, should be representable in a similar way. In particular, relaxing
the assumptions on the construction of the tilings as discussed in Section 2 one
obtains new tilings that encode the chainmail formed by the covalent bonds

A Mathematical Approach to Cross-Linked Structures in Viral Capsids 241

between capsid proteins. An example of a viral capsid with a covalently linked
chainmail structure described in this way is HK97 [6] and Fig. 2(a and b) show a
mature HK97 capsid and the rhomb tile which are used to describe its structure.
In Fig. 2 the chainmail structure is shown along with the higher level tiling
producing the interlinked covalently bonded rings over the capsid surface. These
cross-linked bonds provide added stability to the capsid and could present an
opportunity for protein engineering to create more stable, robust containers for
drug delivery. It is necessary to produce a classification of the viruses that have
structures consistent with the requirements for cross-linking in order to predict
suitable candidates as a pointer for experimentalists.

Fig. 2. (a) The surface structure of HK97 can be described by rhomb tiles with
inter-subunit bonds between capsomeres as shown in (b). (c) The interlinked cova-
lently bonded rings are shown along with the rhomb tiles and also the triangular
tiles used to encode the chainmail structure. (a) has been adapted from [7] and (c)
from [8].

2 A New Method for the Prediction of Cross-Linking
Structures in Viral Structures

Here we will show how to create the tilings required to encode crosslinked
structures from the tilings which describe the structure of the viral capsid. The
technique is to superimpose a further set of tiles over those which encode the
inter-subunit bonding structure of the viral capsid. To produce a successful tiling,
one must follow the rules below as set out in [8]:

1. The decorations of the original tiling and all higher-level tilings superimpose.
This is required due to the fact that the decorations indicate the locations
of the protein subunits in the capsid.

2. Higher-level tilings have decorations on the edges of the tiles and each edge
has at least one decoration.

242 T. Keef

3. As with all tiles in Viral Tiling Theory, the tiles in higher-level tilings repre-
sent inter-subunit interactions, in this case covalent bonds, and are given by
connections between the decorations. Each subunit participates in precisely
one bond per tile, and a line representing a bond connects decorations lo-
cated on different edges on the tiles such that the overall symmetries of the
tiles are not changed.

To create the higher level tiling we first need the tiling structure for the capsid.
The new tiles should have vertices at the same locations as the decorated vertices
for the capsid tiling. The edges should then pass through the decorations (or
proteins in the capsid), bisecting the centres of the first tiling. For a model to
have a successful crosslinked structure we require interlinked rings which do not
self intersect and whose overall length is not such that resulting rings are so long
that they result in a tangled web of bonds over the surface of the capsid.

We will first investigate the higher level tilings for Caspar-Klug type viruses
and show why cross-linked structures cannot be observed. We will then provide
an example of a non cross-linked virus with possibilities for the locations of
covalent bonds resulting in a cross-linked structure that could be useful for the
engineering of more robust virus-like particles.

2.1 Application to Caspar-Klug Type Viruses

Viruses with 12 pentamers and otherwise hexamers with trimer interactions
between capsomeres can be described by triangular tilings as shown in Fig. 3(a).
The higher level tilings for these viruses consist of rhombs with one decoration
on each edge (see Fig. 3(b)).

Fig. 3. Caspar-Klug triangular tilings admit rhomb higher level tilings with one deco-
ration on each edge

The options for the lines encoding the possible covalent bonds between protein
subunits that obey rule 3 above are shown in Fig. 4. None of these options
produce cross-linking, two providing no new bonds and the other, Fig. 4(a),
simply producing long bond lines across the capsid surface which suggests cross-
linking in Caspar-Klug Theory is not possible.

A Mathematical Approach to Cross-Linked Structures in Viral Capsids 243

Fig. 4. Possibilities for cross-linking structures for a T = 1 Caspar-Klug type virus
with rhomb shaped higher-level tilings. None produce cross-linking structures. (a) This
rhomb produces long lines around the viral capsid. (b) Here we have intra-capsomere
bonds, i.e. those bonds within the pentamers. (c) Here the covalent bonds would follow
the inter-capsomere bonds. We remark theat larger (higher T number) viruses have
the same general structures.

2.2 Application to a Particle of MS2 Type

MS2 is an icosahedral RNA bacteriophage classified as T = 3 with a capsid
formed by 180 copies of the coat protein arranged in clusters of three proteins,
or trimers, with dimer interactions between them. It is represented in VTT by
a rhomb tiling with decorations on the vertices representing the locations of
the proteins a patch of which is shown in Fig. 5(a). The corresponding higher
level tiling, a tiling with hexagons and pentagons, each with two decorations
along each edge, is shown in Fig. 5(b) along with the options for covalent bonds
which retain the symmetries of the underlying hexagonal and pentagonal tiles
respectively. We shall refer to the tiles as P1 to P4 for the four pentagonal tiles
and H1 to H5 for the five hexagonal tiles. The lines have been drawn as straight
lines, although any line between the two points could be drawn as long as the
resulting symmetry of the tiles is the same as for the tile with no decorations.
The case where this is easiest to show is the tile P3 where all lines cross over
in the centre of the tile: it is unrealistic, because the lines represent polypeptide
chains with associated volumes, so it would be unphysical to have all of the
chains stacked one on top of another. However the lines may be chosen in a way
compatible with symmetry and avoiding cross-overs.

For a T = 3 structure such as MS2 it is necessary to look at the twenty
combinations of hexagonal and pentagonal tiles and investigate the possible
cross-linked structures resulting from them. The possibilities include cross-linked

244 T. Keef

Fig. 5. Trimers with dimer interactions between them admit higher level tilings con-
sisting of hexagons and pentagons, each with two decorations on each edge. The higher
level tiles are shown with all types of decorations corresponding to the locations of
covalent bonds which retain the rotational symmetry of the tile. The lines in P3 have
been left as straight lines, but could be drawn in any way between the points as long
as the five-fold rotational symmetry in the tile is retained.

covalent models, i.e. those where the closed covalent rings intersect each other
in a ‘chainmail’ structure, and also models which do not produce cross-linked
structures for a variety of reasons. One failed cross-linking model is produced
by the tiles H1 and P1 because instead of a cross-linking structure, intra-
capsomere bonds are generated. We have also ruled out models where there
is no cross-linking, where the covalent bondings overlap themselves, referred to
as self-intersecting chains, and also where the chains are extremely long, called
tangled chains, that result in a cobweb of chains over the whole surface of the
virus, because these are not expected to contribute significantly to the stability
of the capsid.

These results rule out thirteen of our options shown in Table 1. Some of the
seven remaining options have furthermore been excluded for different reasons
which we shall now indicate: For capsids whose possible cross-linked structures
have long or overly involved chains we feel that it would be much more difficult
to engineer them. This suggests that although the structures are in principle
possible, practically they would not be a viable choice for protein engineering to
create new, more stable structures. To decide which of these should be discarded
we have to look at the individual characteristics of each possible structure with

A Mathematical Approach to Cross-Linked Structures in Viral Capsids 245

Table 1. Table showing possible options for cross-linked structures for a T = 3 virus of
MS2 type formed from hexagonal and pentagonal higher-level tiles. “None” indicates
that there is no crossing of chains present, “SI” indicates that the resultant chains are
self-intersecting, “T” indicates long tangled chains across the capsid surface, and “CL”
the occurrence of cross-linking.

P1 P2 P3 P4

H1 None SI SI SI

H2 CL CL T CL

H3 SI T T SI

H4 CL T CL CL

H5 SI SI SI CL

the view of ease of creating new virus-like particles with the covalent bonds in the
model. The cases using the tiles P3, H3 and H4, have a large number of cross-
overs and are therefore difficult to engineer. One such example is P4H4, i.e. the
tiling corresponding to a combination of P4 and H4 tiles shown in Fig. 6(a).
As the covalent bonds are between proteins already present in the capsid, the
distance between proteins on the edges of the tiles is too great for one proteins
polypeptide chain to reach the other protein.

Of the remaining four possible cross-linked structures indicated in the ta-
ble (P1H2, P2H2, P4H2 and P4H5) only P1H2 provides a possible rea-
son for exclusion. This is because the bonds encoded by the tile P1 are the
intra-capsomere bonds within the trimer itself. The resulting ‘chainmail’ has
two types of chains, one with four edges of two distinct lengths and another

246 T. Keef

Fig. 6. (a) P4H4 is not a suitable model for cross-linked structures due to the long
edge lengths in the five sided rings surrounding the five fold vertices. (b) P1H2 has
two very distinct rings, one with four edges having two edge lengths and one with a
five-membered ring having equal length sides. The models are sections of an icosahedral
lattice, so the hexagons with sections cut out correspond to pentagons when the overall
lattice is folded up. The resulting icosahedron is a qualitative model and as such bond
angles and lengths are not accurate.

with five edges each of the same length. The two different edge lengths and
the tight curves required for the polypeptide chains at the ends with shorter
edges would suggest that P1H2 with its four-edged chains is not a suitable
model for the creation of more stable engineered capsid-like particles. The short
distance between the long chains would make it difficult to form interlinked
catenanes from the capsid proteins. A diagramatic example of this is shown in
Fig. 6(b). The resulting three possibilities for the creation of cross-linked virus-
like particles for a T = 3 type viral capsid whose capsomeres are trimers with
dimer interactions between them are shown in Fig. 7. These are: P2H2 which
has five- and six-membered rings around the pentamers and hexamers respec-
tively, P4H2 which has ten-membered rings centred on a five-fold rotational
symmetry axis, and P4H5 which consists of three-membered rings everywhere
centred over the trimers, or local three fold axes. We feel that of these three
options P2H2 would be the model which provides the highest stability for the
capsid. This is due to the fact that three loops intersect locally, as opposed
to only two loops for P4H5. Moreover, P2H2 is preferable to P2H2 because
it has smaller sized loops. It could, however, be the case that the model shown in

A Mathematical Approach to Cross-Linked Structures in Viral Capsids 247

Fig. 7. The three possibilities for successfully engineered cross-linked structures for a
T = 3 virus with trimeric capsomeres such as MS2. (a) P2H2 (b) P4H2 (c) P4H5.
The lattices represent nets for icosahedra and can be thought of as qualitative cartoons
showing the locations of the bonds, but not necessarily the exact arcs of the polypeptide
chains, as stated earlier.

Fig. 7(c) is easier to engineer due to the relatively uncomplicated cross-linking
structures with the loops only having three edges around the outside of each
trimer, and each loop only crosslinking with one of its neighbouring loops at a
time.

248 T. Keef

3 Outlook

Based on Viral Tiling Theory we have provided an explanation for the lack of
cross-linking in Caspar-Klug type viral capsids, i.e. those consisting of hexamers
and pentamers with trimer interactions between them. We have also shown that
for a T = 3 particle, whose capsomeres are trimers with dimer interactions such
as MS2, there are twenty different structures with covalent bonding patterns over
the capsid. We have reduced these down to three models which we consider to
be viable choices for the creation of cross-linked virus-like particles. All of these
have closed interlinked rings centered on local symmetry axes, i.e. symmetry
axes that have a local environment invariant under rotations. The number of
intersections along these rings has been restricted in order to focus on models
that are both easy to realise from a practical, protein engineering, point of view,
and correspond to more stable structures.

Work in progress considers the classification of cross-linking structures for
viruses and virus-like particles in general [9]. The use of virus-like particles for
drug delivery has been well documented, see for example a review by Garcea and
Gissmann [10]. We hope that our classification paves the way for the engineering
of such particles with higher stability targeted at the production of new capsid-
based vectors for the medical community.

Acknowledgments

I would like to thank Reidun Twarock, my PhD supervisor, for helpful discus-
sions. This work has been funded by the EPSRC LSI programme, grant number
GR/T26979/01.

References

1. Caspar, D.L.D., Klug, A.: Physical principles in the construction of regular viruses.
Cold Spring Harbor Symp. Quant. Biol. 27 (1962) 1–24

2. Reddy, V.S., Natarajan, P., Okerberg, B., Li, K., Damodaran, K., Morton, R.,
Brooks, C.r., Johnson, J.: Virus particle explorer (viper), a website for virus capsid
structures and their computational analyses. J. Virol. 75(24) (2001) 11943–11947

3. Rayment, I., Baker, T., Caspar, D.L.D., Murakami, W.T.: Polyoma virus capsid
structure at 22.5Ȧ resolution. Nature 295 (1982) 110–115

4. Liddington, R.C., Yan, Y., Moulai, J., Sahli, R., Benjamin, T.L., Harrison, S.C.:
Structure of simian virus 40 at 3.8-Ȧ resolution. Nature 354 (1991) 278–284

5. Twarock, R.: A tiling approach to virus capsid assembly explaining a structural
puzzle in virology. J. Theor. Biol. 226(4) (2004) 477–482

6. Ross, P., Cheng, N., Conway, J., Firek, B., Hendrix, R., Duda, R., Steven, A.:
Crosslinking renders bacteriophage hk97 capsid maturation irreversible and effects
an essential stabilization. The EMBO Journal 24(7) (2005) 1352 – 63

7. Conway, J.F., Wikoff, W.R., Cheng, N., Duda, R.L., Hendrix, R.W., Johnson,
J.E., Steven, A.C.: Virus maturation involving large subunit rotations and local
refolding. Science (292) (2001) 744–48

A Mathematical Approach to Cross-Linked Structures in Viral Capsids 249

8. Twarock, R., Hendrix, R.W.: Crosslinking in viral capsids via tiling theory. J.
Theor. Biol. (2005)

9. Keef, T., Twarock, R.: Classification for crosslinking in viral capsids based on
tiling theory. ((Work in progress))

10. Garcea, R.L., Gissmann, L.: Virus-like particles as vaccines and vessels for the
delivery of small molecules. Curr. Opin. Biotechnolgy 6(15) (2004) 513–7 Review.

A Framework for Modeling DNA Based Molecular
Systems�

Sudheer Sahu, Bei Wang, and John H. Reif

Department of Computer Science, Duke University
Box 90129, Durham, NC 27708-0129, USA.

{sudheer, beiwang, reif}@cs.duke.edu

Abstract. In this paper, we propose a framework for a discrete event simulator
for simulating the DNA based nano-robotical systems. We describe a physical
model that captures the conformational changes of the solute molecules. We also
present methods to simulate various chemical reactions due to the molecular col-
lisions, including hybridization, dehybridization and strand displacement. The
feasibility of such a framework is demonstrated by some preliminary results.

1 Introduction and Related Work

Recent research has explored DNA as a material for self-assembly of nanoscale objects
[19,47,58,75,96,100,101], for performing computation [1,11,9,10,55,54,57,94,95,97],
and for the construction of nano-mechanical devices [2, 20, 21, 28, 53, 59, 86, 70, 76, 77,
78,79,89,88,102,106,107]. One key application of an autonomous unidirectional DNA
device is to perform computation. Recently Yin proposed the design of an autonomous
universal turing machine and cellular automata [105, 104]. One potential application
beyond computation is the design of a controllable moving device which can be inte-
grated into a DNA lattice for efficient transportation. One major challenge in the design
of DNA based devices is the cost and time required for the experiments. Computer sim-
ulations can be performed to capture the essential physical and chemical properties, and
serve as an effective tool in the design process.

Our method of simulation is different from the commonly used Gillespi algorithm
[33,42,34,90,32,69]. In the system of our interests, the geometry of the nano-structures
plays an important role apart from the concentrations of the reactants and the reaction
rates. Physical simulations are performed to model the molecular conformations and
the chemical reactions are monitored explicitly.

Sales-Pardo et. al. modeled a ssDNA as a bead-pin rotational polymer chain and used
a modified Monte Carlo simulation to investigate the dynamics of a single-stranded
DNA and its associated hybridization events [72]. The geometric constraints of the nu-
cleic chain was handled by a lattice model [72]. Isambert and Siggia modeled RNA
helices as rods and single stranded RNA as Gaussian chains [38]. Kinetic Monte Carlo
method was used to sample RNA conformational changes [38]. They also used the
short-scale and the large-scale conformation descriptors, i.e. nets and crosslinked gel,
to model geometric constrains related to complex RNA folding conformations. Bois

� The work is supported by NSF EMT Grants CCF-0523555 and CCF-0432038.

C. Mao and T. Yokomori (Eds.): DNA12, LNCS 4287, pp. 250–265, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

A Framework for Modeling DNA Based Molecular Systems 251

et. al. investigated the possible effects of topological constraints in DNA hybridiza-
tion kinetics [13]. Recently Dirks et. al. developed an algorithm aiming at analyzing
the thermodynamics of unpseudo-knotted multiple interacting DNA strands in a dilute
solution [27].

In this paper, we describe a framework for the design of a discrete event simulator,
which simulates DNA based nano-robotical devices. Section 2 gives an overview of the
system. Section 3 describes the physical simulation of the molecules. Section 4 dis-
cusses the event simulation based on the kinetic and thermodynamic studies. Section 5
describes the adaptive time-steps to optimize the physical simulation, and Section 6 de-
scribes the analysis of the complete algorithm. Section 7 presents some preliminary re-
sults to support such a framewok. Discussions and future work is described in Section 8.
It should be noted that in this paper, we present the framework for building such a sim-
ulator and not the simulator itself.

2 Discrete Event Simulation

The simulator performs the molecular-level ssDNA dsDNA

complex DNA nanostructure

Fig. 1. Schematic view of the molecules
in the modeled system. Bold solid lines
represent the WLC model used for ds-
DNA segments while thin solid lines rep-
resent the WLC model used for ssDNA
segments.

simulations and provides an useful tool to
study DNA based nano-mechanical devices. It
has two majorcomponents.Thefirst component
is the physical simulation of the molecule con-
formations. The second component is the event
simulation (hybridization, dehybridization and
strand displacement events) which depends on
the kinetics, thermodynamics and geometry of
the molecules. Due to the large number of
molecules in a given solution, we sample and
simulate molecules within a small cell volume,
assuming the solution is well mixed.

The modeled system consists of three types
of molecules, single-stranded DNA (ssDNA),
double-stranded DNA (dsDNA) and complex
DNA nano-structure with both single-stranded
and double stranded segments, as shown in
Figure 1. We assume no self-hybridization and no pseudo-knots formation for the com-
plex DNA nano-structures. Therefore, to the first approximation, the complex DNA
nano-structure is reducible to a collections of WLC segments with different parame-
ters, i. e. persistence length. For more complicated DNA nano-structures, we can adapt
the geometric descriptors used in [38, 13], as discussed in section 8.

During the simulation, three types of reaction take place in the solution: the hy-
bridization between a pair of ssDNA segments with complementary base-pairing, the
dehybridization of the dsDNA portion of a nano-structure and the strand displacement.
The DNA molecule contains potential hybridization sites at its free-end (sticky ends).
During the simulation, when two molecule come into contact (reactive collision), a
potential hybridization event is reported. The corresponding free-end base-pairs are

252 S. Sahu, B. Wang, and J.H. Reif

investigated to determine the probability of its actual occurrence. Strand displacement is
a reaction in which two strands compete against each other to hybridize with a common
strand as shown in Figure 2. Strand B and C compete against each other to hybridize
with strand A. At a time instance, B (or C) makes one more bond with A and removes
one bond of C (or B).

The required discrete event simulation

l2

l2 + 1l1 − 1
A

B C

l2 − 1l1 + 1

A

B C

l1
A

B C

C

A

B +

Fig. 2. Strand displacement: molecule B and
C compete against each other to hybridize
with molecule A

with Δt as the time-interval is described as
follows. Algorithm 1 describes the major
steps of the simulation. mi is a data struc-
ture that stores individual molecular config-
urations, including sequence and secondary
structure. MQ stores all mi in the system. T
is the total simulation time. Δt is the simu-
lation time per step. Initialize is a function
that initialize the MQ based on the user in-
put. The detailed algorithms are described
in the subsequent sections.

Algorithm 2 describes steps involved in
generating random conformations for all
molecules in the system. Enqueue and
Dequeue are standard queueing operations
that insert and delete an element in the
queue. MCSimulation(m) generates new
conformation for the molecule m.

Algorithm 3 describes reactive collision detection which leads to potential hybridiza-
tion events. Collide(mi, mj) returns true if the sticky ends of molecule mi and mj col-
lide. e is a data structure that stores an event (hybridization, dehybridization or strand
displacement), including all the molecular configurations involved in the event and
inter-molecule relations. For example, in the case of hybridization, it stores the molec-
ular configurations and the information of the hybridization sites. HEvent(mi, mj)

creates a potential hybridization event based on colliding molecule mi and mj . HQ

stores all potential hybridization events.
Algorithm 4 presents algorithm involved in hybridization. Hybridize(e) probabilis-

tically determines the hybridization product based on the change in free energy as
described in Section 4. PotentialSD(e) returns true if event e is a potential strand-
displacement event. SDQ stores all potential strand-displacement events. Update

(MQ, e) updates the configurations of the molecule in the system based on the oc-
curred event e.

Algorithm 5 describes dehybridization event. PotentialD(m) returns true if
molecule m could potentially dehybridize. Dehybridization(m) probabilistically de-
hybridizes molecule m.

Algorithm 6 shows the steps involved in the strand displacement event.
StrandDisplacement(e, Δt) probabilistically proceeds with the strand displacement
event e within time frame Δt. IncompleteSD(e) returns true if the strand displace-
ment event has not completed within the given time frame.

A Framework for Modeling DNA Based Molecular Systems 253

Algorithm 1. Discrete Event Simulation
1: Initialize(MQ)
2: while t ≤ T do
3: t = t + Δt

{PHYSICAL SIMULATION}
4: Physical simulation
5: Collision detection

{EVENT SIMULATION}
6: Hybridization
7: Dehybridization
8: Strand displacement
9: end while

Algorithm 2. Physical Simulation
1: for ∀mi ∈ MQ do
2: MCSimulation(mi)
3: end for

Algorithm 3. Collision Detection
1: for ∀mi, mj ∈ MQ, i �= j do
2: if collide(mi, mj) then
3: e =HEvent(mi, mj)
4: Enqueue(HQ, e)
5: end if
6: end for

Algorithm 4. Hybridization
1: while HQ is NOT empty do
2: e = Dequeue(HQ)
3: e∗ = Hybridize(e)
4: if PotentialSD(e∗) then
5: Enqueue(SDQ, e∗)
6: end if
7: Update(MQ, e∗)
8: end while

Algorithm 5. Dehybridization
1: for ∀mi ∈ MQ do
2: if PotentialD(mi) then
3: e = Dehybridization(mi)
4: Update(MQ, e)
5: end if
6: end for

Algorithm 6. Strand Displacement
1: while SDQ is NOT empty do
2: e = Dequeue(SDQ)
3: e∗ = StrandDisplacement(e, Δt)
4: if IncompleteSD(e∗) then
5: Enqueue(SDQ∗, e∗)
6: end if
7: Update(MQ, e∗)
8: end while
9: SDQ = SDQ∗

Algorithm 7. MCSimulation (m), m ∈

MQ

1: m∗ =RandomConformation(m)
2: if SelfCollision(m∗) then
3: continue to next iteration
4: end if
5: ΔE = E(m∗) − E(m)
6: if (ΔE > 0) then
7: x ∈var [0, 1]
8: if (x > exp− ΔE

KBT
) then

9: continue to next iteration
10: end if
11: end if
12: m = m∗

254 S. Sahu, B. Wang, and J.H. Reif

3 Physical Simulation

The discrete worm-like chain model (WLC) is used to model the polymer-like DNA
molecules in solution. Monte Carlo (MC) computer simulations are used to determine
their conformations.

3.1 Discrete Wormlike Chain Model

The advancement of single molecule dynamics offers experimental validations of vari-
ous DNA polymer models, among which Gaussian Chain Model, Freely-Jointed Chain
(FJC) and Worm-Like Chain (WLC) are widely investigated [67,45,39,81,65,29,44,5,
99, 80, 48, 14, 15, 46]. The choice of a polymer model depends on the physical property
of the DNA chain, affordable computation and molecular-details of interest [26].

Our simulation is constructed using the discrete wormlike chain

Xi

ui

L

O

Fig. 3. WLC model

model. Marko and Siggia used the model to derive the elastic the-
ory suitable for DNA and further completed the model to include
bending and twisting elasticity of DNA and the free energy re-
quired for deformation [60, 61]. Bustamante el al. proposed an in-
terpolation of the Marko-Siggia model for fitting and experimental
elasticity curve of single DNA molecules [15]. Klenin et al. mod-
eled linear and circular DNA where the DNA polymers are repre-
sented by a WLC of stiff segments connected by bending torsion
and stretching potentials [43]. Tinnoco et. al. used WLC as their
polymer chain conformation to investigate force effect on thermo-
dynamics and kinetics of single molecule reaction [87]. Larson et al used a similar
model to predict the behavior of tethered dsDNA in a constant-velocity flow [51, 25].
Experimental data has shown some reasonably good agreement with the model [64].

The DNA molecule (Figure 3) is initialized as N + 1 beads (0, 1..N) connected by
N mass-less extendable segments (springs) of the same length [25,31,52]. The contour
length of the chain is L. The position of the bead i is denoted as xi. The segment vectors
are given by

ui = xi − xi−1 (1)

Therefore the chain is represented by a set of N +1 vectors x0,x1,x2, ...,xN [18]. We
use WLC to model ssDNA, dsDNA and complex DNA nanostructure. Specifically for
complex DNA nanostructure, different parameters are applied to different segments of
the chain depending on whether the segment is double-stranded or single-stranded.

3.2 Monte Carlo Simulation

The molecules are simulated through Monte Carlo simulation for a desired number of
time steps as Algorithm 7. According to the Metropolis algorithm used in the simu-
lation, E(m) is the energy associated with conformation of molecule m. The com-
putation of E(m) will be discussed in a later section. ΔE is defined as the energy
change of the system due to the new conformation. KB is the Boltzman constant,
and T is the absolute temperature. MQ is the set of all molecules in the simula-
tion. RandomConformation is a function that achieves a new conformation of the

A Framework for Modeling DNA Based Molecular Systems 255

molecule through random walk in three dimension. SelfCollision detects and ex-
cludes the self-crossing conformations. The detail algorithm is shown in Algorithm 7.
Similar methods have been used in [108,7,56]. To achieve random conformation of the
molecules, more permutations can be used such as random rotation of an interval chain
or bond-length change, which are described in [108].

3.3 Collision Detection: Cylinder Model

To simulate the motion of the molecule, each segment

D

Fig. 4. Collision detection in
3D

occupies a finite volume. Instead of using repulsive
forces (weak and short-ranged) to maintain the excluded
volume of the individual segments of the chain [17], for
two disjoint segments, we assume a minimum distance
D between them in three-dimension. In other words, we
assume each segment is a cylinder with a certain radius
R, when two cylinders contact (2R ≥ D), a collision oc-
curs (Figure 4). If the two cylinders belong to the same
chain, the self-avoiding criteria is violated. If the two
cylinders belong to neighboring DNA molecules, a po-
tential hybridization event occurs.

3.4 Random Conformation

The random conformation of the DNA molecule is generated by a random walk in three
dimension. Based on [6],

Δxi = Ri (2)

where Δxi is the change of xi in time step Δt, Ri is the random displacement. Let
D be the diffusion coefficient, we assume Ri as a Gaussian random variable which is
distributed according to

W (Ri) = (4Aπ)
−3/2

exp(−Ri/4A) (3)

where A = DΔt. The diffusion coefficient D of a macromolecule in an ideal dilute so-
lution is computed according to D = KBT/f , where f is the hydrodynamic frictional
coefficient of the macromolecule [83]. f of a rigid, rod-like molecule can be written as
f = 3πηL/(lnρ + γ), where η is the viscosity of the solution, L is the length of the
DNA molecule, ρ is the axial ratio and γ is a correction for end effects [83].

3.5 Energy

Now we describe how we calculate E(m) as stated in Algorithm 7. Our current sim-
plified model neglects the following energies though more accurate model should take
them into consideration [108, 24]: pairing potential between complementary bases,
stacking energy from the vertical interactions between neighboring base pairs and hy-
drodynamic interaction energy with the solvent. We shall consider the torsional rigid-
ity in the forms of bending torque and twisting torque for the DNA molecules in a
more sophisticated model. The total energy of a DNA conformation is given as the sum

256 S. Sahu, B. Wang, and J.H. Reif

of stretching, bending, twisting and electrostatic interaction energy among negatively
charged phosphate groups along the chain [43, 108, 49], which are denoted as Es, Eb,
Et and Ee, respectively.

E
total

= E
s
+ E

b
+ E

t
+ E

e (4)

Stretching Energy. The stretching energy is defined as

E
s

=
1

2
Y

N∑
i=1

(ui − l0)
2 (5)

where l0 is the segment equilibrium length, Y is the stiffness parameter defined previ-
ously [108].

Please refer to [74] for description of the bending energy, twisting energy, electro-
static energy, and other physical models.

3.6 Parameters

We use WLC model for both ssDNA and dsDNA for modeling consistency, it is impor-
tant to notice that there are different set of parameters used for each of them.

Parameters for ssDNA. Let L be the contour length of the ssDNA, L = lbpNbp =

l0N . lbp is the length of the ssDNA per base pair. Nbp is the number of bases. N is
the number of beads (monomer) in our WLC model. l0 is the length per segment. The
average length of ssDNA in the system is approximately 25 − 30 bp. According to
[103], lbp = 0.7 nm. Many groups have obtained the force/extension data for ssDNA in
different salt environment [108, 81, 71, 8, 16]. Parameters used in our model is obtained
from [108], where l0 = 1.5 nm and Y = 120 KBT/nm2. The persistence length
P = 0.7 nm [81]. The diffusion coefficient D of ssDNA is obtained from [83] as
approximately 1.52 × 10−6

cm
2
s
−1 for a 20 bp strand. The diameter of the ssDNA

backbone is 1 nm [23].
Parameters for dsDNA. For dsDNA, the parameters associated with the equations are

difference, i.e. l0 = 100 nm [43, 22, 62], P = 50 nm, Y = 3KBT/2P [22, 84], lbp =

0.34 nm [103], and D = 1.07×10−6 cm2s−1 [83]. For short dsDNA segment (20 bp),
WLC model can be simplified as the straight, rigid cylinder model with reasonable
adequacy [3, 62]. WLC models are used for simulation consistency.

3.7 Motion of the Complex Nano-structure

The MC simulation described previously can can applied to the the complex nano-
structure. Since it is reducible to a collection of ssDNA and dsDNA WLC segements,
perturbations of each segment is done independently. The total energy is computed as
a summation of the energies associated with individual segments. For more accurate
model, loop energy and the energy associated with each branching point should also be
considered.

A Framework for Modeling DNA Based Molecular Systems 257

3.8 Physical Model for Hybridization

Though extensive research has been done for RNA folding simulation [30, 98], to the
best of our knowledge, there is no empirical results that describe: 1) the location of
contact that initializes the hybridization; 2) the motions of each individual strands dur-
ing the hybridizations; nor 3) the actual physical location of the hybridized products
relative to other molecules in the system.
We make the following hypothesis: 1) lo-

Fig. 5. Figure illustrates various steps wrt the
physical motion of the strands during hy-
bridization

cation of contact is not explicitly mod-
eled in the simulation; 2) upon collision
that leads to potential hybridization, two
strands immediately align their bases in-
volved in the formation of duplex with the
right orientation; 3) during the hybridiza-
tion process, the displacement of the two
strands is inversely proportional to their
mass (or number of bases in the struc-
ture). The model can be subsequently im-
proved as the empirical evidence become
available. Figure 5 illustrates one
schematic to depict our hypothesis.

4 Event Simulation

In the event simulation module, we use thermodynamics and kinetics principles to cal-
culate the probabilities of various events. Possible events in our systems are hybridiza-
tion, dehybridization (melting/dissociation) and strand displacement.

4.1 Hybridization

The nearest-neighbor (NN) model is used to model the hybridization event [41]. The
model assumes that the stability of a given base-pair depends on the identity and ori-
entation of neighboring base pairs [41]. Empirical data are used to determine param-
eters for all possible alignments of base pairs. The model has been shown to describe
the thermodynamics of DNA structure that involves mismatches and neighboring base
pairs beyond the Watson-Crick pairs [68,73]. When a potential hybridization event that
involves molecules m1 and m2 is detected due to a collision, the simulator examines all
possible alignments of m1 and m2. For hybridization according to alignment i, its free
energy ΔG◦

i is computed using the NN model. Let m1m2
i be its hybridization product.

Let pi be the stability measurement of m1m2
i, pi ∝ exp(−ΔG◦

i /RT). Let P i
h be the

probability of hybridization according to alignment i, for all pj that exceeds a given
threshold, we have

P
i
h =

pi∑
j pj

(6)

258 S. Sahu, B. Wang, and J.H. Reif

4.2 Dehybridization

Let Pd be the dehybridization probability of a molecule m1m2 and [m1m2] be its con-
centration. Let kr be the reverse rate constant, Rr be the reverse rate, where Rr =

kr[m1m2]. The number of molecules dehybridized in time Δt is RtΔt. Therefore the
probability that the molecule m1m2 dehybridizes in Δt can be approximated as

Pd =
kr[m1m2]Δt

[m1m2]
= krΔt (7)

Refer to [74] for more details.

4.3 Strand Displacement

Strand displacement is modeled as a random walk in which the direction of movement
of the branch point along the DNA is chosen probabilistically and is independent of
its previous movements. It has been shown that the branch migration and strand dis-
placement is a biased random walk due to mismatches [12]. In other words, migration
probability towards the direction with mismatches are substantially decreased. Based on
Figure 2, molecule ABC is denoted as the DNA nanostructure involving molecule A,
B and C before the strand displacement. Let G◦

ABC be its free energy. Denote G◦
rABC

and G◦
lABC as the free energy of ABC after 1 base pair migration towards right, and

left, respectively. Let ΔG◦
r = G◦

rABC − G◦
ABC and ΔG◦

l = G◦
lABC − G◦

ABC . Let pr

be the probability of the right-directional migration and pl be the probability of the left-
directional migration. It has been shown in [12] that pr ∝ exp(−ΔG

◦
r/RT), similarly

pl ∝ exp(−ΔG◦
l /RT), where the change of free energies can be computed by the NN

model described previously.

5 Adaptive Time Step

We use adaptive time steps in our simulation. The simulation captures various processes
at different time-scales. Ideally, the smallest time unit should be chosen as the time step
δt ∼ 10−6 to resolve the conformations and trajectory of each individual molecule
using the WLC model and MC simulation. Inspired by ideas in the kinetic Monte Carlo
method [92], long-time system dynamics of the system consists of diffusive jumps from
state to state. There are series of simulation steps where no collisions take place and
molecules remain far apart. We attempt to overcome the limitations of such a short
time-scale approach. In other words, we differ the time intervals between long-ranged
molecules and short-ranged molecules.

If all the strands are far apart, we can guarantee that within a particular time-interval
δT there will not be any collisions. We treat each molecule in the system as a unit of
rigid body and assign a random momentum to each unit. We apply this large-scale time
step δT as the simulation step at that instance. δT moves the entire system from state
to state, which is computational efficient. We store the distance between the closest pair
of potential reactive molecules. As the distance reaches a given threshold where the
conformations of molecules can no longer being ignored, we change to a smaller-scale
time step δt.

A Framework for Modeling DNA Based Molecular Systems 259

6 Algorithm Analysis

The major portion of the time taken by the algorithm is in the physical simulation, so it
suffices to analyze the time-complexity of the physical simulation of the molecules in
the system. The discrete WLC model is used to replace the continuos WLC for compu-
tational simplification. As the (discrete) WLC consists of N segments, it is an approx-
imation that improves as N increase. For a WLC simulation of a single chain (dsDNA
or ssDNA), due to the self-collision detections, it runs in O(N2) time for a single simu-
lation step. Similar analysis applies to complex DNA nano-structures where N is equal
in this case to the total number of double-stranded or single-stranded segments in the
structure. Let M be the total number of the molecules in the small cell volume. For a
long-ranged simulation period, each molecule in the system is treated as a rigid unit.
Therefore the complexity per simulation step is O(M). If M ′ is the number of molecule
pairs that reach the short-range simulation threshold, then the simulation time per step
is O(M ′N2).

7 Preliminary Results

Our preliminary results demonstrate the feasibility of such a framework in modeling
DNA based molecular systems.

7.1 Physical Simulation

The results presented here are obtained us-

−0.5 0 0.5 1 1.5 2

0

5

10

15

x

y

step 18

−5

0

5

−5

0

5

0

5

10

15

x

step 26

y

z

Fig. 6. 2D and 3D snapshots of the simula-
tion for a single tethered DNA

ing the less computer-intensive Monte
Carlo simulation of a discrete WLC model.
The physical simulation module is demon-
strated through the simulation of a tethered
ssDNA. The same module applies to the
modeling of other DNA molecules in the
system. For demonstration purpose, we ne-
glect twisting energy and focus primarily on
the stretching energy and optional bending energy of the tethered DNA. Ideally, rel-
atively long runs are carried out to generate initial conditions for simulations of the
tethered-DNA chains, allowing the chains to reach their equilibrium configurations
[52]. Then these configurations are saved for the actual simulation. The figures shown
here are snapshots of a simulation during different time steps, from both 2D and 3D
(Figure 6) perspective, visualized by Matlab. The scales for the x-axis and the y-axis
are enlarged to show the details of the conformational changes relative to the horizontal
plane. The simulations are preliminary but promising.

7.2 Event Simulation

We present here a snapshot of a hybridization event in simulation based on our frame-
work in Figure 7. Bold black lines represent the double stranded DNA regions, while
the thinner lines are single-stranded. The ssDNA we display in the above snapshots are
20 − 30 bp.

260 S. Sahu, B. Wang, and J.H. Reif

Fig. 7. Simulation of a hybridization event

8 Discussion and Future Work

We presented a comprehensive framework for building a software tool for simulating
DNA based molecular system, and not the actual software tool itself. It is important
to note that, as a framework, the physical simulation component and event simula-
tion component can be decoupled as we improve each component individually. As we
improve the accuracy of the physical simulation, i.e. to reflect topological constraints
by modeling more complicated DNA nano-structures such as pseudo-knots [38, 13];
to provide more biophysical sound behavior of DNA strands by considering stacking
energy and electrostatic energy; or to achieve the molecular details by replacing the
MC simulation with a BD simulation once computational resources are available, we
can validate its correctness against polymer theory and experimental data, i.e. average
radius of gyration and the diffusion constant. We can constantly update the physical
simulation component to result in more realistic simulation.

During the physical simulation the random perturbations often lead to a configuration
that can be achieved only with a low probability. Can we optimize the simulation so that
we sample a larger space of configurations to avoid these with low probability, therefore
making the simulation more computational efficient?

The first extension to our framework is to consider more complicated interactions,
i.e. the enzyme restriction event and the hairpin formation. The second extension is
to incorporate sequence design capabilities. We would like to design and optimize se-
quences based on the given nano-structure conformations. Furthermore, a conformation
change of a nano-device can be decomposed into units of local deformations to ease the
sequence design.

We believe that the methods presented here make a good framework for designing
the simulator for DNA based molecular systems. The preliminary results in this paper
support the feasibility of the approach. We describe that it is possible to capture geo-
metric constraints of the molecules with the polymer theory and MC simulation. We
also described the approximations and limitations in this framework and the ways of
improving them.

References

1. L. Adleman. Molecular computation of solutions to combinatorial problems. Science,
266:1021–1024, 1994.

2. P. Alberti and J.L. Mergny. DNA duplex-quadruplex exchange as the basis for a nanomolec-
ular machine. Proc. Natl. Acad. Sci. USA, 100:1569–1573, 2003.

3. S.A. Allison and S. Mazur. Modeling the free solution electrophoretic mobility of short dna
fragments. Biopolymers, 46:359–373, 1998.

A Framework for Modeling DNA Based Molecular Systems 261

4. S.A. Allison and J.A. McCammon. Multistep brownian dynamics: application to short
wormlike chains. Biopolymers, 23:363–375, 1984.

5. S. R. Aragon and R. Pecora. Dynamics of wormlike chains. Macromolecules, 18:1868,
1985.

6. R.G.C. Arridge. An introduction to polymer mechanics. 1985.
7. G.A. Arteca, T. Edvinsson, and C. Elvingson. Compaction of grafted wormlike chains under

variable confinement. Phys. Chem. Chem. Phys., 3:3737–3741, 2001.
8. B. Maier B, D. Bensimon, and V. Croquette. Replication by a single dna polymerase of

a stretched single-stranded dna. Proc. Natl. Acad. Sci. U.S.A., 97(22):12002–7, October
2000.

9. Y. Benenson, R. Adar, T. Paz-Elizur, Z. Livneh, and E. Shapiro. DNA molecule provides a
computing machine with both data and fuel. Proc. Natl. Acad. Sci. USA, 100:2191–2196,
2003.

10. Y. Benenson, B. Gil, U. Ben-Dor, R. Adar, and E. Shapiro. An autonomous molecular
computer for logical control of gene expression. Nature, 429:423–429, 2004.

11. Y. Benenson, T. Paz-Elizur, R. Adar, E. Keinan, Z. Livneh, and E. Shapiro. Programmable
and autonomous computing machine made of biomolecules. Nature, 414:430–434, 2001.

12. I. Biswas, A. Yamamoto, and P. Hsieh. Branch migration through dna sequence heterology.
J. Mol. Bio, 1998.

13. Justin S. Bois, Suvir Venkataraman1, Harry M. T. Choi1, Andrew J. Spakowitz, Zhen-Gang
Wang and Niles A. Pierce1,2,* Topological constraints in nucleic acid hybridization kinet-
ics. Nucleic Acids Research, 33(13):4090–4095, 2005.

14. C. Bouchiat, M.D. Wang, J. Allemand, T. Strick, S. M. Block, and V. Croquette. Estimating
the persistence length of a worm-like chain molecules from force-extension measurements.
Biophys. J., 76:409, January 1999.

15. C. Bustamante, J. F. Marko, E. D. Siggia, and S. Smith. Entropic elasticity of lambda-phage
dna mechanics. Science, 265:1599, 1994.

16. C. Bustamante, S. Smith, J. Liphardt, and D. Smith. Single-molecule studies of dna me-
chanics. Current Opinion in Structural Biology, 10:279, 2000.

17. J.E. Butler and E.S.G. Shaqfeh. Brownian dynamics simulations of a flexible polymer chain
which includes continuous resistance and multi-body hydrodynamic interaction. Journal of
Chemical Physics, 122(014901), 2005.

18. G. A. Carri and M. Marucho. Statistical mechanics of worm-like polymers from a new
generating function. J. Chem. Phys., 121(12):6064–6077, 2004.

19. N. Chelyapov, Y. Brun, M. Gopalkrishnan, D. Reishus, B. Shaw, and L. Adleman. DNA
triangles and self-assembled hexagonal tilings. J. Am. Chem. Soc., 126:13924–13925, 2004.

20. Y. Chen and C. Mao. Putting a brake on an autonomous DNA nanomotor. J. Am. Chem.
Soc., 126:8626–8627, 2004.

21. Y. Chen, M. Wang, and C. Mao. An autonomous DNA nanomotor powered by a DNA
enzyme. Angew. Chem. Int. Ed., 43:3554–3557, 2004.

22. S. Cocco, J. F. Marko, and R. Monasson. Theoretical models for single-molucule dna and
rna experiments: from elasticity to unzipping. to appear in CRAS, special issue dedicated
to Single Molecule Experiments, 2002.

23. C. Desruisseaux, D. Long, G. Drouin, and G. W. Slater. Electrophoresis of composite
molecular objects. 1. relation between friction, charge and ionic strength in free solution.
Macromolecules, 34:44–59, 2001.

24. M. N. Dessinges, B. Maier, Y. Zhang, M. Peliti, D. Bensimon, and V. Croquette. Stretching
single stranded dna, a model polyelectrolyte. Phys. Rev. Lett., 89:248102, 2002.

25. P. Dimitrakopoulos. Stress and configuration relaxation of an initially straight flexible poly-
mer. J. Fluid Mech., 513:265–286, 2004.

262 S. Sahu, B. Wang, and J.H. Reif

26. P.S. Doyle and P.T. Underhill. Brownian dynamics simulations of polymers and soft matter.
S. Yip, (ed.), Handbook of Materials Modeling, pages 2619–2630, 2005.

27. R. M. Dirks, J. S. Bois, J. M. Schaeffer, E. Winfree and N. A. Pierce. Thermodynamic
analysis of interacting nucleic acid strands. SIAM Rev, in press.

28. L. Feng, S.H. Park, J.H. Reif, and H. Yan. A two-state DNA lattice switched by DNA
nanoactuator. Angew. Chem. Int. Ed., 42:4342–4346, 2003.

29. M. Fixman and J. Kovac. Polymer conformation statistics iii: Modified gaussian models of
the stiff chains. J. Chem. Phys., 58:1564–1568, 1973.

30. C. Flamm, W. Fontana, I. L. Hofacker, and P. Schuster. RNA folding at elementary step
resolution. RNA, 6(3):325-38, 2000.

31. J.B. Fournier. Wormlike chain or tense string? a question of resolution. Continuum Me-
chanical Thermodynamics, 14:241, 2002.

32. M.D. Frank-Kamenetskii. Biophysics of dna molecule. Phys. Rep., 288:13 – 60, 1997.
33. D. T. Gillespie. Exact stochastic simulation of coupled chemical reactions. J. Phys. Chem.,

81:2340–2361, 1977.
34. D. T. Gillespie. Approximate accelerated stochastic simulation of chemically reacting sys-

tems. J. Chem. Phys., 115:1716–1733, 2001.
35. A. J. Hartemink and D. K. Gifford. Thermodynamics simulation of deoxyoligonucleotide

hybridization for dna computation. 1997.
36. P. J. Heath, J. A. Gebe, S. A. Allison, and J. M. Schurr. Comparison of analytical theory

with brownian dynamics simulations for small linear and circular dnas. Macromolecules,
29:3583, 1996.

37. J. S. Hur and E. S. G. Shaqfeh. Brownian dynamics simulations of single dna molecule in
shear flow. J. Rheol., 44(4):713–742, July-August 2000.

38. H. Isambert and E. D. Siggia. Modeling RNA folding paths with pseudoknots: application
to hepatitis delta virus ribozyme. Proc Natl Acad Sci U S A., 97(12):6515–20, 2000.

39. H. M. James and E. Guth. Theory of the elastic properties of rubber. Journal of Chemical
Physics, 10:455–481, 1943.

40. R. M. Jendrejack, J.J. Pablo, and M. D. Graham. Stochastic simulations of dna in flow:
Dynamics and the effects of hydrodynamic interactions. Journal of Chemical Physics,
116(17):7752, 2002.

41. J. Santalucia Jr. A unified view of polymer, dumbbell and oligonucleotide dna nearest-
neighbor thermodynamics. PNAS, 95:1460–1465, 1998.

42. A. M. Kierzek. Stocks: Stochastic kinetic simulations of biochemical systems with gillespie
algorithm. Bioinformatics, 18:470–481, 2002.

43. K. Klenin, H. Merlitz, and J. Langowski. A brownian dynamics program for the simulation
of linear and circular dna and other wormlike chain polyelectrolytes. Biophys J, 74(2):780–
788, February 1998.

44. J. Kovac and C. Crabb. Modified gaussian model for rubber elasticity. 2. the wormlike
chain. Macromolecules, 15(2):537, 1982.

45. M. Kuhn and F. Grun. Relationships between elastic constants and stretching double re-
fraction of highly elastic substances. Kolloid-Z, 101:294, 1942.

46. S. Kutter. Elasticity of polymers with internal topological constraints. PhD Thesis, August
2002.

47. T.H. LaBean, H. Yan, J. Kopatsch, F. Liu, E. Winfree, J.H. Reif, and N.C. Seeman. The
construction, analysis, ligation and self-assembly of DNA triple crossover complexes. J.
Am. Chem. Soc., 122:1848–1860, 2000.

48. B. Ladoux, J. P. Quivy, P. S. Doyle, G. Almouzni, and J. L. Viovy. Direct imaging of
single-molecules: from dynamics of a single dna chain to the study of complex dna-protein
interactions. Sci. Prog., 84:267, 2001.

A Framework for Modeling DNA Based Molecular Systems 263

49. J. Langowski. Polymer chain models of dna and chromatin. Manuscript, 2006.
50. R. G. Larson, H. Hu, D. E. Smith, and S. Chu. Brownian dynamics simulation of a dna

molecule in an extensional flow field. J. Rheol., 43(2):267–304, March-April 1999.
51. R.G. Larson, T. Perkins, D. Smith, and S. Chu. Hydrodynamics of a dna molecule in a flow

field. Phys. Rev. E., 55:1794–1797, 1997.
52. R.G. Larson, T.T. Perkins, D.E. Smith, and S. Chu. Brownian dynamics simulations of a

dna molecule in an extensional flow field. J. Rheol., 43:267, 1999.
53. J. Li and W. Tan. A single DNA molecule nanomotor. Nano Lett., 2:315–318, 2002.
54. D. Liu, M. Wang, Z. Deng, R. Walulu, and C. Mao. Tensegrity: Construction of rigid DNA

triangles with flexible four-arm dna junctions. J. Am. Chem. Soc., 126:2324–2325, 2004.
55. Q. Liu, L. Wang, A.G. Frutos, A.E. Condon, R.M. Corn, and L.M. Smith. DNA computing

on surfaces. Nature, 403:175–179, 2000.
56. A. Malevanets and J. M. Yoemans. Dynamics of short polymer chains in solution. Euro-

physics Letters, 52(2):231, 2000.
57. C. Mao, T.H. LaBean, J.H. Reif, and N.C. Seeman. Logical computation using algorithmic

self-assembly of DNA triple-crossover molecules. Nature, 407:493–496, 2000.
58. C. Mao, W. Sun, and N.C. Seeman. Designed two-dimensional DNA holliday junction

arrays visualized by atomic force microscopy. J. Am. Chem. Soc., 121:5437–5443, 1999.
59. C. Mao, W. Sun, Z. Shen, and N.C. Seeman. A DNA nanomechanical device based on the

B-Z transition. Nature, 397:144–146, 1999.
60. J. Marko and E. D. Siggia. Bending and twisting elasticity of dna. Macromolecules, 27:981,

1994.
61. J. F. Marko and E. D. Siggia. Stretching dna. Macromolecules, 28:8759, 1995.
62. R. J. Meagher, J. Won, L. C McCormick, S. Nedelcu, M. M. Bertrand, J. L. Bertarm,

G. Drouin, A. E. Barron, and G. W. Slaters. End-labeled free-solution electrophoresis of
dna. Electrophoresis, 26:331–350, 2005.

63. J. Mercier and G. W. Slater. Solid phase dna amplification: a brownian dynamics study of
crowding effects. Biophysical Journal, 89:32–42, July 2005.

64. M. C. Murphy, I. Rasnik, W. Cheng, T. M. Lohman, and T. Ha. Probing single-stranded dna
conformation flexibility using fluorescence spectroscopy. Biophysical Journal, 86:2530–
2537, April 2004.

65. T. Odijk. Stiff chains and filaments under tension. Macromolecule, 28:7016–7018, 1995.
66. I.G. Panyutin and P. Hsieh. The kinetics of spontaneous dna branch migration. Proc Natl

Acad Sci U S A., 91(6):2021–5, 1994 Mar 15.
67. J.S. Pedersen, M. Laso, and P. Schurtenberger. Monte carlo study of excluded volume

effects in wormlike micelles and semiflexible polymers. Phys Rev E., 54(6):5917–5920,
December 1996.

68. N. Peyret, P. A. Seneviratne, H. T. Allawi, and J. Santalucia. Nearest-neighbor thermody-
namics and nmr of dna sequences with internal aa,cc,gg and tt mismatches. Biochemistry,
38:3468, 1999.

69. C. Rao and A. Arkin. Stochastic chemical kinetics and the quasi-steady-state assumption:
application to the gillespie algorithm,. J. of Chem. Phys., 118:4999–5010, 2003.

70. J.H. Reif. The design of autonomous DNA nanomechanical devices: Walking and rolling
DNA. The 8th International Meeting on DNA Based Computers (DNA 8), 2002.

71. M. Rief, H. Clausen-Schaumann, and H. E. Gaub. Sequence-dependent mechanics of single
dna molecules. Nature Structural Biology, 6:346 – 349, 1999.

72. M. Sales-Pardo, R. Guimera, A. A. Moreira, J. Widom, and L. A. Amaral. Mesoscopic
modeling for nucleic acid chain dynamics. Phys Rev E Stat Nonlin Soft Matter Phys.,
71:051902, 2005.

73. J. Santalucia and D Hicks. The thermodynamics of dna structural motifs. Annu. Rev.
Biophys. Biomol. Struct., 33:415, 2004.

264 S. Sahu, B. Wang, and J.H. Reif

74. S. Sahu, B. Wang, and J. H. Reif. A Framework for Modeling DNA Based Molecular
Systems. Technical Report, Duke University, 2006.

75. R. Sha, R. Liu, D.P. Millar, and N.C. Seeman. Atomic force microscopy of parallel DNA
branched junction arrays. Chemistry and Biology, 7:743–751, 2000.

76. W.B. Sherman and N.C. Seeman. A precisely controlled DNA biped walking device. Nano
Lett., 4:1203–1207, 2004.

77. J.S. Shin and N.A. Pierce. A synthetic DNA walker for molecular transport. J. Am. Chem.
Soc., 126:10834–10835, 2004.

78. F.C. Simmel and B. Yurke. Using DNA to construct and power a nanoactuator. Phys. Rev.
E, 63:041913, 2001.

79. F.C. Simmel and B. Yurke. A DNA-based molecular device switchable between three dis-
tinct mechanical states. Appl. Phys. Lett., 80:883–885, 2002.

80. S. B. Smith, L Finzi, and B. Bustamante. Direct mechanical measurements of the elasticity
of single dna molecules by using magnetic beads. Science, 258:1122, 1992.

81. S.B. Smith, Y. Cui, and C. Bustamante. Overstretching b-dna: the elastic response of in-
dividual double-stranded and single-stranded dna molecules. Science, 271:795–799, Feb
1996.

82. M. Somasi, B. Khomami, N. J. Woo, J. S. Hur, and E. S. G. Shaqfeh. Brownian dynamics
simulations of bead-rod and bead-spring chains: numerical algorithms and coarse-graining
issues. J. Non-Newtonian Fluid Mech., 108:227–255, 2002.

83. E. Stellwagen and N. C. Stellwagen. Determining the electrophoretic mobility and
translational diffusion coefficients of dna molecules in free solution. Electrophoresis,
23(16):2794–2803, 2002.

84. C. Storm and P. C. Nelson. Theory of high-force dna stretching and overstretching. Physical
Review E., 67:051906, 2003.

85. B. J. Thompson, M. N. Camien, and R.C.Warner. Kinetics of branch migration in double-
stranded dna. Proc Natl Acad Sci U S A, 73(7):2299–303, 1976 Jul.

86. Y. Tian, Y. He, Y. Chen, P. Yin, and C. Mao. Molecular devices - a DNAzyme that walks
processively and autonomously along a one-dimensional track. Angew. Chem. Intl. Ed.,
44:4355–4358, 2005.

87. I. Tinoco and C. Bustamante. The effect of force on thermodynamics and kinetics of single
molecule reactions. Biophys Chem., 101-102:513, December 2002.

88. A.J. Turberfield, J.C. Mitchell, B. Yurke, Jr. A.P. Mills, M.I. Blakey, and F.C. Simmel. DNA
fuel for free-running nanomachines. Phys. Rev. Lett., 90:118102, 2003.

89. A.J. Turberfield, B. Yurke, and Jr. A.P. Mills. DNA hybridization catalysts and molecular
tweezers. DNA5, 2000.

90. T. E. Turner, S. Schnell, and K. Burrage. Stochastic approaches for modelling in vivo
reactions. Computational Biology and Chemistry, 2004.

91. A.V. Vologodskii. Monte carlo simulation of dna topological properties. Preprint, 2004.
92. A.F. Voter. Introduction to kinetic monte carlo method. Springer, NATO publishing unit,

2005.
93. J. G. Wetmur and N. Davidson. Kinetics of renaturation of dna. J. Mol. Biol., 31:349–370,

1968.
94. E. Winfree. Complexity of restricted and unrestricted models of molecular computation.

In R. J. Lipton and E.B. Baum, editors, DNA Based Computers 1, volume 27 of DIMACS,
pages 187–198. American Mathematical Society, 1996.

95. E. Winfree. Simulation of computing by self-assembly. Technical Report 1998.22, Caltech,
1998.

96. E. Winfree, F. Liu, L.A. Wenzler, and N.C. Seeman. Design and self-assembly of two-
dimensional DNA crystals. Nature, 394(6693):539–544, 1998.

A Framework for Modeling DNA Based Molecular Systems 265

97. E. Winfree, X. Yang, and N.C. Seeman. Universal computation via self-assembly of DNA:
Some theory and experiments. In L.F. Landweber and E.B. Baum, editors, DNA Based
Computers II, volume 44 of DIMACS, pages 191–213. American Mathematical Society,
1999.

98. M. T. Wolfinger, W. A. Svrcek-Seiler, C. Flamm, I. L. Hofacker, and P. F. Stadler. Exact
Folding Dynamics of RNA Secondary Structures. J.Phys.A: Math.Gen., 37:4731-4741,
2004.

99. H. Yamakawa and T. Yoshizaki. Dynamics of helical wormlike chains. i. dynamic model
and diffusion equation. Journal of Chemical Physics, 75(2):1016, July 1981.

100. H. Yan, T.H. LaBean, L. Feng, and J.H. Reif. Directed nucleation assembly of DNA tile
complexes for barcode patterned DNA lattices. Proc. Natl. Acad. Sci. USA, 100(14):8103–
8108, 2003.

101. H. Yan, S.H. Park, G. Finkelstein, J.H. Reif, and T.H. LaBean. DNA-templated self-
assembly of protein arrays and highly conductive nanowires. Science, 301(5641):1882–
1884, 2003.

102. H. Yan, X. Zhang, Z. Shen, and N.C. Seeman. A robust DNA mechanical device controlled
by hybridization topology. Nature, 415:62–65, 2002.

103. J. Yan and J. F. Marko. Localized single-stranded bubble mechanism for cyclization of short
double helix dna. Phys. Rev. Lett., 93(10):108108, September 2004.

104. P. Yin, S. Sahu, A.J. Turberfield, and J.H. Reif. Design of autonomous DNA cellular au-
tomata. In Proc. 11th International Meeting on DNA Computing, pages 376–387, 2005.

105. P. Yin, A.J. Turberfield, S. Sahu, and J.H. Reif. Design of an autonomous DNA nanome-
chanical device capable of universal computation and universal translational motion. In
Proc. 10th International Meeting on DNA Computing, pages 344–356, 2004.

106. B. Yurke, A.P. Mills, and A.J. Turberfield. A molecular machine made of and powdered by
DNA. Biophysics, 78:2629, 2000.

107. B. Yurke, A.J. Turberfield, Jr. A.P. Mills, F.C. Simmel, and J.L. Neumann. A DNA-fuelled
molecular machine made of DNA. Nature, 406:605–608, 2000.

108. Y. Zhang, H. Zhou, and Z. Ou-Yang. Stretching single-stranded dna: Interplay of elec-
trostatic, base-pairing, and base-pair stacking interactions. Biophys J., 81(2):1133–1143,
August 2001.

C. Mao and T. Yokomori (Eds.): DNA12, LNCS 4287, pp. 266 – 273, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Uniquimer: A de Novo DNA Sequence Generation
Computer Software for DNA Self-assembly

Bryan Wei, Zhengyu Wang, and Yongli Mi*

Department of Chemical Engineering
Hong Kong University of Science and Technology

Clear Water Bay, Kowloon, Hong Kong

Abstract. We developed a computer-software with graphic interfaces for
generating de novo DNA sequences of various DNA motifs for DNA
nanotechnology research. The software is free of charge for academic and non-
profit organizations.

1 Introduction

The powerful molecular recognition system of DNA base pairing can be used in
nanotechnology to direct self-assembly of DNA architectures. DNA self-assembly has
been found to be an innovative methodology for preparing nano-scaled patterns [1].
DNA architecture involves the following: firstly, designing synthetic DNA
oligonucleotides for creating specific topologies, shapes and arrangements of
secondary and tertiary structures; secondly, enabling oligonucleotides to self-
assemble into a desired structure (scaffold); and thirdly, modifying the DNA scaffold
for specific applications [2]. In DNA nanotechnology, a variety of rigid DNA motifs
have been obtained, such as the DNA double crossover (DX) [3], the DNA triple
crossover (TX) [4], and the DNA paranemic crossover (PX) [5-7]; from which, 1-D
and 2-D arrays with topographic features visible in atomic force microscopy (AFM)
and transmission electron microscopy (TEM) can be attained [3,4,8-11]. 3-D objects
can also be constructed by careful design of the branched DNA motifs, including the
DNA cube [12] and the octahedron [13]. Other motifs, such as Four Holliday junction
analogues parallelogram [14], 4×4 tile [15], DNA triangle [16] and six-helix bundle
[17], three-helix bundle [18] and TXT [19] have also come to the horizon recently.

From an engineering point of view, the DNA research is now permeating into two
fast growing areas, namely, DNA computing and DNA nanotechnology. In DNA
computing, programmed DNA 1-D, 2-D and possibly 3-D assemblies can be used for
both areas [20, 21]. With this regard, DNA sequences for self-assembly are to be
generated with computer software, so that the secondary structures of simple DNA
strands can be obtained.

After the motif for a specific DNA self-assembly is well designed (length of the
helices, crossover points joining the helices, sticky end matching strategy, etc.), the
bases, A, T, G, and C for DNA strands for the specific architecture need to be well
specified. There are two major principles for specifying the bases. First, a certain

* Corresponding author. keymix@ust.hk

 Uniquimer: A de Novo DNA Sequence Generation Computer Software 267

fragment of a certain strand must be complementary to another fragment of another
stand to follow the motif design (i.e. length of the helices, crossover points joining the
helices, sticky ends matching strategy, etc.); second, in order to prevent from
mismatching, the length of repeating sequences should be minimized among all the
strands of the motif for the specific DNA architecture. It would be really labor
intensive work to get satisfactory strand sequence design by hand. However, if
computer software of appropriate algorithm is developed, specifying A, T, G, and C
will be done with extremely high speed and accuracy.

2 Algorithm of the Program

After the structure of a certain motif is determined, the next step for the DNA
architecture is to fill each base (A, T, G, C) for a number of oligonucleotides of certain
lengths. One out of these four letters, A, T, G and C will be chosen for each base of a
certain oligonucleotide and random seeds are used for the initiation. The segment to be
paired with another segment, whose sequence is already generated by random seeds,
can be simply determined by the base-pairing rule. As long as the bases of
oligonucleotides are filled, the checkup of the limiting condition is applied to the
sequences generated. If there is no violation, the sequence generation keeps going on
until all sequences of oligonucleotides for the motif are generated. However, if there is a
violation of the limiting condition, the violated base will be canceled and a new base
will be chosen using random seeds. Sine only one possible solution is needed for the
generation, the depth first searching is chosen. In the flow of base-by-base checkup, a
branch-and-cut algorithm is used. Algorithm flow diagram is show as in next page.

3 Depth First Searching (DFS)

The DNA sequence generation is a typical problem of trial and error; therefore, a proper
searching algorithm should be applied. Depth first searching (DFS), which aim at giving

A-- G-- T-- C--

AA- AG- AT- AC-

ATA ATG ATT ATC

Fig. 1. Diagram of the algorithm tree

268 B. Wei, Z. Wang, and Y. Mi

Set a value for
current base

If the sequences pass
the limiting

condition checkup

If the current base
is the last base of

the motif

If all values for
current base are

tried

If the current base
is the first base of

the motif

Set the next base to
be the current base
to continue the
filling process

All the bases
generated (motif
sequences
obtained)

Set the previous
base to be the
current base (back
trace)

All the possibilities
are tried (no
solution)

No

YesYes

No No

Yes

Initiate random
seeds for each
base

Yes

No

a possible solution rather than finding out all the possible solutions, is chosen for this
software since only one of the possible solutions for the problem is needed for a special
architecture. We can see the process of solution as a traversal of a certain tree structure.
In Figure 1, a solution tree for filling a tri-nucleotide sequence is shown. Each level of
the tree represents the filling of a certain base. Since there are 4 choices for each filling

 Uniquimer: A de Novo DNA Sequence Generation Computer Software 269

(A, T, G or C), each unfinished status (non-leaf node) has 4 child nodes and each child
node is further filled based on the status of its parental node.

4 Random Seeds

The sequence generated should also be as random as possible. However, using the DFS
algorithm, the result is predictable (i.e., there will be the same solution for the same
input). If different result for different round of running is expected, random seeds need
to be introduced to the algorithm. Random seed(s) is an integer between 0 and 3 and
each base is specified to a random seed, by which the filling of the certain base is
determined. Before each round of running of the algorithm, random seed is applied to
the process of the filling for each base. Therefore, the results for different round of
running of the algorithm will be different (i.e. different transversal of the solution tree).

5 Branch-and-Cut Algorithm

Restrictions in the searching process are not concerned so far. However, some
limiting conditions must be included in each type of searching algorithm. Otherwise,
it will degenerate to an exhaustive searching algorithm. There are two methods to
include limiting conditions. One is not to make restrictions in the searching process until
a possible solution is obtained. When a leaf node is met (i.e. possible solution), the
solution is checked by the limiting condition. The other way is to check each node in the

Fig. 2. The input wizard for DNA sequence generation

270 B. Wei, Z. Wang, and Y. Mi

searching process. If the node is found not to pass the limiting conditions. For instance, if
melting temperature for a specific node is above a certain value, all the offspring nodes of
it will have higher melting temperature and will be "less" supposed to meet the limiting
condition. Therefore, the node and all its offspring nodes will be discarded and won't be
visited further. The second method, branch-and-cut algorithm, is used in our software.

6 Features

Graphic interfaces are available for almost all motifs with known structures for DNA
nanotechnology research, which can be classified into three categories of DNA
structures, namely, arm-based structures (e.g., junction motifs), center-based (e.g.,
4×4 tiles), and parallel-like structures (e.g., DX, TX) in this software. Input wizard is
provided for a stepwise sequence generation. Real-time highlight effects are available

A

B

C

Fig. 3. Graphic interfaces for three kinds of DNA motifs. (A) an arm-based structure, (B) a
center-based structure, and (C) a parallel-like structure

 Uniquimer: A de Novo DNA Sequence Generation Computer Software 271

for most of the operations such as length specification for certain strands, sticky end
matching setting.

Bulges and pre-specified segments (named as fixed segments in the software) are
treated as non-extra sequences in the motifs, which means that they still can be included
in the overall algorithm for sequence generation.

Fig. 4. Bulge and fixed segments addition

Control of the additional limiting conditions, such as the melting temperature for
complementary segments and GC percentage besides the maximum length of
repeating sequences, are available in the software.

7 Prospect

Currently, there are programs used in other groups for the research of DNA
nanotechnology for sequence generation. There is not yet a program available in the
public domain with graphic interface. This computer software, Uniquimer, is aimed
at providing an easy access to researchers who want to do research in DNA
nanotechnology. The software can be used to generate DNA sequences for DNA self-
assembly with graphic interface. Fixed segments, extra bulges and melting
temperature of certain segments can be assigned by users. Future development will
include, arbitrary motif generation (like single strand DNA/RNA folding prediction

272 B. Wei, Z. Wang, and Y. Mi

program MFOLD, energy minimization is expected to be involved for the tertiary
structure of a motif to be constructed) and 3-D display of motifs with related arrays.
Moreover, some useful databases such as restriction enzyme sites and aptamers are
expected to be integrated to the software.

Acknowledgement. Research grant from the Hong Kong Government of the
University Grant Council, RGC 602603, is greatly acknowledged.

References

1. Seeman, N. C., Nature 2003, 421, 427-431.
2. Seeman, N. C., Trends Biotechnol. 1999, 17, 437-442.
3. Li, X.; Yang, X.; Qi, J.; Seeman, N. C. J. Am. Chem. Soc. 1996, 118, 6131-6140.
4. LaBean, T. H.; Yan, H; Kopatsch, J.; Liu, F; Winfree, E; Reif, J. H.; Seeman, N. C. J. Am.

Chem. Soc. 2000, 122, 1848-1860.
5. Seeman, N. C. Nano Lett. 2001, 1, 22-26.
6. Zhang, X.; Yan, H.; Shen, Z.; Seeman, N. C. J. Am. Chem. Soc. 2002, 124, 12940-12941.
7. Shen, Z.; Yan, H.; Wang, T.; Seeman, N. C. J. Am. Chem. Soc. 2004, 126, 1666-1674.
8. Winfree, E.; Liu, F.; Wenzler, L. A.; and Seeman, N. C.; Nature 1998, 394, 539-544.
9. Liu, F.; Sha, R.; Seeman, N. C. J. Am. Chem. Soc. 1999, 121, 917-922.

10. Liu, D.; Park, S. H.; Reif, J. H.; LaBean, T. H. PNAS 2004, 101, 717-722.
11. Li, H.; Park, S. H.; Reif, J. H.; LaBean, T. H.; Yan, H. J. Am. Chem. Soc. 2004, 126,

418-419.
12. Chen, J.; Seeman, N. C. Nature 1991, 350, 631-633.
13. Shih, W. M.; Quispe, J. D.; Joyce, G. F. Nature 2004, 427, 618-621.
14. Mao, C.; Sun, W.; Seeman, N. C. J. Am. Chem. Soc. 1999, 121, 5437-5443.
15. Yan, H.; Park, S. H.; Finkelstein, G.; Reif, J. H.; LaBean, T. H. Science 2003, 301,

1882-1884.
16. Chelyapov, N.; Brun, Y.; Gopalkrishnan, M.; Reishus, D.; Shaw, B.; Adleman, L. J. Am.

Chem. Soc. 2004, 126, 13924-13925.
17. Mathieu, F.; Liao, S.; Kopatsch, J.; Wang, T.; Mao, C.; Seeman, N. C. Nano Lett. 2005, 5,

661-665.
18. Park, S. H.; Barish, R.; Li, H.; Reif, J. H.; Finkelstein, G.; Yan, H.; LaBean, T. H. Nano

Lett. 2005, 5, 693-696.
19. Wei, B.; Mi, Y. Biomacromolecules 2005, 6, 2528-2532.
20. Yan, H.; Zhang, X.; Shen, Z.; Seeman, N. C. Nature 2002, 415, 62-65.
21. Winfree, E. In DNA Based Computing; Lipton, E. J., Baum, E. B., Eds.; Am. Math. Soc.:

Providence; 1996; pp 199-219.

Appendix-I

System Specification

Platform --Windows, Mac OS X, etc.
Input interface -- Java Wizard Framework (JWF)
Input file format -- Extensible Markup Language (XML)
Output file format -- Scalable Vector Graphics (SVG)

 Uniquimer: A de Novo DNA Sequence Generation Computer Software 273

Function of the Software

The main function of the software is sequence generation of DNA motifs. Graphic
interface is available for the existing motifs classified as arm-based structures, center-
based structures, and parallel-like structures.

Extra Functions

1. Designation of certain segment sequences.
2. Designation of bulges for certain strands of DNA.
3. Designation of melting temperature (Tm) for complementary segments of DNA.
4. Designation of GC percentage for DNA motifs.
5. Exportation of motif pictures as JPG, PNG, TIFF format and the motif sequences

in TXT format.

Appendix-II

The software and its operation manual are available in the following web address:
http://ihome.ust.hk/~keymix/uniquimer.htm

A Probabilistic Model of the DNA
Conformational Change�

Masashi Shiozaki, Hirotaka Ono, Kunihiko Sadakane, and Masafumi Yamashita

Dept. of Computer Science and Communication Engineering, Kyushu University
{masashio, ono, sada, mak}@tcslab.csce.kyushu-u.ac.jp

Abstract. Predicting the behavior of DNA molecules in vitro is one
of the most fundamental issues on DNA computing, but is also known
to be quite difficult. Shiozaki et al. proposed a probabilistic model that
can simulate many features of biochemical experiments in terms of the
reaction rate [7], although there are several differences between the bio-
chemical experiments and the computational simulations on the model.

In this paper, we extend the model to support base pairs construction
among k DNA sequences, which plays an essential role in realizing branch
migrations. The simulation results have much more similarities to the
biochemical experiments results than ones on the previous model, which
implies that the analysis of the model may give some insight about the
reaction rate. Through the analysis, we conclude this paper by giving a
guideline for designing DNA sequences that can quickly react.

1 Introduction

Predicting the behavior of DNA molecules in vitro is one of the most funda-
mental issues on DNA computing, but also known to be quite difficult. Many
researchers try to understand the principle of DNA molecule reactions from sev-
eral viewpoints. The aim of this paper is to understand the mechanism of the
DNA conformational change.

Over the past few decades, modelling the behavior of RNA (not DNA) has
been intensively investigated [1,2,8,10]. Most of the models are essentially based
on Markov process under the assumption that an RNA sequence changes its
own structure according to the transition probability defined by the free energy.
Some models succeeded; they can simulate the folding behavior of RNA well.
These models are based on the simplicity of the RNA reaction; a base pair of
RNA is made only in one sequence 1. On the other hand, the DNA reactions
are usually more complicated, because base pairs of DNA are made not only
on one sequence but also on two or more sequences. That is, the behavior of
DNA molecules is supposed to be quite different from that of RNA, and the
� This research partly received financial support from Scientific research fund of Min-

istry of Education, Culture, Sports, Science and Technology.
1 This is actually a bit exaggerating and in RNA base pairs among more than one

sequence are made. What we want to say here is that in RNA reaction a base pair
construction in one sequence is known to be essential.

C. Mao and T. Yokomori (Eds.): DNA12, LNCS 4287, pp. 274–285, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

A Probabilistic Model of the DNA Conformational Change 275

same technique is not applicable directly. In fact, there had been no study on
the analysis of the DNA behavior, as far as the authors know.

Among them, Shiozaki et al., the authors of this paper, proposed a proba-
bilistic model based on Markov process for simulating the behavior of DNA, as
a first step of the DNA behavior’s analysis [7]. Considering the hybridization of
multiple DNA sequences, we introduced a model with two macro states and the
coupling factor p that can control the state transition between the two macro
states. The model can treat the structures formed with one or two sequences,
which are not so essential in the RNA conformation but are crucial in the DNA
conformation. We conducted computational simulations to compare with bio-
chemical experiments, whose results are provided by Prof. Suyama’s Group 2.
That biochemical experiments observe the reaction rate in which two types of
DNA sequences (one type of sequences and its complement type of sequences)
hybridize in vitro under a constant temperature. Through the comparison stud-
ies, we see that our computational simulations could imitate the biochemical
experiments on some of their typical features, though some features are still left
to be realized.

In this paper, we propose an advanced model, which is an extension of the
previous model, so as to explain the unrealized features. The previous model
considers the structures formed with only at most two sequences. This implies
that some conformational changes in which more than two sequences react, such
as branch migrations, are not supported in the model. It is a problem, because
branch migrations are considered to play a very important role in DNA reactions.
A point of the new model is that it permits any DNA sequence to have base pairs
among k sequences, which make it possible to simulate the mutual influences of
multiple DNA sequences. For example, a double stranded structure makes a base
pair with other structures; the branch migrations also may occur in the model.

We then conduct computational simulations on the new model. Simulation
results show more similarities to biochemical experiments than the previous one.
Through the computational simulations, we propose a guideline for designing
DNA sequences that quickly react, and further simulation studies support the
availability of the guideline.

These simulation studies on our model correspond to the biochemical ex-
periments explained above. Simulation studies for another kind of DNA reac-
tion (biochemical experiments) in Prof. Hagiya’s group 3, which is about the
branch migrations, also show that they can nicely imitate the bioexperimental
results. The similarities between the simulation results on our model and the
biochemical experiments imply that our model may be a good approximation
of the DNA conformational system in vitro; if our model approximates essential
parts of DNA conformation indeed, we can estimate the DNA reactions with-
out any biochemical experiments, which means that we can save many costs of
biochemical experiments, i.e., a lot of money, time, labor, and so on. Of course,
more computational simulations and more biochemical experiments should be

2 http://dna.c.u-tokyo.ac.jp/
3 http://hagi.is.s.u-tokyo.ac.jp/

276 M. Shiozaki et al.

performed to see the validity of the model, if yes, our results may be a giant leap
for DNA computing.

2 Preliminaries

In this section, we first explain the results of biochemical experiments that moti-
vate us to design a new model of DNA conformational change, then give a basic
simulation model of RNA conformation.

2.1 Motivating Biochemical Experiments

First we explain biochemical experiments which motivate us to design a simula-
tion model of DNA conformational changes.

Basic DNA reactions. We consider the situation that one type of DNA se-
quences (we call them primary sequences) and the same number of its comple-
ments are put in vitro at the same time under a constant temperature. At the
initial state all DNA sequences have no base pair. Then DNA sequences start to
change their own structures randomly and after a while they form the perfect
double stranded structures. This is considered one of the most basic DNA reac-
tions, and actually Suyama et.al. also concentrate to analyze this basic situation.

In the biochemical experiments conducted by Suyama et al., they use six types
of DNA sequences that have the same length and almost the same minimum free
energy (MFE) of the structure that is formed with a primary sequence and its
complement. Table 1 presents the primary sequences of six instances and the
MFEs that are calculated with a Vienna-RNA1.4 package [3,4] which was yet
improved by Uejima [9]. In this table, MFEs are minimum relative free energies
with respect to the structure with no base pair.

These chemical experiments were done in the following environment; the ab-
solute temperature is 298 K and the concentration of DNA is 10 nmol/l. For
comparison, we use three instances #60, #171 and #176, each of which has
obvious characteristics in terms of the reaction rate.

Table 1. The primary sequences and MFEs of the six instances

ID Primary Sequence MFE (kcal/mol)
60 TTCGCTGATTGTAGTGTTGCACA -36.16
171 CGCGATTCCTATTGATTGATCCC -34.78
176 GGGATCAATCAATAGGAATCGCG -37.10

117 CGCGATTCCTATTGATTGATCCC -35.60
227 TAGCACCCGTTAAAACGGAAATG -35.27
247 GCCTCCTTAGTAAGAACTGGTGC -36.14

Figure 1 shows the experimental results in biochemistry4 of #60, #171 and
#176. The horizontal and vertical axes represent real time and fluorescence
4 This figure was offered by Prof. Suyama of the University of Tokyo.

A Probabilistic Model of the DNA Conformational Change 277

Fig. 1. Experimental results Fig. 2. Simulation results

intensity, respectively. In these experiments, fluorescence intensity is propor-
tional to the number of stacked base pairs between two sequences.

Figure 2 shows the simulation result of Shiozaki et al. [7]. The horizontal
and vertical axes represent the number of steps and the sum of the number of
stacked base pairs, respectively. We can see that the biochemical experiments
and the simulations have some common tendencies. For example, both of the
figures show that the reactions of #176 are slow. This is because #176 tends to
make base pairs in one sequence frequently. Table 2 presents the MFEs in one
of the primary sequences and the complements of #60, #171 and #176. It is
known that the lower the free energy is, the more stable the structure is. Hence
that means both of the primary sequence of #176 and its complement can form
hairpin structures whose free energy are lower than the structure with no base
pair, while those of #60 and #171 do not form such structures in one sequence.
Figure 3 shows the structures corresponding to the MFEs in Table 2. Forming
a hairpin structure prevents a strand from hybridizing with another to make a
duplex. This may be the reason that the reaction of #176 is much slower than
the other two.

These are the features of the biochemical experiments that our simulation can
imitate. On the other hand, there are some differences between the results of our
basic model and the biochemical experiments. For example, the results of the
biochemical experiments show that the DNA sequences of #60 react faster than
those of #171, while our simulation model shows the opposite results.

Branch migrations. In the previous subsection, we explain a basic DNA re-
action, its biochemical experiments and the simulation results of our old model.
In this section, we introduce two new reactions about about branch migration,
whose biochemical experiments are provided by Prof. Hagiya group. We call
them BM1 and BM2, respectively.

BM1 is described in Figure 4. We prepare three types of DNA sequences;
these are sequences consisting of 40 bases (normal color one in the figure), called
the primary sequences, their complement sequences (shaded one) and the half
sequences of the complement (normal color one but the length is half). A primary
sequence has a black hole quencher (BHQ) at the 3′ end of the sequence. On
the other hand, a half of its complement has a fluorescent material, FAM at the

278 M. Shiozaki et al.

Table 2. MFE in one sequence of #60,
#171 and #176

MFE in one sequence (kcal/mol)
ID Primary Seq Complement
60 0.0 0.0
171 0.0 0.0
176 -4.92 -3.88

Fig. 3. Structures of the MFE in one
sequence of the primary sequence of
#176 (left) and its complement (right)

5′ end of the sequence. At the initial state, these two types of sequences form
double stranded DNA structures (Figure 4 (1)); that is, BHQs neighbors FAMs
and the light of FAMs is absorbed by BHQs. Therefore the molecules do not glow
at this moment. As time advances, shaded sequences start to make base pairs
with the primary sequences (Figure 4 (2)). Then branch migrations occur and
the half of their complements with a FAM start to dissociate from the primary
sequence with a BHQ. Finally the primary sequences and their complements
form perfect double stranded structures (Figure 4 (3)).

BM2 is similar to BM1, but four types of sequences participate. Figure 5
explains BM2. We prepare three types of DNA sequences as BM1 and another
type of sequences; We add the half sequences of the primary sequence, that is the
length is 20. These sequences also make double stranded DNA structure with
the complements of the primary sequences at the initial state (Figure 5 (1)).
Hence there exist two kinds of double stranded DNA structures. If the reactions
perfectly occur, then two types of perfect double stranded structures are formed
in the equilibrium state (Figure 5 (3)).

Fig. 4. The reaction of BM1 (1,2,3) Fig. 5. The reaction of BM2 (1,2,3)

In these two experiments, molecules glow when BHQs and FAMs stand off
to each other, which means that fluorescence intensity becomes strong after the
branch migrations completely finishes. Hence the fluorescence intensity shows
the progress of the reaction.

Figure 6 shows the results of the biochemical experiments5. The horizontal
and the vertical axes represent real time and fluorescence intensity respectively.
These experiments are done in the environment where the absolute temperature
is 318 K and the concentration of DNA is 100 nmol/l.

As shown in this figure, BM1 reacts in a very short time while BM2 takes a
lot of time to finish branch migrations completely.
5 This result is offered by Prof. Hagiya of the University of Tokyo.

A Probabilistic Model of the DNA Conformational Change 279

Fig. 6. Results of biochemical experiments

2.2 The Simulation Model of RNA

There exist many studies on analyzing and simulating the folding behavior of
RNA [1,2,5,8,10,11]. The basic assumptions of their models are the following:

– Each RNA molecule changes its structure randomly and independently of
other molecules.

– At the equilibrium state, the probability ps(x) that an RNA molecule s has
a structure x ∈ S is

ps(x) =
exp(−E(x)/RT)

Z

where E(x) is the free energy of the molecule that form the structure x, S
is the set of all the different structures of s, T is the temperature, R is a
constant, and Z =

∑
s∈S exp(−E(x)/RT).

Note that this model explains only the equilibrium state and does not explain
the transition period. Wolfinger et al. propose a model for simulating the folding
behavior of RNA, which is based on Markov process [10]. In their study, each
state in the Markov process corresponds to each RNA structure. They assume
that RNA sequences change their own structures according to the state transition
probability defined by the free energy of each structure. In their simulation
model, the neighborhood of the state is defined as the set of structures that are
formed from the present structure with a single base pair variation. The state
transition probability is as follows:

P (Xt+1 = y|Xt = x) =
rxy∑

z∈N(x) rxz
, (1)

where Xt is a random variable indicating the structure of a molecule at time t,
N(x) is the neighborhood of the state x and rxy is the transition rate from the
state x to y defined as follows:

rxy = exp

{
−E �=

yx − E(x)
RT

}
, E �=

yx = max{E(x), E(y)}.

280 M. Shiozaki et al.

The transition state energies E �=
yx assures the detailed balance, ps(x) ·P (Xt+1 =

y|Xt = x) = ps(y)·P (Xt+1 = x|Xt = y). As a result, this model could imitate the
folding behavior of RNA quite well. The model is based on the independence of
the past history and the random behavior of RNA conformational change. Since
these also hold for DNA conformation, we expect that the behavior of DNA can
be modelled as a Markov process, but straightforward application is not possible
because of the following reasons:

– DNA reactions among multiple sequences are not considered.
– The probability ps(x) depends on only the structure x and the temperature

T , whereas the results of the above biochemical experiments indicate that
the probability depends on the concentration of molecules.

3 New Simulation Model

As mentioned in Section 2.1, old results [7] have some differences from those
of the biochemical experiments in terms of the reaction rate of #60 and #171.
That is, the old model may extract some part of the DNA reaction, but that
extraction is rough and not good enough. In this section, we propose a more
polished model, which can simulate making base pairs among k DNA sequences,
and then show the simulation results.

3.1 The Simulation Model with the Extended Neighborhood

This model considers any structure created by k DNA sequences, so that the
branch migration may be realized. Although the branch migration is considered
essential for DNA reactions, the old model does not support; if it is the reason
that the old model is not good enough, we may expect good improvements for
the new model.

In the design of Markov process system as a simulation model, there are
several computational problems to be considered, because our objective, DNA
conformation, has an enormous number of states (DNA structures). The first
problem is how to define the transition. Given a state x (DNA structure), We
call a set of states (DNA structures) that can be changed from x, neighborhood
of x. To simulate a Markov process, we compute all the transition probability
from x to the neighborhood. That is, it is necessary to enumerate the neighbor-
hood of x. However, enumerating all the neighborhood is too time-consuming if
we adopt very general models of DNA reaction. On the other hand, it is consid-
ered that the transitions from x to most of neighbor states of x in such a model
seldom occur. By these observation, we consider a model that has a restriction
where k DNA sequences are not affected by any other sequences and all of them
are neighbored at any time. In our model, we define the neighborhood as the set
of structures that is formed with k DNA sequences from the present structure
with a single base pair variation; it includes the present structure. By this, the
size of the neighborhood is O(k2l2) at any time.

A Probabilistic Model of the DNA Conformational Change 281

Preparing k DNA sequences, we move to the next state selected from all the
neighborhood according to the state transition probability at each step; we use
the same transition probability with [7] which is defined as follows:

P (Xt+1 = y|Xt = x) =
Rxy∑

z∈N(x) Rxz
, (2)

where N(x) is the neighborhood of a state x and Rxy is the transition rate
defined as follows:

Rxy =

{
p · rxy (a first base pair between two sequences)
rxy (otherwise),

However, enumerating all the neighborhood in this model is still too complicated
when k is large. This is because we need to change the order of the k sequences
to get the free energy of each structure in the neighborhood. We implement this
model as k = 3 and k = 4 with computer so far.

In order to simulate the basic DNA reactions we use this model as k = 4.
Preparing two primary sequences and the same number of their complements,
we can simulate any pairs of them. In order to realize branch migrations, we use
this model as k = 3 and k = 4. In fact, in the BM1 and BM2, three and four
types of DNA sequences participate in the reaction.

3.2 Computer Simulations of Basic DNA Reactions

We use three types of DNA sequences (#60, #171 and #176) in Table 1 as
instances and do Monte Carlo simulations 50 times. Then the total number of
sequences is 200, which is the same to the previous simulation [7]. Considering
the results of the previous simulation model, we set RT = 2.0 and p = 0.0001.
These parameters seem to depend on the concentrations.

Figure 7 shows the results of 0 to 106 steps when p = 0.0001. The horizontal
and vertical axes represent the number of steps and the sum of the number
of stacked base pairs of 50 times Monte Carlo simulations. In this figure, the
rank of the reaction rate of #60, #171 and #176 is the same as the results of
biochemical experiments, while not in the previous simulations. Therefore this
model can simulate the DNA reactions well.

Discussion. It is natural to consider that these results come from the realization
of the branch migration. Intuitively if the MFEs with two primary sequences
and with their complements are small, the reaction becomes slow. In fact these
MFEs of #60 are smaller than those of #171. Therefore, in terms of the free
energy, #171 is supposed to react faster than #60. However the results of the
biochemical experiments are the opposite to this prediction. This fact implies
that we can not judge what DNA sequences react fast only from the free energies.

We then focus on the structures of the MFEs with two primary sequences
and their complements. Table 3 represents these MFEs and the number of bases
of free 5’ end and free 3’ end of #60, #171 and #176; the free 5’ (3’) end is

282 M. Shiozaki et al.

Fig. 7. The results of our advanced simulation model (p = 0.0001)

the number of bases that form no base pair at the 5’ (3’) end of the structure.
Since two DNA sequences form these structures, we show two numbers of bases
of free 3’ end and 5’ end for each. The more the number of bases of free 5’ (3’)
end is, the more easily the other DNA sequences can make base pairs with the
structure. Especially if both of free 5’ (3’) end of two primary sequences and that
of free 3’ (5’) end of their complements are large, the branch migration occurs
with ease and the reaction can be accelerated.

As presented in Table 3, the structure of two primary sequences of #60 and
their complements have many free bases that do not make base pairs at the 5’
and 3’ end respectively; it implies that the branch migration occurs with ease
when the DNA sequences form such structures. On the other hand, that of #171
and its complement have less free bases at both of the edges. We consider that
this is the reason that #60 reacts faster than #171 in biochemical experiments.

These discussions also explain the slow reaction of #176. As shown in Table 3,
#176 has much lower MFEs. In addition, both of these structures have no free
base that does not make base pairs at the edges. Therefore the branch migration
hardly occurs and the reaction is not accelerated.

Now we consider the reaction rate of six DNA sequences including #117,
#227 and #247. Table 4 presents the MFEs with two primary sequences and
their compliments and the number of bases of free 5’ end and free 3’ end of #117,
#227 and #247. From the above discussions and Tables 3 and 4, we predict the
following:

– The reactions of #117 and #60 are much faster than the others.
– The reactions of #171 and #227 are a bit slower.
– The reaction of #176 is the slowest.

Table 5 shows the rank of the reaction rate of the six types of DNA sequences
in the biochemical experiments for each concentration. The predictions seem to
explain the results of the biochemical experiments especially when the concen-
tration of DNA is high. The higher the concentration is, the more frequently the
DNA sequences encounter with each other; it means that the branch migrations

A Probabilistic Model of the DNA Conformational Change 283

Table 3. The characteristics of the structures of MFEs with two primary sequences
and their complements of #60, #171 and #176

Primary Seq Complement
ID MFE(kcal/mol) free 5’ end free 3’ end MFE(kcal/mol) free 5’ end free 3’ end
60 -8.54 13, 13 1, 1 -6.60 0, 1 13, 14
171 -4.98 3, 3 7, 7 -6.22 7, 7 3, 3
176 -14.59 0, 0 0, 0 -10.42 0. 0 0, 0

Table 4. The characteristics of the structures of MFE with two primary sequences
and their complements of #117, #227 and #247

Primary Seq Complement
ID MFE(kcal/mol) free 5’ end free 3’ end MFE(kcal/mol) free 5’ end free 3’ end
117 -8.49 0, 0 19, 19 -8.25 19, 19 0, 0
227 -14.84 6, 6 5, 5 -14.62 5, 5 6, 6
247 -9.27 5, 5 9, 9 -6.85 0. 17 8, 0

Table 5. Ranking of strands by reaction rates in the biochemical experiments

Concentration
Rank 5 nmol/l 10 nmol/l 20 nmol/l

1 60 247 117
2 247 60 60
3 117 117 247
4 227 227 227
5 171 171 171
6 - 176 176

easily occur. Therefore these predictions match the experimental results better
when the concentration is high.

There still remain some problems. The comparison between the results of the
biochemical experiments and our simulation model including #117, #227 and
#247 shows some differences. These may be due to the lack of the dynamical
elements. It is known that DNA sequences start to make base pairs from an
endpoint and they sequentially bond like zippers. Nevertheless our model can
not simulate such reactions.

We conclude this section by the following.

1. We have almost succeeded in simulating the DNA reactions by the proba-
bilistic model based on the free energy of each structure.

2. However, only the free energy information may not to be enough to simulate
the precise behavior of DNA.

3. A new model reflecting the dynamical elements might approximate DNA
reactions much better.

284 M. Shiozaki et al.

3.3 Computer Simulations of Branch Migrations

We apply our advanced model as k = 3 and k = 4 to simulate BM1 and BM2,
respectively. We set RT = 1.0 and do Monte Carlo simulations 200 times.

Figure 8 shows the results. The horizontal and vertical axes represent the
number of steps and the number of structures in that a BHQ and a FAM are
away from each other (we call them the fluorescent structures), respectively.
We can see many common tendencies between the simulation results and the
biochemical experiments also in these reactions; for example, BM1 reacts in a
very short time while BM2 takes a lot of time to be in the steady state. These
results support that our model is useful not only for the basic DNA reactions
but also for more complicated DNA reactions.

Fig. 8. The comparison between BM1 and BM2 (p = 0.001)

4 Conclusion

In this paper, we propose a new probabilistic model of DNA conformational
change. The simulation studies for two basic DNA reactions show that the model
may be a good approximation of (actual) biochemical reaction. Although fur-
ther improvements may be possible, the authors think our model has succeeded
in extracting some essence of the DNA reactions. To confirm this, much more
simulation and biochemical experiments are needed. Also some (computational)
theoretical studies might be useful and interesting to analyze thermo-dynamical
properties of DNA reactions.

As a byproduct of the simulation studies, we obtain a guideline for designing
DNA sequences that can react fast in terms of the basic DNA reactions; these
are summarized as follows:

1. Both the primary sequence and its complement should not form hairpin
structures (from the results of [7]).

2. Both two primary sequences and their complements also should not form the
stable structure; in the case that they form such structures, the numbers of
bases of free 3’ end and 5’ end of those should be large (Subsection 3.2).

A Probabilistic Model of the DNA Conformational Change 285

Acknowledgments

The authors sincerely appreciate Professor Suyama and Professor Hagiya of the
university of Tokyo who offered experimental data in biochemistry to us. We
also thank the anonymous reviewers for their insightful comments to improve
the presentation of the paper.

References

1. C. Flamm, Kinetic Folding of RNA, Dissertation, 1998.
2. C. Flamm, W. Fontana, I. L. Hofacker and P. Schuster, RNA Folding at Elementary

Step Resolution, Santa Fe Institute 12-078, 1999.
3. I. L. Hofacker, The Vienna RNA Secondary Structure Server, Nucleic. Acids Res.

31 3429-31, 2003.
4. I. L. Hofacker, W. Fontana, P. F. Stadler, L. S. Bonhoeffer M. Tacker and P.

Schuster, Fast Folding and comparison of RNA Secondary Structures, Monatsh.
Chem. 125 167-88, 2003.

5. A. J. Hartemink and D. K. Fifford, Thermodynamic Simulation of Deoxyligonu-
cleotide Hybridization for DNA Computation, DIMACS Series in Discrete Mathe-
matics and Theoretical Computer Science.

6. S. Kobayashi, Strand Design for Molecular Computation, Sciences, 2003.
7. M. Shiozaki, H. Ono, K. Sadakane and M. Yamashita, Modeling DNA Conforma-

tion Change and Theoretical Analysis on the Reaction Rate, Preproceedings of the
11th International Meeting on DNA Computing (DNA11), 408, 2005.

8. M. Tacker, W. Fontana, P. F. Stadler and P. Schuster, Statistics of RNA Melting
Kinetics, Eur. Biophys. J., 23:29–38, 1993.

9. H. Uejima, M. Hagiya, Analyzing Secondary Structure Transition Paths of
DNA/RNA molecules, PreProceedings of the 9th International Meeting on DNA
Computing (DNA9) 4731-4741, 2004.

10. M. T. Wolfinger, W. A. Svrcek-Seiler, C. Flamm, I. L. Hofacker and P. F. Stadler,
Efficient Computation of RNA Folding Dynamics, J. Phys. A: Math. Gen. 37:
4731-4741, 2004.

11. M. Zucker, The Equilibrium Partition Function,
http://www.bioinfo.rpi.edu/ zukerm/lectures/RNAfold-html/node3.html, 2003.

Simulations of Microreactors:
The Order of Things

Joseph Ibershoff1, Jerzy W. Jaromczyk1, and Danny van Noort2

1 Department of Computer Science, University of Kentucky,
Lexington, KY 40506, USA

jwiber0@cs.uky.edu, jurek@cs.uky.edu
2 Biointelligence Lab., School of Computer Science and Engineering,

Seoul National University, San 56-1, Sinlim-dong, Gwanak-gu, Seoul 151-742, Korea
present address: IBN, the Nanos, 31 Biopolis Way, Singapore

dvannoort@ibn.a-star.edu.sg

Abstract. Simulations are needed to predict various parameters for
chemical reactions and error propagation in microfluidic networks. This
paper studies the impact of the order of microreactors implementing a
fluidic network on the error in solutions for Boolean expressions. Ad-
ditionally, we present a computer program that augments the software
toolkit introduced in our previous work. The program is useful for sim-
ulating microfluidics; we present an example from DNA computing. It
monitors the concentration of every molecule throughout the fluidic net-
work and assists in predicting how the layout of the network contributes
to the error in the DNA computation.

1 Introduction

Microfluidics is the system of choice for performing computations using biological
material. It can be incorporated as an information carrier in a DNA computing
scheme [6] [10]. The advantages of microfluidics are the small volumes (in the
picoliter range) and the speed of reactions. When using fluidic valves and micro
pumps, the flow can be (re-)directed [9]. The channels are like the wires in an
electronic circuit, transporting the information from one operator to another, to
fluidic flip-flops, i.e. logical operators. For that reason, a microreactor network
can be viewed as a realization of a Boolean expression.

There is need for simulation to allow researchers to determine various param-
eters essential to the costly computations without repeatedly having to expend
resources. For example, simulations can be used to monitor how many strands
are left after each Boolean operation and how many of these strands are er-
rors; by running various simulations on a Boolean expression and examining
the resulting simulated error, the researcher can gain insight into appropriate
parameter values to maximize the effectiveness of real DNA computations.

In our previous paper on networks of microreactors [8], we investigated strand
concentrations in microreactors using dataflow techniques characteristic of

C. Mao and T. Yokomori (Eds.): DNA12, LNCS 4287, pp. 286–297, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Simulations of Microreactors: The Order of Things 287

syntax-directed translation (see [1]). In particular, we discussed how to deter-
mine properties and attributes of a microreactor network, such as maximum
serial length of the network or a subnetwork, or maximum simultaneous parallel
paths of the network or a subnetwork; we also showed how that information can
be used in the calculation of strand loss, a factor relevant to the overall effective-
ness of a microreactor network. To illustrate the usefulness of these calculations,
we compared two logically equivalent Boolean expressions and the strand loss
resulting from them. We also proposed that the combination of this information
with that from simulation could lead to further insight into microreactor network
structures that help or hinder overall effectiveness.

In this paper, we discuss and present software that implements simulation and
visualization of a microreactor network. In addition to looking at summary in-
formation on groups of strands as discussed in [8], the software presented here
tracks the concentration for every distinct strand of the solution library individu-
ally. This allows more subtle analysis of the behavior of microreactor networks. For
example, in the comparison of two logically equivalent Boolean expressions pre-
sented in [8], we chose one as preferable on the basis of strand loss. Here, we com-
bine the strand loss information with incomplete hybridization rates from the sim-
ulation to show that the chosen Boolean expression from that comparison which
exhibits less strand loss also exhibits more incomplete hybridization, and there-
fore may actually be less desirable. Taking this one step further, we present a third
expression which retains the best characteristics of both the previously compared
expressions. In addition, to illustrate observations we have made through the use
of the simulation software, we examine a pair of Boolean expressions which have
identical strand loss (and are therefore equivalent using the techniques presented
in [8]) but with vastly different incomplete hybridization rates.

In the following sections, the principle of Boolean operations in microfluidics
will be reviewed, after which the model of operation and the software will be
introduced. Finally, the results of the simulation of simple Boolean expressions
in different configurations are presented and discussed.

2 Computation of a Boolean Expression by a
Microreactor Network

A potential solution to a Boolean expression is an assignment of truth values
(TRUE or FALSE) to each variable in the expression which results in a value of
TRUE for the expression as a whole. If sequences of nucleotides (which we will
refer to as words) are used to represent assignments of values to variables (e.g.
GTTTACGTAGC could mean “A==TRUE”), then a molecule of ssDNA consisting
of these words can represent a potential solution to a Boolean expression. This
is the essence of the DNA computation model, and its attractiveness is in the
potential for efficient computations for problems that are currently computa-
tionally prohibitive.

A library of ssDNA can be built based upon these nucleotide words such
that every potential assignment is in the library. Computation of a Boolean

288 J. Ibershoff, J.W. Jaromczyk, and D. van Noort

expression then means determining which potential solutions are correct solu-
tions (solutions such that the value of the expression as a whole is TRUE), or
perhaps simply determining whether there exist any correct solutions to the
Boolean expression. The latter problem is known as the Boolean Satisfiability
problem (abbreviated SAT) and it is a prototypical NP-Complete problem, one
with no known efficient solution. In the context of DNA computing, computation
of a Boolean expression generally refers to some process which begins with a full
library of potential solutions, performs biochemical operations on the library,
and ideally results in a set of ssDNA containing only those molecules which
represent correct solutions. Realistically, this sort of computation will not be
perfect, and will leave a (hopefully small) number of ssDNA which correspond
to incorrect solutions. These trace leftovers may be referred to as error strands
or incorrect strands, and it is desirable to reduce the level of error strands both
absolutely and relative to the level of correct strands in the result. The ratio of
error strands to correct strands (those which correspond to correct solutions) is
referred to as the error ratio.

2.1 Computation on the Individual Microreactor Level

The function of a microreactor is to divide the ssDNA into two sets, based on
their value assignments for a single variable in the Boolean expression (e.g. to
separate strands with the word meaning “A==TRUE” from those with the word
meaning “A==FALSE”). In theory, both groups could then be retained for use in
different parts of the calculation, but usually this is not the case – a microreactor
is used to select one of the sets of strands.

Selection is accomplished using biotinylated complementary strands (strands
which are the Watson-Crick complement of one of the words used in the library),
which are immobilized to streptavidin functionalized beads and packed into a
microreactor. Hybridization between strands in the library and strands on the
beads (abbreviated “CP” for “capture probes”) is selection of one of the two
groups of strands; this can be positive selection (which hybridizes the strands
desired for later computation) or negative selection (which hybridizes the un-
wanted strands) [5]. In this paper, we only use negative selection.

2.2 Computation on the Network Level

Each microreactor represents a variable in the Boolean expression. Operators
are represented in the structure of the fluidics network [9]. An OR operator is
two reactors in parallel, while an AND operator is two reactors in series. In this
manner a Boolean expression can be translated into a microfluidic structure. For
example, the expression (A OR B) AND (C OR D) can be translated as shown in
the left side of Figure 2. Only one thing is missing: a general NOT operation is
not easily implemented in the same way as AND and OR. This does not cause a
problem, however. It is trivial to implement NOT on a particular variable, simply
by hybridizing the opposite set of strands. For example, since a microreactor
using negative selection to represent A hybridizes strands with “A==FALSE”, a
microreactor using negative selection to represent NOT A could hybridize strands

Simulations of Microreactors: The Order of Things 289

Fig. 1. A bead with bound ssDNA (left), and a bead without bound ssDNA (right)

with “A==TRUE”. de Morgans Law then allows normalization of NOT operations
such that they are always applied to variables, for instance by changing (NOT (A
OR B)) to the equivalent (NOT A) AND (NOT B). A microreactor network realiza-
tion of a more complex Boolean expression which utilizes NOT normalization is
shown in the right side of Figure 2.

Unfortunately, the OR operator is prone to loss of information when used in
conjunction with negative selection, because the flow is split between two paths;
50% of the total strands go one way while the other 50% go the other. This
means that a significant portion (approaching 50%) of correct strands can be
deleted from the flow during this operation, e.g. if they will hybridize in one
path but not the other [8]. Viable solution strands are lost, which results in an
overall increase of the error relative to the remaining solution strands. Thus it
is pertinent to minimize the number of OR operators.

3 Model of Operation

Hybridization depends on the following factors [7]:

1. the size of the reactor.
2. the size of the beads.
3. the concentration and volume of ssDNA.
4. the concentration of CP.
5. flow velocity.
6. environmental conditions (pH, salt concentration, temperature).

However, in the program presented here we will only consider the reactor
size, flow velocity, concentration of ssDNA and CP strands, and ssDNA solution
volume as input parameters. To include the environmental conditions requires a
more complex model, which will not be considered here.

The simulation of a single selection module (i.e. microreactor) is based on
compartmentalization. The module is divided into n compartments of volume V .

290 J. Ibershoff, J.W. Jaromczyk, and D. van Noort

Fig. 2. The expressions (A OR B) AND (C OR D) (left) and ((A AND ((NOT C) OR D))
OR (B AND C AND D) OR (NOT (F AND G))) AND NOT H (right) represented by fluidic
networks

Larger values of n will result in smaller compartments, and so the model will be
closer to a continuous model. The DNA solution is presumed to flow in a plug,
so no diffusion at the interface of DNA and carrier solution is assumed. The
plug is then divided into compartments with the same volume V as the modules
(see Figure 3). Time and total volume decide the accuracy of the selection. The
uptake of the ssDNA is calculated in a static fashion, which in principle means
that the flow is stopped and started with time intervals depending on the flow
velocity and the size of the compartment.

The objective of negative selection in a microreactor is to hybridize (and thus
filter out) all the ssDNA not wanted. In every compartment the uptake of ssDNA
is calculated, and that information is passed on to the next, in the direction of the
flow. Since the number of molecules involved is sufficiently large (∼ 1010), it is
possible to use deterministic and continuous, rather than stochastic, expressions.
It is assumed that annealing of two ssDNA molecules follows a second-order
reaction kinetics [5]:

[W] + [C] k−→[WC] (1)

where [W] is the concentration of the ssDNA in solution and [C] is the con-
centration of the CP. From Equation 1 we can derive the following about the
decrease of the concentration of ssDNA and concentration of the CP, i.e. the
binding capacity.

Simulations of Microreactors: The Order of Things 291

Wi+1 =
εWi(Wi − Ci)

εWi − Ci
(2)

Ci+1 =
Ci(Wi − Ci)

εWi − Ci
(3)

ε = ekt(Wi−Ci) (4)

where i is the compartment, k is the second-order rate constant and t is the
duration of the incubation. An n-bit Boolean problem gives rise to a 2n library
of all possible solutions. The concentration of each member in the library will
be monitored individually so a comparison can be made between the correct
solutions and errors after each selection module. This will show the impact of
the erroneous members on the problem solving capabilities of this system and
ways in which the system can be improved.

Fig. 3. A schematic of the flow of a plug with ssDNA though a compartmentalized
microreactor filled with beads. The sequence of the figures is from left to right and top
to bottom. In this example the volume of the plug corresponds to two compartments.

Error can be grouped into two basic categories: loss of correct strands (ones
that satisfy the equation being computed), and misclassification/retention of
incorrect strands (ones that do not satisfy the equation) [2]. In a system based
on negative selection, misclassification of incorrect strands is typically caused by
incomplete hybridization; the effect of microreactor parameters on incomplete
hybridization in a single negative selection is examined in [4]. Strand loss has two
sources: non-specific hybridization within a microreactor, and loss resulting from
parallel selection in an OR structure. Non-specific hybridization is said to occur
when ssDNA hybridizes with non-complementary strands on the beads, binds to
the walls of the microreactor, or in any other way binds to something other than
complementary strands. In this paper, the level of non-specific hybridization is
assumed to be zero.

292 J. Ibershoff, J.W. Jaromczyk, and D. van Noort

4 Software

The program that performs the simulation based on the model discussed above
has a structure typical of the Model-View-Controller design pattern [3]. A screen-
shot of the current interface (View) is shown in Figure 4. As can be seen in the
screenshot, the window is divided into three major components: the first part
is responsible for controls and input parameters; the part below that contains
numerical output of the simulation results; and the area to the right displays the
schematic diagram of the microreactor network constructed.

Fig. 4. A screenshot of the program, showing the network layout for the equation
(A OR (B AND (NOT C)) OR ((NOT A) AND (D OR B) AND C)) AND (NOT E))

4.1 Simulation Control

There are seven parameters governing the simulation of the network, in addition
to a text field for accepting the Boolean equation to compute.

1. Reactor volume. This is the total free space available for flow of ssDNA
solution (i.e. it does not include the volume consumed by beads), given in
nanoliters.

2. ssDNA volume. This is the volume of ssDNA solution that will flow through
the reactor, given in nanoliters.

3. Reactor flow rate. This is the rate at which ssDNA solution flows into and
out of the reactor, given in nanoliters per second.

4. Rate constant. This is the second-order rate constant k used in Equation 1.
This value specifies how quickly hybridization occurs when ssDNA is in the
presence of CP in the microreactor. Since this value may depend on the

Simulations of Microreactors: The Order of Things 293

design of the microreactors being used as well as other factors, it is necessary
to allow the user to specify it.

5. ssDNA amount. This specifies the total amount of ssDNA present in the
solution, given in moles.

6. Bind capacity. This specifies the total amount of ssDNA that can theoreti-
cally be bound within the microreactor, given in moles.

7. Resolution. This specifies the granularity of calculation for the simulation;
higher values will require more computation, but will yield more accurate
results. Unless many significant figures are necessary in the result, a value
of about 10 is appropriate.

4.2 Microreactor Network Model

The microreactor network is automatically laid-out based on its structure, so
that all important structural features are easily discernible. As a side remark,
this layout is an example of an algorithm that belongs to the group of so-called
graph drawing algorithms; in this case the drawing is directed by the syntactical
structure of the Boolean expression. The AND and OR operators are treated as
n-ary rather than binary; for example, a+b+c+d is understood directly as a single
operation on four expressions, rather than being interpreted in the usual left-
associative, binary way as (((a+b)+c)+d) (which has a very different, and less
desirable, network representation). The model shows individual microreactors
as red rectangles, each labeled with the variable that microreactor is selecting;
the label uses the plus sign (‘+’) to indicate that the microreactor should allow
strands to pass which have the value of TRUE for that variable, while it uses the
minus sign (‘-’) to indicate that the microreactor should allow strands to pass
which have the value of FALSE for that variable. Note that since this simulation
uses negative selection, a microreactor with the label “+a+” actually hybridizes
strands which have “a==FALSE” (thus allowing strands which have “a==TRUE” to
pass). Holding the mouse cursor over a microreactor rectangle causes a ToolTip
to be displayed which shows the error rate of that microreactor’s selection.

The model also has numerous gray colored nodes on the connections between
microreactors; these tap points are locations at which the flow of ssDNA can be
inspected to examine the error ratio within the context of the entire network (as
opposed to the error shown for a microreactor, which only gives error within the
context of a single selection). A tap point is included in the model every time the
concentrations in the flow would be altered, and may be inspected via ToolTip
(a tap point ToolTip is shown in the screenshot in Figure 4).

4.3 Output View

The current output view area displays textual and numerical data for the out-
flow of the network. A normalized version of the input Boolean expression is
displayed, followed by a concentration readout for each distinct ssDNA strand
in the simulation. Then, summary information such as the overall concentra-
tion of correct strands and incorrect strands is given, along with the error ratio
(concentration of incorrect strands divided by concentration of correct strands).

294 J. Ibershoff, J.W. Jaromczyk, and D. van Noort

An improved output view can accompany this textual information with a
visualization of the strand concentrations. In addition, all the information (both
the textual and visual) can be made available not just for the network out-flow,
but for any tap point in the model, selectable by clicking on the appropriate tap
point. This would allow the researcher to use the simulation to investigate not
just the overall result of a particular microreactor network, but also to investigate
substructures within the network (e.g. to locate the source within a given network
of a large amount of strand loss).

5 Results and Discussion

To demonstrate the importance of careful use of the OR operator, three logically
equivalent Boolean expressions (i.e. expressions having the same truth table
values) were compared. Furthermore, to show the importance of the placement
of the OR operator within and AND operation, we tested the associative law.
The results obtained in these two experiments illustrate the usefulness of the
simulation software as a tool in the DNA computing researcher’s toolkit.

Fig. 5. A microfluidic representation of the Boolean expressions: (A OR B) AND (A OR

C) (left), A OR (B AND C) (center), and (A AND A) OR (B AND C) (right)

5.1 OR Operator Minimization

To show the impact of the OR operator on strand loss and the resulting error
ratio, we have compared three logically equivalent Boolean expressions, each
with a difference in the number and/or structure of OR operators: (A OR B) AND
(A OR C) vs A OR (B AND C) vs (A AND A) OR (B AND C) (see Figure 5).

The first network in Figure 5, representing (A OR B) AND (A OR C), has two
ORs placed in series, with strand mixing in between. The fact that the two ORs
each have an identical selection (on the variable a) leads to significant strand
loss, as detailed in [8]. The first chart in Figure 6 compares the resulting con-
centration of correct strands (strands that satisfy the Boolean expression) from

Simulations of Microreactors: The Order of Things 295

Fig. 6. Comparison of strand concentrations in three different but logically equivalent
expressions for a simulation using default running parameters. (left) shows the concen-
tration of strands that satisfy the Boolean expression, (center) shows the concentration
of strands that do not satisfy the Boolean expression, and (right) shows the ratio of
the previous two values.

simulating each of the expressions using default parameters. As has been shown
previously [8], the first expression resulted in less correct strands retained than
the second expression.

The second network in Figure 5, representing A OR (B AND C), eliminates
the problems of the first network by using a simplified Boolean expression which
eliminates the second OR. Unfortunately, it has more retained incorrect strands
than the first expression, as can be seen in the second chart of Figure 6. This is
because the redundant selection of a, although responsible for additional correct
strand loss in the first expression, also removed additional incorrect strands. The
ratio of incorrect strand concentration to correct strand concentration (shown in
the third chart in Figure 6) indicates that this second expression may actually
be worse for many purposes, as it has a higher error ratio.

The third network in Figure 5, representing (A AND A) OR (B AND C), keeps
the best of both the previous expressions by using only a single OR, but adds back
in the redundant selection on a. It has the same incorrect strand concentration
as the first expression, and the same correct strand concentration as the second
expression, resulting in a better error ratio than either.

As the OR operator is a major source of strand loss, there is a need to min-
imize its use. Incorrect strand concentration can be reduced without requiring
additional uses of OR.

5.2 Order and Associative Law

To show that the order of serial operations (stemming from an AND) in the mi-
crofluidic system is important, we demonstrate by simulation that error in mi-
crofluidic systems does not obey the associative law. Figure 7 shows the networks
that were used for comparison.

296 J. Ibershoff, J.W. Jaromczyk, and D. van Noort

Fig. 7. Even changing the evaluation order of operations in series, such as in the two
networks above, results in changes to the end concentrations

Simulation of the first network using default parameters results in an incorrect
strand concentration of 8.3e-3%, compared to a tiny 5.7e-8% for the second
network, a factor of 105 difference. This occurs because the flow entering an OR
is split, leaving only a fraction as much volume available to each of its branches;
when the concentration of ssDNA entering the OR is reduced by the previous
selection on c, and then also split in volume, it causes the second operation in the
series to be substantially less effective. This is an indirect result of the decaying-
exponential behavior of ssDNA concentration within a single microreactor; see [7]
for a more detailed analysis of behavior within a single microreactor. On the
other hand, the AND is less sensitive to a previous reduction in concentration
of ssDNA, since it does not have to split its volume. Thus, it appears that OR
operations should be performed first within an AND operation, at least for simple
cases.

It should be reiterated that in the simulations just described, non-specific
binding of ssDNA is set to zero. This results in the two different networks each
having the same concentration of correct strands remaining at the out-flow of
the network. However, a more complicated and accurate model that calculates
non-specific binding with attention to the overall ssDNA concentration and re-
maining binding capacity would most likely show different concentrations of
correct strands for these two networks.

6 Conclusions

Maximizing correct strand concentration while also minimizing incorrect strand
concentration in a network of microreactors is a subtle and difficult task. The
OR operator is particularly sensitive, due to the necessary reduction in ssDNA
volume that is inherent to its calculation when using negative selection – it
has been shown that the number and structure of OR operators, as well as the
placement of ORs within an AND series, can have a significant impact on the result.

Simulations of Microreactors: The Order of Things 297

Investigation of the circumstances which increase or decrease the effectiveness
of a particular realization of a Boolean problem is tedious and difficult by hand,
but is relatively simple with simulation software. Eventually, the insight gained
from experimenting with simulation might lead to observations, and ultimately
to proven algorithms that can automatically restructure a microreactor network
to increase its effectiveness. The results obtained in the simulations presented
in the paper illustrate the usefulness of the simulation software as a tool in the
DNA computing researcher’s toolkit.

Acknowledgments

D. van Noort would like to acknowledge the support from the Molecular Evolu-
tionary Computing (MEC) project of the Korean Ministry of Commerce, Indus-
try and Energy, and the National Research Laboratory (NRL) Program from the
Korean Ministry of Science and Technology. J. W. Jaromczyk acknowledges the
support by the Kentucky Biomedical Research Infrastructure Network, funded
by grant 2P20RR016481-04 from the National Center for Research Resources
and awarded to Nigel Cooper from the University of Louisville.

References

1. A.V. Aho, R. Sethi, and J.D. Ullman, Compilers: Principles, Techniques, and Tools,
Addison-Wesley, 1986.

2. K. Chen and E. Winfree: Error Correction in DNA Computing: Misclassification
and Strand Loss, DIMACS 5, (1999).

3. E. Gamma, R. Helm, R. Johnson, and J. Vlissides: Design Patterns: Elements of
Reusable Object-Oriented Software. Addison-Wesley, (1995).

4. J. Ibershoff, J. W. Jaromczyk, D. van Noort: Simulation and Visualization of Hy-
bridization Events for DNA Computing in Microreactors. Journal of the Japan So-
ciety for Simulation Technology; 2005 December, Vol.24, No. 4, pp277–284 (2005).

5. M. S. Livstone and L. F. Landweber: Mathematical considerations in the design of
microreactor-based DNA computers. LNCS 2943, pp180–189, (2004).

6. J. S. McCaskill: Optically programming DNA computing in microflow reactors.
BioSystems 59 pp125–138, (2001).

7. D. van Noort, Y. Hong, J. Ibershoff, and J. W. Jaromczyk: Simulation and Visu-
alization for DNA Computing in Microreactors. Proceedings of the International
Conference on Natural Computing ICNC 2005; LNCS 3611 Part II, (2005).

8. D. van Noort, J. Ibershoff, J. W. Jaromczyk: Dataflow-Based Simulation of DNA
Computing in Cascading Microreactors. Proceedings of 3rd International confer-
ence on Computational Intelligence, Robotics and Autonomous Systems (CIRAS
2005). Elsevier, ISSN: 0219-6131, (in press).

9. D. van Noort, Z.-L. Tang, and L. F. Landweber: Fully controllable microfluidics
for molecular computers. JALA 9, (2004).

10. D. van Noort, P. Wagler, and J. S. McCaskill: The role of microreactors in molecular
computing. Smart Mater. Struct. 11, pp756–760, (2002).

DNA Hypernetworks for Information Storage
and Retrieval

Byoung-Tak Zhang and Joo-Kyung Kim

Biointelligence Laboratory, School of Computer Science and Engineering
Seoul National University, Seoul 151-742, Korea

{btzhang, jkkim}@bi.snu.ac.kr
http://bi.snu.ac.kr/

Abstract. Content-addressability is a fundamental feature of human
memory underlying many associative information retrieval tasks. In con-
trast to location-based memory devices, content-addressable memories
require complex interactions between memory elements, which makes
conventional computation paradigms difficult. Here we present a molecu-
lar computational model of content-addressable information storage and
retrieval which makes use of the massive interaction capability of DNA
molecules in a reaction chamber. This model is based on the “hypernet-
work” architecture which is an undirected hypergraph of weighted edges.
We describe the theoretical basis of the hypernetwork model of associa-
tive memory and its realization in DNA-based computing. A molecular
algorithm is derived for automatic storage of data into the hypernetwork,
and its performance is examined on an image data set. In particular, we
study the effect of the hyperedge cardinality and error tolerance on the
associative recall performance. Our simulation results demonstrate that
short DNA strands in a vast number can be effective in some pattern
information processing tasks whose implementation is within reach of
current DNA nanotechnology.

1 Introduction

Content-addressable memories or associative memories are storage devices which
return stored contents from partial contents. These are contrasted to typical
location-based storage devices where addresses are to be provided rather than
contents. Content-addressable memories are useful in search intensive applica-
tions such as information retrieval, data compression, and database search [9].
It has long been known that human memory is based on content-addressing [8].

The property of massive parallelism along with associative search capability
of DNA computing can be very useful in realizing content-addressable memory.
This has been pointed out by several researchers in DNA computing community
[1,10] and there are some experimental works going on in this line of research, for
example [3] and [5]. However, there is lack of theoretical studies on developing
systematic models of associative memory based on molecular computing or DNA
nanotechnology.

C. Mao and T. Yokomori (Eds.): DNA12, LNCS 4287, pp. 298–307, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

DNA Hypernetworks for Information Storage and Retrieval 299

Here we propose a graphical model of associative memory, called hypernet-
works, which is naturally implemented as a library of interacting DNA nanos-
tructures. A hypernetwork is a weighted hypergraph, i.e., graphs having “hyper-
edges”. Thus, a hypergraph can have edges connecting three or more vertices
while in an ordinary graph the edges can connect maximum two vertices. As we
shall see, the use of these hyperedges allows for additional degrees of freedom in
representing memory elements in a network representation while preserving the
mathematical tools provided by the graph theory.

The purpose of this paper is to introduce the hypernetwork model of associative
memory from a theoretical point of view, and study its essential properties such as
the tolerance of associative recall against errors in input and/or chemical reaction.
We report on simulation results on pattern completion tasks where the corrupted,
input images are to be reconstructed into the original or clean patterns.

The paper is organized as follows. Section 2 introduces the hypernetwork
model of data storage. Section 3 presents a method for encoding the hypernet-
works in DNA molecules. Section 4 describes a method for automatic storage of
patterns on the hypernetwork along with its theoretical background. Section 5
shows the simulation results on the hand-written image data set. Section 6 draws
conclusions.

2 The Hypernetwork Model

A hypergraph is an undirected graph G whose edges connect a non-null number
of vertices [2], i.e. G = (V, E), where V = {v1, v2, ..., vn}, E = {E1, E2, ..., Em},
and Ei = {vi1, vi2, ..., vik}. Ei is called hyperedges. Mathematically, Ei is a
set and its cardinality is k ≥ 1, i.e., the hyperedges can connect more than two
vertices while in ordinary graphs the edges connect up to two vertices, i.e., k ≤ 2.
A hyperedge of cardinality k will be referred to as a k-hyperedge.

Figure 1 shows a hypergraph consisting of seven vertices V = {v1, v2, ..., v7}
and five hyperedges E = {E1, E2, E3, E4, E5}. A hypergraph can be represented
as an incidence matrix. The incidence matrix of a hypergraph G = (V, E) is a
matrix ((ai

j)) with m rows that represent the hyperedges of G and n columns
that represent the vertices of G, such that ai

j = 1 if vj ∈ Ei and ai
j = 0 if vj /∈ Ei.

Each (0, 1)-matrix is the incidence matrix of a hypergraph if no row or column
contains only zeros. Figure 1 also shows the incidence matrix corresponding to
the hypergraph.

We now generalize the hypergraph into hypernetworks by assigning the weight
values to the hyperedges. Formally, we define a hypernetwork as a triple H =
(V, E, W), where

V = {v1, v2, ..., vn} (1)
E = {E1, E2, ..., Em} (2)
W = {w1, w2, ..., wm}, (3)

where Ei = {vi1, vi2, ..., vim}. An m-hypernetwork consists of a set V of vertices,
a subset E of V [m], and a set W of hyperedge weights, i.e. H = (V, E, W), where

300 B.-T. Zhang and J.-K. Kim

v5v5

v1v1

v3v3

v7v7

v2v2

v6v6

v4v4

G = (V, E)
V = {v1, v2, v3, …, v7}
E = {E1, E2, E3, E4, E5}
E1 = {v1, v3, v4}
E2 = {v1, v4}
E3 = {v2, v3, v6}
E4 = {v3, v4, v6, v7}
E5 = {v4, v5, v7}

E1

E4

E5

E2

E3

111E5

1

v7

1

1

v6v5v4v3v2v1

11E4

11E3

11E2

111E1

Incidence Matrix Hypergraph

Hyperedge of cardinality 3

Fig. 1. An example hypergraph consisting of seven vertices and five hyperedges of
variable cardinality. The hypernetwork can be represented a matrix, called an inci-
dence matrix, of m rows of hyperedges and n columns of vertices.

E = V [m] is a set of subsets of V whose elements have precisely m members.
A hypernetwork H is said to be k-uniform if every edge Ei in E has cardinality
k. A hypernetwork H is k-regular if every vertex has degree k. Note that an
ordinary graph is a 2-uniform hypernetwork with wi = 1.

We wish to store a data set D = {x(n)}N
n=1 in a hypernetwork so that they

can be retrieved later by content. x(n) denotes the n-th pattern to store. To do
this we require the hypernetwork to represent the probabilistic distribution of
the data. We define the energy of the hypernetwork

E(x(n); W) = −
∑
i1

w
(1)
i1

x
(n)
i1

− 1
2

∑
i1,i2

w
(2)
i1i2

x
(n)
i1

x
(n)
i2

(4)

−1
6

∑
i1,i2,i3

w
(3)
i1i2i3

x
(n)
i1

x
(n)
i2

x
(n)
i3

− ...

= −
K∑

k=1

1
k!

∑
i1,i2,...,ik

w
(k)
i1i2...ik

x
(n)
i1

x
(n)
i2

...x
(n)
ik

,

where W represents the parameters (hyperedge weights) for the hypernetwork
model. Note that x

(n)
i1

x
(n)
i2

...x
(n)
ik

is a combination of k components of the data
item x(n) which is represented as a k-hyperedge in the network. The probability
of the data being generated from the hypernetwork is then expressed as

P (x(n)|W) =
1

Z(W)
exp

[
−E(x(n); W)

]
(5)

=
1

Z(W)
exp

⎡
⎣ K∑

k=1

1
k!

∑
i1,i2,...,ik

w
(k)
i1i2...ik

x
(n)
i1

x
(n)
i2

...x
(n)
ik

⎤
⎦ ,

DNA Hypernetworks for Information Storage and Retrieval 301

where the normalizing term (known as the partition function in statistical
physics) is given as

Z(W) =
∑
x(m)

K∑
k=1

1
k!

∑
i1,i2,...,ik

w
(k)
i1i2...ik

x
(m)
i1

x
(m)
i2

...x
(m)
ik

. (6)

In effect, the hypernetwork represents a probabilistic model of the data set using
a collection of hyperedges and their weights.

3 Representing a Hypernetwork with DNA Molecules

Given two sets of data items, D = X = {x(n)|n = 1, ..., N} and Y = {y(n)|n =
1, ..., N}, where Y is a corrupted version of X . The goal is to store X in a
hypernetwork H in such a way that, given a corrupted data y(n), the original
data x(n) is recovered or a clean version of it is reconstructed.

This task is known as pattern completion or pattern restoration for which
content-addressing and associative capability is required, such as in the self-
organizing systems [8,13]. The Hopfield network is another model of content-
addressable memory [6]. Boltzmann machines and the Helmholtz machines [7]
are generalizations of the Hopfield model by introducing the hidden variables in
addition to the observable variables. All these models are based on the second-
order correlations of the data. Higher-order correlations are captured by intro-
ducing hidden variables, and no explicit use of higher-order terms are made.
There is, however, evidence that higher-order correlation terms are useful. The
hypernetwork model has the advantage that the higher-order correlation terms
can be directly represented by the hyperedges. For example, a 3-hypernetwork
encodes the memory using the third-order correlation terms made of combina-
tions of the input variables.

We now explain the method for representing the hypernetwork using DNA
molecules so that the networks can be built and maintained by molecular com-
putational operators. The idea is based on the observation that the hypernetwork
is a collection of hyperedges with duplicates allowed. Basically, the original data
are fragmented into a set of vertices, i.e. hyperedges, and maintained as a col-
lection of hyperedges or, equivalently, an incidence matrix. Then the hyperedges
are encoded as DNA strands. In effect, a hypernetwork is represented as a library
of DNA strands where duplicates are allowed. The procedure is schematically
illustrated in Figure 2.

To be more concrete, let us assume that we opted for a 3-hypernetwork
model. We generate all possible hyperedges V [3] = {E1 = {x1, x2, x3}, E2 =
{x1, x2, x4}, ..., E|V [3]| = {xn−2, xn−1, xn}} or some subset of it to initialize the
library. This results in a hypernetwork represented as a collection of hyperedges.
The number of possible hyperedges increases by 2k × nCk in the number n of
variables and the cardinality k of hyperedges. There should be some mechanism
to choose the right hyperedges or to penalize the growth of the model complexity
and we will study some of these issues in a later section.

302 B.-T. Zhang and J.-K. Kim

DNA
Molecular
Library

x8 x9

x12

x1
x2

x3

x4

x5

x6

x7
x10

x11

x13

x14

x15

x4 x10 y=1x1

x4 x12 y=1x1

x10 x12 y=1x4

x3 x9 y=0x2

x3 x14 y=0x2

x9 x14 y=0x3

x6 x8 y=1x3

x6 x13 y=1x3

x8 x13 y=1x6

�

�

�

�

�

�

�

x11 x15 y=0x8�

Hypernetwork of
DNA Molecules

Data Items

Fig. 2. General procedure for building a hypernetwork from a data set. From the data
items, higher-order correlation terms are extracted and represented as hyperedges
(with duplication allowed) which are then encoded as DNA strands. This library of
DNA molecules represents the hypernetwork where the weights are encoded as the
number of copies of the DNA molecules for hyperedges.

We use a similar method described in [12] to encode the hyperedge using a
DNA strand. Each vertex (i.e. the variable and its value) in the hyperedge is
encoded as a DNA sequence. For example, x1 = 0 is assigned a DNA codeword
‘TACAGG’, where ‘TACA’ is for variable x1 and ‘GG’ is for value ‘0’. In this
scheme, a hyperedge (x1 = 0, x3 = 1, x4 = 0) is represented as ‘TACAGG
CTACAA GCATGG’ assuming that x3 = ‘CTAC’, x4 = ‘GCAT’, and the value
1 is encoded as ‘AA’. Then the collection of DNA-encoded hyperedges represent
a hypernetwork of DNA molecules or a molecular hypernetwork.

4 Constructing a DNA Hypernetwork from Data

We now describe the procedure for building a molecular hypernetwork that fits
a given data set. The basic idea is, starting with a random network, to let the
network self-organize to learn the data as they are observed. The procedure is
illustrated in Figure 2. The hypernetwork is represented as a collection of hyper-
edges, and each hyperedge is encoded as a DNA molecule, as described in the
preceding section. The random k-uniform hypernetwork is then represented as a
collection (or library) L of hyperedges of cardinality k where the component vari-
ables of the hyperedge and the number of copies of the hyperedges are initialized
at random or according to some prior knowledge in the problem domain.

The procedure is summarized as follows:

– 1. Generate a library L of random hyperedges of cardinality k.
– 2. Get a pattern x. Generate the hyperedges of cardinality k from x (with

duplication permitted) into K.

DNA Hypernetworks for Information Storage and Retrieval 303

– 3. (Retrieval) Find the hyperedges of L matching to those of K with error
tolerance τ into M . Optionally (in case of multi-cycle retrieval), repeat this
step using M as K.

– 4. (Storage) Update L by L ← L + M + Copy(u) for hyperedge u ∈ M .
– 5. Go to step 2 if not terminated.

The library starts with a random collection of hyperedges of cardinality k
(Step 1). As a training pattern x = (x1, x2, ..., xn) is observed, we sample a
collection K of hyperedges from x (Step 2). The hyperedges are generated in
multiple copies where the component variables and the number of copies are cho-
sen at random. The library L and the hyperedge collection K from the example
are merged to find the matching hyperedges in L (Step 3). This can be done
by hybridizing the DNA encoded hyperedges in the two collections (this to be
effective, we encode the example hyperedges in complementary DNA sequences
to those for the library hyperedges). The matching hyperedges are then copied
by some rate, i.e Copy(u) for u ∈ M , and merged with the current library L to
update it (Step 4). The whole procedure is repeated for the next training pat-
tern (Step 5). Note that the procedure makes use of relatively simple molecular
operators such as selection, separation, and replication of DNA strands.

It is important to note that we allow error tolerance in this matching pro-
cess where the tolerance level τ is an algorithmic parameter. The error tolerance
parameter has several implications. First, it is useful to model the degree of un-
reliability of DNA hybridization reaction. Second, it is useful to control the gen-
eralization ability of the molecular hypernetwork memory, since the mismatches
have some effect of reducing the noises in raw data. A low error tolerance (allow-
ing only a small number of mismatches) might lead to overfitting while a high
error tolerance might result in unstable learning.

It can be shown that the storage process performs gradient search to find
maximum-likelihood parameters for the training data set. To see this, given a
set D = {x(n)}N

n=1 of n independently and identically distributed examples, we
consider the likelihood of the parameters W :

P (D|W) =
N∏

n=1

P (x(n)|W), (7)

where W consists of the weights or the number of copies of the hyperedges of
order k. Taking the logarithm of the likelihood we get

lnP (D|W) = ln
N∏

n=1

P (x(n)|W) (8)

=
N∑

n=1

⎧⎨
⎩
⎡
⎣ K∑

k=1

1
k!

∑
i1,i2,...,ik

w
(k)
i1i2...ik

x
(n)
i1

x
(n)
i2

...x
(n)
ik

⎤
⎦− lnZ(W)

⎫⎬
⎭ ,

where Eqn. (5) is used for P (x(n)|W). We take the derivative of the log-likelihood

304 B.-T. Zhang and J.-K. Kim

∇
∇w

(k)
i1,i2,...,ik

ln
N∏

n=1

P (x(n)|W) (9)

=
∇

∇w
(k)
i1,i2,...,ik

N∑
n=1

⎧⎨
⎩
⎡
⎣ K∑

k=1

1

k!

∑
i1,i2,...,ik

w
(k)
i1i2...ik

x
(n)
i1

x
(n)
i2

...x
(n)
ik

⎤
⎦ − lnZ(W)

⎫⎬
⎭

=
N∑

n=1

⎧⎨
⎩ ∇

∇w
(k)
i1,i2,...,ik

⎡
⎣ K∑

k=1

1

k!

∑
i1,i2,...,ik

w
(k)
i1i2...ik

x
(n)
i1

x
(n)
i2

...x
(n)
ik

⎤
⎦ − ∇

∇w
(k)
i1,i2,...,ik

ln Z(W)

⎫⎬
⎭

=
N∑

n=1

{
x
(n)
i1

x
(n)
i2

...x
(n)
ik

− 〈
xi1xi2 ...xik

〉
P (x|W)

}

= N
{〈

xi1xi2 ...xik

〉
Data

− 〈
xi1xi2 ...xik

〉
P (x|W)

}
, (10)

where the two terms in the last line are defined as

〈xi1xi2 ...xik
〉Data =

1
N

N∑
n=1

[
x

(n)
i1

x
(n)
i2

...x
(n)
ik

]
(11)

〈xi1xi2 ...xik
〉P (x|W) =

∑
x

[xi1xi2 ...xik
P (x|W)] . (12)

The learning rule (10) suggests that maximum-likelihood is achieved by reducing
the difference between the average frequencies of the hyperedges in the data set
and in the hypernetwork model, as was described above. The next section studies
the empirical behavior of this procedure under various experimental set-ups.

5 Simulation Results

We are interested in examining the system property of the hypernetworks in
storing and retrieving patterns. In particular, we ask the following questions:

– 1. What is the effect of cardinality of hyperedges on the retrieval perfor-
mance? Does increasing the cardinality help the correct retrieval or deterio-
rate it?

– 2. How tolerant is the hypernetwork model of associative memory against
the noise or corruption of data.

To study the above questions, we used a data set consisting of handwritten
numeral images. The original data came from Optical Recognition of Handwrit-
ten Digits in UCI machine learning repository1 and we preprocessed it into a
training set of 3760 examples of 8 × 8 bitmap. The process of image storage into
the hypernetwork proceeded as described in the preceding section. To see the
noise effect, another set of “corrupted” images was made by randomly toggling

1 ftp://ftp.ics.uci.edu/pub/machine-learning-databases/optdigits/

DNA Hypernetworks for Information Storage and Retrieval 305

Fig. 3. Pattern completion by the hypernetwork model of associative memory. (Left
column) The partial images given as input cues. (Right column) The corresponding
output images reconstructed from the inputs.

0 2 4 6 8 10
0

1

2

3

4

5

6

7

8

9

Corruption intensity

A
ve

ra
ge

 e
rr

or
 (

of

 m
is

m
at

ch
es

)

Cardinality 2
Cardinality 3
Cardinality 4

Fig. 4. The effect of cardinality k of hyperedges. Shown is the average error in image
reconstruction as a function of the corruption intensity for k = 2, 3, 4. The hypernet-
works with higher-cardinality hyperedges obtain better restoration performance than
the low-cardinality networks.

the pixels of the original images. We compared the image reconstruction perfor-
mances of k-uniform hypernetworks with varying k = 2, 3, 4, i.e., those consisting
of the hyperedges of cardinality k with associated weights. We also have run the
experiments by varying the level of error tolerance in matching between the
hyperedges from the input image and those maintained in the library.

Figure 3 shows the images completed from the partial input. In this task, im-
ages of numeral ‘6’ and ‘9’ have been stored into the hypernetwork. The network
recovers the appropriate patterns given partial contents as input cues. Figure 4
shows the effect of the cardinality parameter k on the associative recall of the
image. The restoration error was measured as the average number of mismatches
between the original image and the restored image. The results show that the
restoration errors for the hypernetworks of higher k were smaller than those of
lower k. It can be clearly seen that by increasing the cardinality of the hyper-
edges, the reconstruction error tends to decrease. This suggests the importance
of higher-order correlation terms in associative recall. In this experiment, we also

306 B.-T. Zhang and J.-K. Kim

1 2 3 4 5 6 7 8 9 10 11
0

2

4

6

8

10

12

14

Corruption intensity

A
ve

ra
ge

 e
rr

or
 (

of

 m
is

m
at

ch
es

)

tau 0
tau 1
tau 2
tau 3
tau 4

0 20 40 60 80 100
0

1

2

3

4

5

6

7

8

9

Amplification intensity

A
ve

ra
ge

 e
rr

or
 (

of

 m
is

m
at

ch
es

)

0
1
2
3
4
5
6
7
8
9
10

Corruption
intensity

Fig. 5. The effects of the error tolerance level (left) and the amplification intensity
(right). The left panel shows the stability of associative recall in the hypernetwork
model against mismatches in reaction. The right panel suggests that lower ampli-
fication intensities are more appropriate to achieve a good restoration performance
for slightly-corrupted data, while higher amplification intensities are not necessarily
harmful for highly corrupted data.

changed the corruption levels of the images, which is depicted on the x-axis. The
graph shows that the higher-order effect is especially clear when the corruption
level is low.

The effect of error tolerance level τ is shown in Figure 5(left). When the num-
ber of mismatches between an input pattern and a library element is 2 or less,
the library element was assumed to be matched and duplicated as if it were per-
fectly matched. This result shows that the performance is relatively unaffected
up to some critical tolerance level (in this experiment, τ = 2). However, as error
tolerance increases, the average error of recovery increases because of overgener-
alization. Since the error tolerance parameter indirectly reflects the unreliability
in molecular reaction, this shows a stability of the hypernetwork memory in this
setting of experimental parameters.

We also studied the effect of amplification intensity, i.e., the strength of learning
for an observed image. The curves in Figure 5(right) show that keeping the am-
plification rate small helps reduce the reconstruction error, especially when the
images have a low-level of corruption. However, when the images are highly cor-
rupted, a higher rate of amplification does not necessarily hurt the performance.

6 Conclusion

We have presented a hypernetwork-based molecular architecture which allows
for content-addressable storage and retrieval of patterns. The realization of this
architecture using DNA molecules is described, and an algorithm is presented
that automatically store data into and retrieve them from this architecture us-
ing massively parallel molecular operations. Simulation results demonstrate the
possibility of using this network for pattern completion and reconstruction, i.e.

DNA Hypernetworks for Information Storage and Retrieval 307

as associative memory devices. Due to lack of computing power for simulation,
we were not able to perform simulations on k-hypernetworks for hyperedge car-
dinality k ≥ 5. However, realized in DNA computers, we expect the molecular
computational method to scale up better than in silicon computers. Another
implication of the hypernetwork model is that it suggests an interesting new
application of DNA-based molecular computing where a vast number of DNA
molecules with short, not necessarily long, strands is useful.

Acknowledgements

This research was supported by the Ministry of Science and Technology (NRL), the
Science and Engineering Foundation (Korean-German Researcher Exchange Program),
and the Ministry of Industry and Commerce (MEC).

References

1. Baum, E. B., “Building an associative memory vastly larger than the brain,” Sci-
ence, 268:583-585, 1995.

2. Berge, C. Graphs and Hypergraphs, North-Holland Publishing, Amsterdam, 1973.
3. Chen, J. Deaton, R. and Wang, Y.-Z., “A DNA-based memory with in vitro learn-

ing and associative recall,” DNA9, LNCS 2943:145-156, 2004.
4. Chisvin, L. and Duckworth, R. J., “Content-addressable and associative memory:

Alternatives to the ubiquitous RAM,” IEEE Computer, 22(7): 51-64, 1989.
5. Garzon, M. Bobba, K. and Neel, A., “Efficiency and reliability of semantic retrieval

in DNA-based memories,” DNA9, LNCS 2943:157-169, 2004.
6. Hopfield, J., “Neurons with graded response have collective computational prop-

erties like those of two-state neurons,” Proc. Nat. Acad. Sci., 81:3088-3092, 1984.
7. Hinton, G. E. Dayan, P. Frey, B. J. and Neal, R. M. “The wake-sleep algorithm

for unsupervised neural networks,” Science, 268:1158-1161, 1995.
8. Kohonen, T. Content-Addressable Memories, Springer-Verlag, Berlin, 1980.
9. Paziamtzis, K. and Sheikholeslami, A., “A low-power content-addressable memory

(CAM) using pipelined hierarchical search scheme,” IEEE Journal of Solid-State
Circuits, 39(9):1512-1519, 2004.

10. Reif, J.H., LaBean, T.H., Pirrung, M., Rana, V.S., Guo, B., Kingsford, C., Wick-
ham, G.S., “Experimental construction of very large scale DNA databases with
associative search capability,” DNA7, LNCS 2340:231-247, 2002.

11. Thurber, K. J. and Wald, L. D. “Associative and parallel processors,” ACM Com-
puting Surveys, 7(4): 215-225, 1975.

12. Zhang, B.-T. and Jang, H.-Y., “A Bayesian algorithm for in vitro molecular evo-
lution of pattern classifiers,” DNA10, LNCS 3384:458-467, 2005.

13. Zhang, B.-T. Yang, J.-S., and Chi, S.-W., “Self-organizing latent lattice models
for temporal gene expression profiling,” Machine Learning, 52(1/2):67-89, 2003.

Abstraction Layers for
Scalable Microfluidic Biocomputers

William Thies1, John Paul Urbanski2,
Todd Thorsen2, and Saman Amarasinghe1

1 Computer Science and Artificial Intelligence Laboratory
2 Hatsopoulos Microfluids Laboratory
Massachusetts Institute of Technology

{thies, urbanski, thorsen, saman}@mit.edu

Abstract. Microfluidic devices are emerging as an attractive technol-
ogy for automatically orchestrating the reactions needed in a biological
computer. Thousands of microfluidic primitives have already been inte-
grated on a single chip, and recent trends indicate that the hardware
complexity is increasing at rates comparable to Moore’s Law. As in the
case of silicon, it will be critical to develop abstraction layers—such as
programming languages and Instruction Set Architectures (ISAs)—that
decouple software development from changes in the underlying device
technology.

Towards this end, this paper presents BioStream, a portable language
for describing biology protocols, and the Fluidic ISA, a stable interface
for microfluidic chip designers. A novel algorithm translates microflu-
idic mixing operations from the BioStream layer to the Fluidic ISA. To
demonstrate the benefits of these abstraction layers, we build two mi-
crofluidic chips that can both execute BioStream code despite significant
differences at the device level. We consider this to be an important step
towards building scalable biological computers.

1 Introduction

One of the challenges in biological computing is that the laboratory protocols
needed to carry out a computation can be very time consuming. For example, a
20-variable 3-SAT problem required 96 hours to complete [1], not counting the
considerable time needed for setup and evaluation. To automate and optimize
this process, researchers have turned to microfluidic devices [2,3,4,5,6,7,8,9,10].
Microfluidics offers the promise of a “lab on a chip” system that can individually
control picoliter-scale quantities of fluids, with integrated support for operations
such as mixing, storage, PCR, heating/cooling, cell lysis, electrophoresis, and
others [11,12,13]. Apart from being amenable to computer control, microfluidics
drastically reduces the volumes of samples, thereby reducing costs and improving
capture kinetics. Using microfluidics, DNA hybridization times can be reduced
from 24 hours to 4 minutes [10] and the number of bases needed to encode
information can be decreased from 15 bases per bit to 1 base per bit [1,8].

C. Mao and T. Yokomori (Eds.): DNA12, LNCS 4287, pp. 308–323, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Abstraction Layers for Scalable Microfluidic Biocomputers 309

Computational problem

Biology expert

Microfluidics expert

SAT formula
Max-clique graph

Biology protocol

DNA library, oligo generation
Concentrations of DNA, buffer, etc.
Selection and isolation steps

Microfluidic chip operations

Connectivity and control logic
Locations of inputs, fluids, beads, etc.
Calibration and timing

chip 1
2

3

Fig. 1. Abstraction layers for DNA computing

Thus has emerged a vision for creating a hybrid DNA computer: one that
uses microfluidics for the plumbing (the control paths) and biological primitives
for the computations (the ALUs). On the hardware side, this vision is becom-
ing scalable: microfluidic chips have integrated up to 3,574 valves with 1,000
individually-addressable storage chambers [14]. Moreover, recent trends indicate
that microfluidics is following a path similar to Moore’s law, with the number
of soft-lithography valves per unit area doubling every 4.5 months [15].

On the software side, however, the microfluidic realm is lagging far behind its
silicon counterpart. For silicon computers, the complexity and scale of the under-
lying hardware is masked by a set of well-defined abstraction layers. For exam-
ple, transistors are organized into gates, which combine to form functional units,
which together can implement an Instruction Set Architecture (ISA). The user
operates at an even higher level of abstraction (e.g., C++), which is automat-
ically translated into the ISA. These abstraction layers have proven critical for
managing complexity. Without them, the computing field would have stagnated
as every researcher tried to gain a transistor-level understanding of his machine.

Unfortunately, the current practice in experimental microfluidics is to expose
all of the hardware resources directly to the experimentalist. Using a graphical
system such as Labview, the user orchestrates the individual behavior of each
valve in the microfluidic device. While this practice is merely tedious for today’s
devices, it will soon become completely intractable—akin to programming a
modern microprocessor by directly toggling each of a million gates.

In this paper, we present a system and methodology that uses new abstraction
layers for scalable biological computing. As illustrated in Figure 1, our system
consists of three layers. At the highest level, the programmer indicates the ab-
stract computation to be performed—for example, in the form of a SAT formula.
With some expertise in DNA computing and experimental biology, the compu-
tation can be transformed to the next layer: a portable biological protocol for

310 W. Thies et al.

performing the computation. The protocol is portable in that it does not de-
pend on the physical implementation of the protocol; for example, it specifies
fluid concentrations but not fluid volumes. Finally, the bottom layer specifies the
operations needed to execute the protocol on a specific microfluidic chip. Each
microfluidic chip designer provides a library that translates an abstract protocol
into the specific sequence of valve actuations needed to execute that protocol on
a specific chip.

These abstraction layers provide many benefits. Primarily, by using an ar-
chitecture-independent description of the biological protocol (the middle layer),
the application development can be decoupled from advances in the underlying
device technology. Thus, as microfluidic devices come to support additional in-
puts, mixers, storage cells, etc., the existing suite of protocols can run without
modification (much as C programs run without modification on successive gener-
ations of microprocessors). In addition, the protocol layer serves as a division of
labor. Rather than requiring a heroic and brittle translation from a SAT formula
directly to a microfluidic chip, a biologist provides a mapping to the abstract
protocol while a microfluidics expert maps the protocol to the underlying device.
The abstract protocol is also perfectly suited to simulation, thereby allowing the
logical operations to be verified without relying on any physical implementation.
Further, a portable protocol description could serve the role of pseudocode in
technical publications, providing a precise account of the experimental meth-
ods used. Third-party protocols could be downloaded and executed (or called as
sub-routines) on one’s own microfluidic device.

In the long term, the protocol description language will support all of the op-
erations needed for biological computing. However, as there does not yet exist a
single microfluidic device that can encompass all the functionality (preparation
of DNA libraries, selection, readout, etc.), this paper focuses on three funda-
mental primitives: fluid mixing, fluid transport, and fluid storage. We describe a
programming system called BioStream (Section 2) that provides an architecture-
independent interface for these operations. To show that BioStream is portable,
we execute BioStream code on two fundamentally different microfluidic archi-
tectures (Section 3). We also present a novel algorithm for mixing fluids to a
given concentration using the minimal number of simple on-chip mixing steps
(Section 4). Our system represents a fully-functional, end-to-end demonstration
of portable software on microfluidic hardware.

2 BioStream Protocol Language

We have developed a software system called BioStream for portable microflu-
idics protocols. BioStream is a Java library that virtualizes many aspects of the
underlying hardware resources. While BioStream can be targeted by a compiler
(for example, a DNA computing compiler that converts a mathematical prob-
lem into a biological protocol), it is also suitable for direct programming and
experimentation by biologists. As such, the language provides several high-level
abstractions to improve readability and programmer productivity.

Abstraction Layers for Scalable Microfluidic Biocomputers 311

 BioStream Library

// mix fluids in arbitrary proportions
Fluid mix(Fluid[] f, double[] c);
// set precision of mixing operations
void setPrecision(double precision);
// wait for a period before proceeding
void waitFor(long seconds);

[native functions with Fluid arguments]

Microfluidic Device Microfluidic Simulator

 Library
Generator

Generate a
BioStream

Library for an
architecture.

 Simulator
Generator

Generate a
simulated

backend for an
architecture.

 Fluidic Instruction
 Set Architecture (ISA)

// mix two fluids in equal proportions
void mixAndStore(Location src1,
 Location src2,
 Location dst)

[native functions with Location arguments]

 Protocol Code

Portable between microfluidic chips
supporting architecture requirements.

Declares native functions such as
I/O, sensors, agitators. For example:
 Fluid input(Integer i);
 Double camera(Fluid i);

 Architecture Requirements

Implemented by

Hardware
Developers

Implemented by

BioStream

Implemented by

Protocol
Developers

Fig. 2. Abstraction layers in the BioStream system

2.1 Providing Portability

As shown in Figure 2, BioStream offers two levels of abstraction underneath the
protocol developer. The first abstraction layer is the BioStream library, which
provides first-class Fluid objects to represent the physical fluids on the chip.
The programmer deals only with Fluid variables, while the runtime system au-
tomatically assigns and tracks the location of the corresponding fluids on the
device. The library also supports a general mix operation for combining Fluids
in arbitrary proportions and with adjustable precision.

The second abstraction layer, the Fluidic Instruction Set Architecture (ISA),
interfaces with the underlying hardware. The fundamental operation is mixAnd-
Store, which mixes two fluids in equal proportions and stores the result in a
destination cell. (We describe how to translate the flexible mix operations in
BioStream to a series of equal-proportion mixes in Section 4.) As all storage
cells on the chip have unit volume, only one unit of mixture is stored in the
destination; any leftover mixture may be discarded. As detailed in Section 3, this
allows for a flexible implementation of mixAndStore on diverse architectures.

In addition to the abstractions for mixing, there are some architecture-specific
features that need to be made available to the programmer. These “native

312 W. Thies et al.

functions” include I/O devices, sensors, and agitators that might not be sup-
ported by every chip, but are needed to execute the program; for example, spe-
cial input lines, cameras, or heaters. As shown in Figure 2, BioStream supports
this functionality by having the programmer declare a set of architecture require-
ments. BioStream uses the requirements to generate a library which contains the
same functionality; it also checks that the architecture target supports all of the
required functions. Finally, BioStream includes a generic simulator that inputs a
set of architecture requirements and outputs a virtual machine that emulates the
architecture. This allows full protocol development and validation even without
hardware resources.

The BioStream system is fully implemented. The reflection capabilities of
Java are utilized to automatically generate the library and the simulator from
the architecture requirements. As described in Section 3, we also execute the
Fluidic ISA on two real microfluidic chips.

2.2 Example Protocol

An example of a BioStream protocol appears in Figure 3. This is a general
program that seeks to find the ratio of two reagents that leads to the highest
activity in the presence of a given indicator. Experiments of this sort are common
in biology. For example, the program could be applied to investigate the roles
of cytochrome-c and caspase 8 in activating apoptosis (cell death); cell lysate
would serve as the indicator in this experiment [16]. The protocol uses feedback
from a luminescence detector to guide the search for the highest activity. After
sampling some concentrations in the given range, it descends recursively and
narrows the range for the next round of sampling. Using self-directed mixing, a
high precision can be obtained after only a few rounds.

The recursive descent program declares a SimpleLibrary interface (see bot-
tom of Figure 3) describing the functionality required on the target architec-
ture. In this case, a camera is needed to detect luminescence. While we have not
mounted a camera on our current device, it would be straightforward to do so.

2.3 Automatic Fluid Regeneration

A distinguishing feature of BioStream code is the use of Fluid variables to rep-
resent samples on the device. The challenge in implementing this functionality
is that physical fluids can be used only once, as they are consumed in mixtures
and reactions. However, the programmer might reference a Fluid variable multi-
ple times (e.g., variables A and B in the recursive descent example). BioStream
supports this behavior by keeping track of how each Fluid was generated and
automatically regenerating Fluids that are reused. This process assumes that
the original steps employed to generate a Fluid (input, mixing, agitation, etc.)
will produce an equivalent Fluid if repeated. While this assumption is a natural
fit for protocols depending only on the concentrations of reagents, there are also
non-deterministic systems (such as directed evolution of cells) to which it does
not apply. We leave full consideration of such systems for future work.

Abstraction Layers for Scalable Microfluidic Biocomputers 313

 // The Recursive Descent protocol recursively
// zooms in on the ratio of fluids A and B that
// has the highest activity. It requires the
// following setup in the laboratory:

import biostream.library.*; // - input(0) -- fluid A
// - input(1) -- fluid B

public class RecursiveDescent { // - input(2) -- luminescent activity indicator

public static void main(String[] args) { // Initialize the backend to use (for example,
 String backend = args[0]; // an actual chip or a microfluidic simulator)

 // based on command-line input.
 SimpleLibrary lib =
 (SimpleLibrary)LibraryFactory. // Create an interface to the backend using the
 buildLibrary("SimpleLibrary", args[0]); // native functions declared in SimpleLibrary.
 run(lib);

 }

private static void run(SimpleLibrary lib) { // Perform the protocol:
 int ROUNDS = 10; int SAMPLES = 5; // Set number of rounds and samples per round.

 Fluid A = lib.input(new Integer(0)); // Assign names to the input fluids.
 Fluid B = lib.input(new Integer(1));
 Fluid indicator = lib.input(new Integer(2));

 double center = 0.5, radius = 0.5; // Initialize center, radius of concentration range.

 for (int i=0; i<ROUNDS; i++) { // Repeat for a number of rounds:
 lib.setPrecision(0.1*(2*radius)/ SAMPLES); // Set absolute mixing precision to 10X
 // more than the granularity of sampling.
 double bestActivity = -1; int bestJ = -1;
 for (int j=1; j<SAMPLES; j++) { // Repeat across concentrations in range:

 double target = center+radius* // Obtain sample of the
 (1-2*(double)j/SAMPLES); // target concentration.
 Fluid sample = lib.mix(A, target, B, 1-target);

 Fluid test = lib.mix(indicator, 0.9, sample, 0.1); // Mix sample with indicator,
 lib.wait(30); // wait, and measure activity.
 double act = lib.luminescence(test).doubleValue();

 if (act > bestActivity) // Remember highest activity.
 bestActivity = act; bestJ = j;
 }

 center = center+radius*(1-2*(double)bestJ/SAMPLES); // Zoom in by factor of 2 around best activity.
 radius = radius / 2;

 if (center < radius) center = radius; // If needed, move center away from boundary.
 if (center > 1-radius) center = 1-radius;
 }
 }
 System.out.println("Best activity: “ + center); // Print concentration yielding highest activity.
}

interface SimpleLibrary extends FluidLibrary { // Declare devices needed by RecursiveDescent:
Fluid input(Integer i); // Require array of fluid inputs.
Double luminescence(Fluid f); // Require luminescence camera.

}

Fig. 3. Recursive descent search in BioStream

314 W. Thies et al.

Table 1. Key properties of the microfluidic chips developed. Chip 1 provides better
isolation and retention of samples, while Chip 2 offers faster and simpler operation.

Driving Wash Mixing Sample Inputs Storage Valves Control
fluid fluid size cells lines

Chip 1 oil N/A rotary mixer half of mixer 2 8 46 26
Chip 2 air water during transport full mixer 4 32 140 21

The regeneration mechanism works by associating each Fluid object with the
name and arguments of the function that created it. The creating function must
be a mix operation or a native function, both of which are visible to BioStream
(the Fluid constructor is not exposed). BioStream maintains a valid bit for each
Fluid, which indicates whether or not the Fluid is stored in a storage chamber
on the chip. By default, the bit is true when the Fluid is first created, and it is
invalidated when the Fluid is used as an argument to a BioStream function. If
a BioStream function is called with an invalid Fluid, that Fluid is regenerated
using its history. Note that this regeneration mechanism is fully dynamic (no
analysis of the source code is needed) and is accurate even in the presence of
pointers and aliasing.

The computation history created for Fluids can be viewed as a dependence
tree with several interesting applications. For example, the library can execute a
program in a demand-driven fashion by initializing each Fluid to an invalid state
and only generating it when it is used by a native function. Dynamic optimiza-
tions such as these are especially promising for microfluidics, as the silicon-based
control processors operate much faster than their microfluidic counterparts.

3 Microfluidic Implementation

To demonstrate an end-to-end system, we have designed and fabricated two mi-
crofluidic chips using a standard multi-layer soft lithography process [13]. While
there are fundamental differences between the chips (see Table 1), both provide
support for programmable mixing, storage, and transport of fluid samples. More
specifically, both chips implement the mixAndStore operation in the Fluidic ISA:
they can load two samples from storage, mix them together, and store the re-
sult. Thus, despite their differences, code written in BioStream will be portable
between the chips.

The first chip (see Figure 4) isolates fluid samples by suspending them in
oil [17]. To implement mixAndStore, each input sample is transported from a
storage bin to one side of the mixer. The mixer uses rotary flow, driven by
peristaltic pumps, to mix the samples to uniformity [18]. Following mixing, one
half of the mixer is drained and stored in the target location. While the second
half could also be stored, it is currently discarded, as the basic mixAndStore
abstraction produces only one unit of output.

The second chip (see Figure 5) isolates fluid samples using air instead of oil.
Because fluid transport is very rapid in the absence of oil, a dedicated mixing
element is not needed. Instead, the input samples are loaded from storage and

Abstraction Layers for Scalable Microfluidic Biocomputers 315

Control Layer

Input 1

Input 2

Oil

Mixer

WasteWaste

Flow Layer 5 mm

Storage Cells

Inputs

Mixer
Waste Waste

Storage Cells

Fig. 4. Layout and photo of Chip 1 (driven by oil)

Waste

Air

Inputs

Water

Vent

Storage Cells

Metering

Inputs Metering Waste

Storage Cells

Fig. 5. Layout and photo of Chip 2 (driven by air)

aligned in a metering element; when the element is drained, the samples are
mixed during transport to storage. Because the samples are in direct contact
with the walls of the flow channels, a small fraction of the sample is lost during
transport. This introduces the need for a wash phase, to clean the channel walls
between operations. Also, to maintain sample volumes, the entire result of mixing
is stored. Any excess volume is discarded in future mixing operations, as the
metering element has fixed capacity.

To demonstrate BioStream’s portability between these two chips, consider the
following code, which generates a gradient of concentrations:

Fluid blue = input(1);

Fluid yellow = input(2);

Fluid[] gradient = new Fluid[5];

for (int i=0; i<=4; i++) {

gradient[i] = mix(blue, yellow, i/4.0, 1-i/4.0);

}

This code was used to generate the gradient pictured in Figure 4 and produces
an identical result on both microfluidic devices. (The gradient shown in Figure 5
is different and was generated by a different program.)

316 W. Thies et al.

4 Mixing Algorithms

The mixing and dilution of fluids plays a fundamental role in almost all bio-
analytical procedures. Mixing is used to prepare input samples for analysis, to
dilute concentrated substances, and to control reagent volumes. In DNA comput-
ing, mixing is needed for reagent preparation (e.g., DNA libraries, PCR buffers,
detection assays) and, in some techniques, for restriction digests [19,20] or fine-
grained concentration control [21]. It is critical to provide integrated support for
mixing on microfluidic devices, as otherwise the samples would have to leave the
system every time a mixture is needed.

As described in the previous sections, our microfluidic chips support the
mixAndStore instruction from the Fluidic ISA. This operation simply mixes
two fluids in equal proportions. However, the mix command in BioStream allows
the programmer to specify complex mixtures involving multiple fluids in vari-
ous concentrations. To bridge the gap between these abstractions, this section
describes how to obtain a complex mixture using a series of simple steps. We
describe an abstract model for mixing, an algorithm for minimizing the number
of steps required, and how to deal with error tolerances.

4.1 A Model of Mixing

The following definition gives our notation for mixtures.

Definition 1. A mixture M is a set of substances Si at given concentrations
ci:

M = {〈S1〉c1 . . . 〈Sk〉ck}∑k
i=1 ci = 1

For example, a mixture of 3/4 buffer and 1/4 reagent is denoted as {〈buffer〉3/4,
〈reagent〉1/4}. We further define a sample to be a mixture with only one sub-
stance (|M| = 1). For example, a sample of buffer is denoted {〈buffer〉1}, or just
〈buffer〉.

To obtain a given mixture on a microfluidic chip, one performs a series of
mixes using an on-chip mixing primitive. While the capabilities of this mixer
might vary from one chip to another, a simple 1-to-1 mixing model can be
implemented on both continuous flow and droplet-based architectures [18,22].
In this model, all fluids are stored in uniform chambers of unit volume. The
mix operation combines two fluids in equal proportions, producing two units of
the mixture. However, since there may be some amount of fluid loss with every
operation, the result of the mixture might not be able to completely fill the
contents of two storage cells. Thus, the result is stored in only one storage cell,
and the extra mixture is discarded.

The 1-to-1 mixing process can be visualized using a “mixing tree”. As de-
picted in Figure 6, each leaf node of a mixing tree represents a sample, while
each internal node represents the mixture resulting from the combination of its
children. Figure 7 illustrates that the mixture at an internal node can be calcu-
lated as the arithmetic mean of the components in child mixtures. In the 1-to-1

Abstraction Layers for Scalable Microfluidic Biocomputers 317

reagentbuffer

2

1

reagent,,

2

1

buffer,buffer

4

1

reagent,,

4

3

buffer,

Fig. 6. Mixing tree yielding 3/4
buffer and 1/4 reagent

y,B...y,B x,A... x,A

yx

2

1

zwhere

...,z,C...,

kk11kk11

CBs.t.j

j

CAs.t.j

ji

ii

ijij

Fig. 7. Calculation of a parent mixture from
child mixtures using a 1-to-1 mixer. For each
substance, the resulting concentration is the av-
erage of the concentrations in the children.

model, mixing trees are binary trees because each mix operation has two inputs.
Evaluation of the tree proceeds from the leaf nodes upwards; the mixture for a
given node can be produced once the child mixtures are available. The overall
result of the operation is the mixture specified at the root node.

The following theorem is useful for reasoning about mixing trees. It describes
the concentration of a substance in the overall mixture based on the depths of
leaf nodes containing samples of the substance. The depth of a node n in a binary
tree is the length of the path from the root node to n.

Theorem 1. Consider a mixing tree and a substance S. Let md denote the
number of leaf nodes with sample 〈S〉 appearing at depth d of the tree. Then the
concentration of S contained in the root mixture is given by

∑
d md ∗ 2−d.

Proof. A sample at depth d is diluted d times in the mixing process, each time
by a factor of two. Thus it contributes 2−d to the root mixture. Since each mix
operation sums the concentrations from child nodes, the overall contribution is
the sum across the leaf nodes at all depths:

∑
d md ∗ 2−d. ��

The following theorem describes the set of mixtures that can be obtained using
a 1-to-1 mixer. Informally, it states that a mixture is reachable if and only if the
concentration of each substance can be written as an integral fraction k/2d.

Theorem 2. (1-to-1 Mixing Reachability) Consider a finite set of substances
{S1 . . . Sk} with an unlimited supply of samples 〈Si〉. Let R denote the set of
mixtures that can be obtained via any sequence of 1-to-1 mixes. Then:

R =

⎧⎨
⎩

{〈S1〉c1 . . . 〈Sk〉ck} s.t. ∃ pi, qi, d ∈ Z :

LCM(q1 . . . qk) = 2d ∧ ∀i ∈ [1, k] : ci =
pi

qi

⎫⎬
⎭

Proof. Available in an extended version of this paper [23].

318 W. Thies et al.

It is natural to suggest a number of optimization problems for mixing. Of par-
ticular interest are the number of mixes and the number of samples consumed,
as these directly impact the running time and resource requirements of a labo-
ratory experiment. The following theorem shows that (under the 1-to-1 model)
these two optimization problems are equivalent.

Theorem 3. In any 1-to-1 mixing sequence, the number of samples consumed
is exactly one greater than the number of mixes.

Proof. By induction on the number of nodes, there is always exactly one more
leaf node than internal node in a binary tree. The mixing tree is a binary tree
in which each internal node represents a mix and each leaf node represents a
sample. Thus there is always exactly one more sample consumed than there are
mixes. ��
Note that this theorem only holds under the 1-to-1 mixing model, in which two
units of volume are mixed but only one unit of the mixture is retained. For
microfluidic chips that attempt to retain both units of mixture (such as droplet-
based architectures or our oil-driven chip), it might be possible to decrease the
number of samples consumed by increasing the number of mix operations.

4.2 Algorithm for Optimal Mixing

In this section, we give an efficient algorithm for finding a mixing tree that
requires the minimal number of mixes to obtain a given concentration. For clarity,
we frame the problem as follows:

Problem 1. (Minimal Mixing) Consider a finite set of substances {S1 . . . Sk}
with an unlimited supply of samples 〈Si〉. Given a reachable mixture {〈S1〉p1/n
. . . 〈Sk〉pk/n}, what is the mixing tree with the minimal number of leaves?

Our algorithm runs in O(k lg n) time1 and produces an optimal mixing tree (with
respect to this metric). The tree produced has no more than k lg n internal nodes.

The idea behind the algorithm, which we refer to as Min-Mix, is to place
a leaf node with sample 〈S〉 at depth d in the mixing tree if and only if the
target concentration for S has a 1 in bit lg n − d of its binary representation.
Theorem 1 then ensures that all substances have the desired concentrations,
while fewer than lg n samples are used for each one.

Psuedocode for Min-Mix appears in Figure 8. We illustrate its operation for
the example mixture of {〈A〉5/16, 〈B〉4/16, 〈C〉7/16}. As shown in Figure 9,
the algorithm begins with a pre-processing stage that allocates substances to
bins according to the binary representation of the target concentrations. It then
builds the mixing tree via calls to Min-Mix-Helper, which descends through
the bins. When a bin is empty, an internal node is created in the graph and the
procedure recurses into the next bin. When a bin has a substance identifier in
it, the substance is removed from the bin and a corresponding sample is added
1 lg n denotes log2n.

Abstraction Layers for Scalable Microfluidic Biocomputers 319

node Min-Mix
(mixture { 〈S1, p1 / n〉, ..., 〈Sk, pk / n〉 }) {

 depth = lg(n)
 bins = new stack[depth+1]
 // pre-processing: build a stack of the
 // bitwise components of each concentration
 for i = 1 to k
 mask = 1
 for j = 0 to depth-1
 if (mask & pi ≠≠ 0) then
 bins[j].push(Si)
 endif
 mask = mask << 1
 endfor
 endfor
 return buildMixingHelper(bins, depth)
}

node Min-Mix-Helper (stack[] bins, int pow) {
 if bins[pow].empty() then
 node child1 = Min-Mix-Helper(bins,

 node child2 = Min-Mix-Helper(bins,

 return 〈child1, child2〉 as internal node
 else
 return bins[pow].pop() as leaf node
 endif
}

 pow-1)

 pow-1)

Fig. 8. Min-Mix algorithm

bin 2bin 5A 4B 7C
4 16
3 8
2 4 A B C
1 2 C
0 1 A C

C

C B A

C A

4-C

3-A 2-B 1-C

5-C 6-A

(a)

(b) (c)

Fig. 9. Example operation of Min-
Mix for the mixture {〈A〉5/16,
〈B〉4/16, 〈C〉7/16}. Part (a) illus-
trates the algorithm’s allocation of
substances to bins. The bin layout
directly translates to a valid mixing
tree, which appears in (b) with num-
bers indicating the order in which
nodes are added to the tree. The mix-
ing tree is redrawn in (c) for clarity.

as a leaf node to the graph. Figure 9 labels the order in which the nodes in the
final mixing tree are created by the algorithm.

The following lemma is key to proving the correctness of Min-Mix. We denote
the nth least significant bit of x by LSB(x, n). That is, LSB(x, n) ≡ (x � n) & 1.

Lemma 1. Consider the mixing tree t produced by Min-Mix({〈S1〉p1/n . . .
〈Sk〉pk/n}). A substance Si appears at a depth d in t if and only if LSB(pi, lg n−
d) = 1.

Proof. If: It suffices to show that there is a substance added to the mixing tree
for each LSB of 1 drawn from the pi (that the substance appears at depth d is
given by the only if direction.) Further, since bins[j] is constructed to contain
all substances i for which LSB(pi, j) = 1, it suffices to show that a) all bins are
empty at the end of the procedure, and b) the procedure does not try to pop
from an empty bin. To show (a), use the invariant that each call to Min-Mix-
Helper adds a total of 2−d to the mixing tree, where d is the current depth;

320 W. Thies et al.

either a leaf node is added (which contributes 2−d by Theorem 1) or two child
nodes are added, contributing 2∗ 2−(d+1) = 2−d. But since the initial depth is 0,
the external call results in 20 = 1 unit of mixture being generated. Since the bins
represent exactly one unit of mixture (i.e.,

∑
j bins[j] ∗ 2−j = 1), all bins will be

used. To show (b), observe that Min-Mix references the bins in order, testing if
each is empty before proceeding. Thus no empty bin will ever be dereferenced.

Only if: When a substance is added to the tree from bins[j], it appears at
depth lg n − j in the tree. This is evident from the recursive call in Min-Mix-
Helper: it initially draws from bins[lg n] and then works down when the up-
per bins are empty. By construction, bins[j] contains only substances Si with
LSB(pi, j) = 1. Thus, if Si appears at depth d in the mixing tree, it was added
from bins[lg n − d] which has LSB(pi, lg n − d) = 1. ��
The following theorem asserts the correctness of Min-Mix.

Theorem 4. The mixing tree given by Min-Mix gives the correct concentration
for each substance in the target mixture.

Proof. Consider a component 〈S〉p/n of the mixture passed to Min-Mix. Let
md denote the number of leaf nodes with sample S at depth d of the resulting
mixing tree. By Lemma 1, md = LSB(p, lg(n)−d). Using Theorem 1, this implies
that the concentration for S in the root mixture is given by:

c =
∑

d LSB(p, lg(n) − d) ∗ 2−d

=
∑

x LSB(p, x) ∗ 2−(lg(n)−x)

=
∑

x LSB(p, x) ∗ 2x/n

= p/n

Thus the concentration in the root node of the mixing tree is the same as that
passed to Min-Mix. ��
The Min-Mix algorithm requires O(k lg n) time to find a mixing tree for mixture
({〈S1〉p1/n . . . 〈Sk〉pk/n}). The resulting mixing tree is optimal in that there
does not exist a mixing tree that yields the same concentration using fewer mixes.
Proofs of these properties are available in an extended version of this paper [23].

4.3 Supporting Error Tolerances

Thus far the presentation has been in terms of mixtures that can be obtained
exactly with a 1-to-1 mixer, i.e., those with target concentrations in the form of
k/2d. However, the programmer should not be concerned with the reachability
of a given mixture.

In the BioStream system, the programmer specifies a concentration range
[cmin, cmax] and the system ensures that the mixture produced will fall within
the given range2. Such error tolerances are already a natural aspect of scientific
2 Alternately, BioStream supports a global error tolerance ε that applies to all con-

centrations.

Abstraction Layers for Scalable Microfluidic Biocomputers 321

experiments, as all measuring equipment has a finite precision that is carefully
noted as part of the procedure. Given a concentration range, the system increases
the internal precision d until some concentration k/2d (which can be obtained
exactly) falls within the range.

5 Related Work

Several researchers have pursued the goal of automating the control systems
for microfluidic chips. Gascoyne et al. describe a graphical user interface for
controlling chips that manipulate droplets over a two-dimensional grid [24]. By
varying parameters in the interface, the software can target grids with varying
dimensions, speeds, etc. However, portability is limited to grid-based droplet
processors. While the BioStream protocol language could target their chips, their
software is not suitable for targeting ours.

Su et al. represent protocols as acyclic sequence graphs and map them to
droplet-based processors using automatic scheduling [25] and module place-
ment [26]. While the sequence graph is portable, it lacks the expressiveness of
a programming language and cannot represent feedback loops (as in our recur-
sive descent example). King et al. demonstrate a “robot scientist” that directs
laboratory experiments using a high-level programming language [27], but lacks
the abstraction layers needed to target other devices. Gu et al. have controlled
microfluidic chips using programmable Braille displays [28], but protocols are
mapped to the chip by hand.

Johnson demonstrates a special-purpose robotic system (controlled by Lab-
view) that automatically solves 3-SAT problems using DNA computing [29].
Miniaturizing his benchtop devices could result in a fully-automatic microfluidic
biocomputer. Livstone et al. compile an abstract SAT problem into a sequence
of DNA-computing steps [5]. The output of their system would be a good match
for BioStream and the abstraction layers proposed in this paper.

There are other microfluidic chips that support flexible gradient generation
[30,31,32] and programmable mixing on a droplet array[33]. To the best of our
knowledge, our chips are the only ones that provide arbitrary mixing of discrete
samples in a soft lithography medium. A more detailed comparison of the devices
is published elsewhere [17].

Fair et al. also suggest a mixing algorithm for diluting a single reagent by
a given factor [34]. It seems that their algorithm performs a binary search for
the target concentration, progressively approximating the target by a factor of
two. However, since intermediate reagents must be regenerated in the search,
this algorithm requires O(n) mixes to obtain a concentration k/n. In contrast,
our algorithm needs O(lg n) to mix two fluids.

6 Conclusions

Microfluidic devices are an exciting substrate for biological computing because
they allow precise and automatic control of the underlying biological protocols.

322 W. Thies et al.

However, as the complexity of microfluidic hardware comes to rival that of
silicon-based computers, it will be critical to develop effective abstraction layers
that decouple application development from low-level hardware details.

This paper presents two new abstraction layers for microfluidic biocomputers:
the BioStream protocol language and the Fluidic ISA. Protocols expressed in
BioStream are portable across all devices implementing a given Fluidic ISA. We
demonstrate this portability by building two fundamentally different microfluidic
devices that support execution of the same BioStream code. We also present a
new and optimal algorithm for obtaining a given concentration of fluids using a
simple on-chip mixing device. This algorithm is essential for efficiently supporting
the mix abstraction in the BioStream language.

It remains an interesting area of future work to leverage DNA computing
technology to target the BioStream language from a high-level description of the
computation. This will create an end-to-end platform for biological computing
that is seamlessly portable across future generations of microfluidic chips.

Acknowledgements

We are grateful to David Wentzlaff and Mats Cooper for early contributions
to this research. We also thank John Albeck for helpful discussions about ex-
perimental protocols. This work was supported by National Science Foundation
grant #CCF-0541319. J.P.U. was funded in part by the National Science and
Engineering Research Council of Canada (PGSM Scholarship).

References

1. Braich, R.S., Chelyapov, N., Johnson, C., Rothemund, P.W.K., Adleman, L.: So-
lution of a 20-variable 3-SAT problem on a DNA computer. Science 296 (2002)

2. Farfel, J., Stefanovic, D.: Towards practical biomolecular computers using mi-
crofluidic deoxyribozyme logic gate networks. In: DNA 11. (2005)

3. Gehani, A., Reif, J.: Micro flow bio-molecular computation. Biosystems 52 (1999)
4. Grover, W.H., Mathies, R.A.: An integrated microfluidic processor for single nu-

cleotide polymorphism-based DNA computing. Lab on a Chip 5 (2005)
5. Livstone, M.S., Weiss, R., Landweber, L.F.: Automated design and programming

of a microfluidic DNA computer. Natural Computing (2006)
6. McCaskill, J.S.: Optically programming DNA computing in microflow reactors.

BioSystems 59 (2001)
7. Somei, K., Kaneda, S., Fujii, T., Murata, S.: A microfluidic device for DNA tile

self-assembly. In: DNA 11. (2005)
8. van Noort, D.: A programmable molecular computer in microreactors. In: DNA

11. (2005)
9. van Noort, D., Gast, F.U., McCaskill, J.S.: DNA computing in microreactors. In:

DNA 8. (2002)
10. van Noort, D., Zhang, B.T.: PDMS valves in DNA computers. In: SPIE Interna-

tional Symposium on Smart Materials, Nano-, and Micro-Smart Systems. (2004)
11. Breslauer, D.N., Lee, P.J., Lee, L.P.: Microfluidics-based systems biology. Molec-

ular BioSystems 2 (2006)

Abstraction Layers for Scalable Microfluidic Biocomputers 323

12. Erickson, D., Li, D.: Integrated microfluidic devices. Anal. Chim. Acta 507 (2004)
13. Sia, S.K., Whitesides, G.M.: Microfluidic devices fabricated in

poly(dimethylsiloxane) for biological studies. Electrophoresis 24 (2003)
14. Thorsen, T., Maerkl, S., Quake, S.: Microfluidic large scale integration. Science

298 (2002)
15. Hong, J.W., Quake, S.R.: Integrated nanoliter systems. Nature BioTechnology

21(10) (2003)
16. Allan, L., Morrice, N., Brady, S., Magee, G., Pathak, S., Clarke, P.: Inhibition

of caspase-9 through phosphorylation at Thr 125 by ERK MAPK. Nature Cell
Biology 5 (2003)

17. Urbanski, J.P., Thies, W., Rhodes, C., Amarasinghe, S., Thorsen, T.: Digital
microfluidics using soft lithography. Lab on a Chip 6 (2006)

18. Chou, H., Unger, M., Quake, S.: A microfabricated rotary pump. Biomedical
Microdevices 3 (2001)

19. Faulhammer, D., Cukras, A.R., Lipton, R.J., Landweber, L.F.: Molecular compu-
tation: RNA solutions to chess problems. PNAS 97(4) (2000)

20. Ouyang, Q., Kaplan, P.D., Liu, S., Libchaber, A.: DNA solution of the maximal
clique problem. Science 278 (1997)

21. Yamamoto, M., Matsuura, N., Shiba, T., Kawazoe, Y., Ohuchi, A.: Solutions of
shortest path problems by concentration control. In: DNA 7. (2002)

22. Paik, P., Pamula, V., Fair, R.: Rapid droplet mixers for digitial microfluidic sys-
tems. Lab on a Chip 3 (2003)

23. Thies, W., Urbanski, J.P., Thorsen, T., Amarasinghe, S.: Abstraction layers for
scalable microfluidic biocomputers (Extended version). Technical Report MIT-
CSAIL-TR-2006-034, MIT (2006) http://hdl.handle.net/1721.1/32543.

24. Gascoyne, P.R.C., Vykoukal, J.V., Schwartz, J.A., Anderson, T.J., Vykoukal, D.M.,
Current, K.W., McConaghy, C., Becker, F.F., Andrews, C.: Dielectrophoresis-based
programmable fluidic processors. Lab on a Chip 4 (2004)

25. Su, F., Chakrabarty, K.: Architectural-level synthesis of digital microfluidics-based
biochips. In: ICCAD. (2004)

26. Su, F., Chakrabarty, K.: Unified high-level synthesis and module placement for
defect-tolerant microfluidic biochips. In: DAC. (2005)

27. King, R.D., Whelan, K.E., Jones, F.M., Reiser, P.G.K., Bryant, C.H., Muggle-
ton, S.H., Kell, D.B., Oliver, S.G.: Functional genomic hypothesis generation and
experimentation by a robot scientist. Nature 427 (2004)

28. Gu, W., Zhu, X., Futai, N., Cho, B.S., Takayama, S.: Computerized microfluidic
cell culture using elastomeric channels and Braille displays. PNAS 101(45) (2004)

29. Johnson, C.: Automating the DNA Computer to Solve n-Variable 3-SAT Problems.
In: DNA 12. (2006)

30. Dertinger, S.K.W., Chiu, D.T., Jeon, N.L., Whitesides, G.M.: Generation of gra-
dients having complex shapes using microfluidic networks. Anal. Chem. 73 (2001)

31. Neils, C., Tyree, Z., Finlayson, B., Folch, A.: Combinatorial mixing of microfluidic
streams. Lab on a Chip 4 (2004)

32. Lin, F., Saadi, W., Rhee, S.W., Wang, S.J., Mittalb, S., Jeon, N.L.: Generation of
dynamic temporal and spatial concentration gradients using microfluidic devices.
Lab on a Chip 4 (2004)

33. Pollack, M., Fair, R., Shenderov, A.: Electrowetting-based actuation of liquid
droplets for microfluidic applications. Applied Physics Letters 77(11) (2000)

34. Ren, H., Srinivasan, V., Fair, R.: Design and testing of an interpolating mixing ar-
chitecture for electrowetting-based droplet-on-chip chemical dilution. Transducers
(2003)

Fuzzy Forecasting with DNA Computing

Don Jyh-Fu Jeng1, Junzo Watada1, Berlin Wu2, and Jui-Yu Wu3

1 Graduate School of Information, Production and Systems
Waseda University, Fukuoka 808-0135, Japan
jeng@fuji.waseda.jp, junzow@osb.att.ne.jp

2 Department of Mathematical Sciences
National Chengchi University, Taipei 116, Taiwan

berlin@nccu.edu.tw
3 Department of Biochemistry, School of Medicine

Taipei Medical University, Taipei 110, Taiwan
jwu@tmu.edu.tw

Abstract. There are many forecasting techniques including: exponen-
tial smoothing, ARIMA model, GARCH model, neural networks and
genetic algorithm, etc. Since financial time series may be influenced by
many factors, conventional model based techniques and hard computing
methods seem inadequate in the prediction. Those methods, however,
have their drawbacks and advantages. In recent years, the innovation
and improvement of forecasting techniques have caught more attention,
and also provides indispensable information in decision-making process.
In this paper, a new forecasting technique, named DNA forecasting, is
developed. This may be of use to a nonlinear time series forecasting.
The methods combined the mathematical, computational, and biologi-
cal sciences. In the empirical study, we demonstrated a novel approach to
forecast the exchange rates through DNA. The mean absolute forecast-
ing accuracy method is defined and used in evaluating the performance
of linguistic forecasting. The comparison with ARIMA model is also il-
lustrated.

1 Introduction

The DNA computing in the forecasting process is applied for several reasons:
First, a problem specific computing will be easier to design and implement,
with less need for model/functional complexity and flexibility. Secondly, the
types of soft computational problems that DNA based computing may be able
to effectively solve social competence for economic conditions that a dedicated
processor would be naturally reasonable. As well, these problems will be likely
to require extensive time that would preclude the need for a more versatile
and interactive system that may be able to be implemented with a universal
computing machine.

The practical possibility of using DNA molecules as a medium for computation
was first demonstrated by Adleman [2]. He demonstrated a proof-of-concept use
of DNA as form of computation which was used to solve the seven-point Hamil-
tonian path problem [1][3]. The primary intention of Adleman’s work was to

C. Mao and T. Yokomori (Eds.): DNA12, LNCS 4287, pp. 324–336, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Fuzzy Forecasting with DNA Computing 325

prove the feasibility of molecular computation, and also gave an indication that
the emergence of this new computational paradigm could provide an advantage
over conventional electronic computing techniques. Specifically, DNA has shown
to have massively parallel processing capabilities which allow a DNA based com-
puter to solve complicated computational problems in a reasonable amount of
time.

The main advantage offered by most proposed models of DNA based compu-
tation is the ability to handle millions of operations in parallel. The massively
parallel processing capabilities of DNA computers may give them the potential to
find tractable solutions to otherwise intractable problems, as well as potentially
speeding up large, but otherwise solvable, polynomial time problems requiring
relatively few operations.

Many different models exist within the paradigm of “classical” DNA compu-
tation [4], [8], [10], [15], and [20] each of them with different advantages and
degrees of applicability to classes of problems.

On the other hand, in the field of humanity and social science, fuzzy statistics
and fuzzy forecasting have attracted many attentions lately. This is a nature
result because of the complicated phenomenon of humanity and society which
is hard to be fully explained by traditional models. Taking stock market as an
example, the essence of closing price is uncertain and indistinctive. Moreover,
there are many factors could influence the closing price, such as trading volume
and exchange rate, etc. Therefore, if we merely consider the closing price of
previous day to construct our forecasting model, we are capable of estimating
the future trend, rather than unexpected or unnecessary loss.

Upon applying fuzzy logic in the time series analysis, the first step is to
identify how to integrate linguistic variable analysis methods in solving the au-
toregressive relation problem of the dynamic data. Chiang et. al. [6] presented
self-learning methods to modify fuzzy models for dynamic system in linguistic
field. Later, Huarng [9] proposed a fuzzy linguistic summary as one of the data
mining function to discover useful knowledge from database. In fact, fuzzy rela-
tion equations are easier to be understood and applied than decision tables or
decision rules.

In view of this, many researchers have adopted fuzzy relation equations for
time series analysis and forecasting. For instance, Wu and Hung [26] proposed a
fuzzy identification procedure for ARCH and Bilinear models. Kumar and Wu
[12] used fuzzy statistical techniques in change period’s detection of nonlinear
time series. Chen and Hwang [5] proposed the two-factors time-variant fuzzy time
series model and developed two algorithms for temperature prediction. Huarng
[9] and Tseng et. al. [24] proposed heuristic models by integrating problem-
specific heuristic knowledge with Chen’s [5] model to improve forecasting.

In this research, we propose a fuzzy time series modeling process with DNA
computing. This method is applied to the financial time series data, and then
forecast future trend while comparing the forecasting performance. From the
empirical studies, it is shown that our proposed method demonstrates an appro-
priate and efficient performance of prediction for exchange rates.

326 D.J.-F. Jeng et al.

The paper is organized as follows: In section 2, we briefly review the DNA
computing. In section 3, the algorithm of modeling time series and forecasting
with DNA computing is proposed. An empirical application is then shown in
section 4. Finally, section 5 recaps our conclusions.

2 DNA Computing

2.1 Preliminary

DNA computing is fundamentally comparable to the parallel computing; we take
advantage of the many different DNA molecules to try many different possibili-
ties. DNA computing also known as part of molecular computing which is a new
approach to massively parallel computation based on a ground-breaking work
by Adleman [3]. DNA molecules was first designed to solve a seven-node Hamil-
tonian path problem, a special case of an NP-complete problem that attempts
to visit every node in a graph exactly once.

Since Adleman’s pioneering accomplishment in 1994, research on DNA com-
puting is ongoing; Lipton [13] and Adleman [2] have extended on Adleman’s
original work with more efficient designs to build up possible DNA computers.
Adleman observed that a DNA computer sufficient to search for 256 DES keys
would occupy only a small set of test tubes [1]. DNA computing has been applied
to various fields including combinatorial optimization [17], massive parallel com-
puting [14], Boolean circuit development [18], nanotechnology [25], vary large
scale database [22], etc.

DNA computing experiment has been heralded as the “first example of true
nanotechnology”, and even the “start of a new era,” forging an unprecedented
link between computational science and life science. Just as the cell pushes the
limit of the second law of thermodynamics, which predicts that one joule can
fuel a maximum of 34×1019 irreversible power operations, the DNA computer’s
energy consumption from DNA strand synthesis and PCR should also be small
compared to that used up by a supercomputer.

2.2 Application in the Statistical Model Construction

In statistics, the patterns of collected data can be numerical, qualitative formats,
or linguistic values (such as data derived from testing). These kinds of data are
hard to be analyzed by traditional time series models. Nevertheless, with fuzzy
sets, the patterns of data will not be restricted and a more suitable model can be
established. There is no certain rule for the optimal partition in building fuzzy
range sets. Generally, the more partition we do, the more precision we have; how-
ever, the more complicated calculation is required. In short, the determination
between accuracy and complexity is entirely up to the individual requirements.

Despite being published before the discovery of DNA, Darwin’s 1859 classic
remains a robust description of evolution by natural selection. Inspired by this,
the humanity and social science sustained growth stimulated natural selection
that shaped the evolution of the biology. The mechanism of evolutionary change

Fuzzy Forecasting with DNA Computing 327

is adopted in this pioneering research, which we applied the DNA computing to
forecasting. The process of DNA polymerase chain reaction (PCR) reflects the
natural selection in our society.

3 Modeling Time Series and Forecasting with DNA
Computing

3.1 Modeling Fuzzy Time Series

In this study, we will make a conventional estimation as well as a fuzzy es-
timation (with membership function) of the coefficients for the investigated
time series. The ARIMA model is a very popular forecasting technique for the
time series data. The key process is to find the order for the candidate models
ARIMA(p,d,q). After decided the order, the appropriate coefficients are then es-
timated for getting the lowest value of AIC. Finally, we make a forecasting from
the constructed model. For the fuzzy autoregressive process of ordered one, the
l -steps prediction becomes Xn(l) = E(Xn+l | Xn, · · · , X1). In order to find the
forecasting performance, we will also compare our result with traditional other
methods.

How to estimate the appropriate coefficients with the DNA computing is
demonstrated as following:
Let {Xt; t = 1, 2, · · · , n} be a time series which has followed by an AR(1) or
Markov process; {�Xt = Xt −Xt−1; t = 2, 3, · · · , n} be the first order difference
of the time series {Xt}; T = max|�Xt| be the maximum first order difference
�Xt.

We assign the variation of �Xt into five period with respect to linguistic vari-
ables, say plunge=-1.0, drop=-0.5, draw=0, soar=0.5, surge=1.0, where each
linguistic variable denotes an element in fuzzy set and its corresponding mem-
bership. The memberships of fuzzy time series transformed by kt = �Xt

T are
based on the Table 1.

Table 1. Memberships of fuzzy time series kt = �Xt
T

w.r.t the linguistic variables

Membership
Plunge=-1 Drop=-0.5 Draw=0 Soar=0.5 Surge=1

kt ≤ −0.5 −2(kt + 0.5) 2(kt + 1) 0 0 0
−0.5 < kt ≤ 0 0 −2kt 2(kt + 0.5) 0 0
0 < kt ≤ 0.5 0 0 −2(kt − 0.5) 2kt 0

0.5 < kt 0 0 0 −2(kt − 1) 2(kt − 0.5)

3.2 Encoding Scheme

Next will be a series of biochemical process. Since we are having a time series
data with n records, which means there exist n-1 first order difference, a number
of n-1 test tubes are set up in represent each first order difference �Xt. Two

328 D.J.-F. Jeng et al.

DNA sequences are designed in represent the “up” trend and “down” trend,
denote as DNA1 and DNA2, respectively. These two DNA sequences have its
own special designed PCR primers denote as UF, UR, DF, and DR (UF: DNA1
forward primer; UR: DNA1 reverse primer, DF: DNA2 forward primer, DR:
DNA2 reverse primer) as shown in Fig. 1.

Fig. 1. DNA encoding scheme. DNA1 and DNA2 are designed in represent “up” trend
and “down” trend respectively. DNA1 and DNA2 have its own special design primers.

Synthesizing short single-stranded DNA is now a routine process. The
molecules can be made by an auto-programming machine called DNA synthe-
sizer. Itineraries can then be produced from the encodings by linking them to-
gether in proper order. To accomplish this we can take advantage of the fact
that DNA hybridizes with its complementary sequence. Random itineraries can
be made by mixing difference encodings.

The ratio of up trend primers (UF, UR) and down trend primers (DF, DR)
for each test tube is set up corresponding with �Xt

T according to the Table 2.

Table 2. The ratio of primer for each test tube

�Xt
T

[-1,-.9] (-.9,-.6] (-.6,-.3] (-.3,-.1] (-.1,.1] (.1,.3] (.3,.6] (.6,.9] (.9,1]
Pup : Pdowm 9:1 8:2 7:3 6:4 5:5 4:6 3:7 2:8 1:9

3.3 Polymerase Chain Reaction

In each test tube, we now have the ratio of template DNA1 and DNA2 accompa-
nied with their own specific PCR primers that encode UF, UR, and DF, DR. We
expect to collect the amplified numbers of DNA1 and DNA2 after DNA amplifi-
cation as illustrated in Fig. 1. To accomplish this, the technique of PCR is used,
which allows us to produce many copies of a specific sequence of DNA. PCR is an
iterative process that cycles through a series of copying events using an enzyme
called Taq DNA polymerase. Polymerase will copy a section of single-stranded
DNA starting at the position of a primer, a short piece of DNA complimentary
to one end of a section of the DNA that we are interested in. By selecting primers
that flank the section of DNA we want to amplify, the polymerase preferentially
amplifies the DNA template through specific set of primers, doubling the amount

Fuzzy Forecasting with DNA Computing 329

of DNA containing this sequence in each cycle of PCR reaction. After many it-
erations of PCR (we take 25 cycles in this research), the DNA we are working
on is amplified exponentially. The free process of amplification between DNA1
and DNA2 represents the natural selection, which the superior amplifies more,
the inferior amplifies less. What we end up with after PCR is a specific sequence
of test tube full of double-stranded DNA of two different sequences, DNA1 and
DNA2.

3.4 DNA Quantification

The test tube is now filled with DNA encoded itineraries. We now want to cal-
culate the number for the DNA1 and DNA2. Many molecular biology techniques
can be utilized to estimate PCR-produced DNA populations, such as real-time
PCR (quantitative PCR, or Q-PCR), gel electrophoresis, and fluorescence assay,
etc. The detection and quantification of DNA amplification is very important
both in research and in a clinical diagnostic setting. Real-time PCR, which is
used in this research, has become a well-established procedure for quantifying
levels of gene expression. Its power resides in the ability to detect, at every cycle
of the PCR, the amount of PCR product (amplicon) using fluorescence.

3.5 Making Prediction

Finally, according to the quantity of DNA1 and DNA2 retrieved from previous
step, we define the ratio of up-and-down trend as the auto-correlation coefficient
by:

Un =
∑n

i=2 DNA1i∑n
i=2 DNA1i +

∑n
i=2 DNA2i

(1)

Dn =
∑n

i=2 DNA2i∑n
i=2 DNA1i +

∑n
i=2 DNA2i

(2)

The first order difference can be represented as:

�Xn = (Un − Dn)T (3)

The one step forecasting value can be derived:

Xn+1 = Xn + (Un − Dn)T (4)

The forecasting with l -steps (l ≥ 2) can be expressed:

Xn+1 = Xn + (Un+l−1 − Dn+l−1)T (5)

where

Un+l−1 =
∑n

i=2 DNA1i +
∑n+l−1

i=n+1 DNA1i∑n
i=2 DNA1i +

∑n
i=2 DNA2i +

∑n+l−1
i=n+1 DNA1i +

∑n+l−1
i=n+1 DNA2i

(6)

330 D.J.-F. Jeng et al.

Dn+l−1 =

∑n
i=2 DNA2i +

∑n+l−1
i=n+1 DNA2i∑n

i=2 DNA1i +
∑n

i=2 DNA2i +
∑n+l−1

i=n+1 DNA1i +
∑n+l−1

i=n+1 DNA2i

(7)
In the fuzzy forecasting for one step, we transfer (U − D)T into fuzzy number
according to Table 1. Hence, the one step fuzzy forecasting becomes:

FXn+1 = Xn ⊕ (
mi

Li
+

mi+1

Li+1
)T (8)

where (mi

Li
+ mi+1

Li+1
)T means the memberships of the variation with respect to the

linguistic variables Li, Li+1 based on the total variation T , and ⊕ stands for the
fuzzy addition.

The proposed DNA computing algorithm for forecasting is summarized as
following:

Step 1. For time series {Xt}, decide the total variation of {�Xt} and linguistic
variables {L1, L2, · · · , L5} of �Xt

Step 2. Design the memberships of fuzzy time series w.r.t the linguistic variables
Step 3. Determine the ratio of primer
Step 4. Design the DNA sequences and primers
Step 5. Molecular reaction [PCR]
Step 6. DNA quantification [Real-time PCR]
Step 7. Calculate the forecasting value

3.6 Forecasting Performance with DNA Computing

This experiment solved a forecasting problem, but there are two major short-
comings preventing a large scaling up of this computation. The complexity of
the forecasting problem simply does not disappear when applying a different
method of solution - it still increases exponentially. For our method, what scales
exponentially is not the computing time, but rather the amount of DNA. Un-
fortunately this places some hard restrictions on the number of variables that
can be solved. Another factor that places limits on this method is the nonlin-
ear trend for each operation. Since these operations are not deterministic but
stochastically driven (from biochemistry), each step contains statistical errors,
limiting the number of iterations you can do successively before the probability
of producing an error becomes greater than producing the correct result.

The Mean Absolute Forecasting Accuracy (MAFA) is used in evaluating the
forecasting performance in this research. To compare the performance between
different forecasting methods, each linguistic variable need to be assigned with
an ordered rank. In this study, for instance, a plunge as -1.0, drop as -0.5, draw
as 0, soar as 0.5 and surge as 1.0. By doing so, MAFA can be defined.

Definition 1. Suppose {RLt, t = 1, · · · , n} and {FLt, t = 1, · · · , n} denote the
real and outputting linguistic variables respectively. The mean absolute forecast-
ing accuracy can be defined as:

Fuzzy Forecasting with DNA Computing 331

MAFA = 1 −
∑n

t=1
|FLt−RLt|

r−1

n
(9)

where r denotes the number of linguistic variables.

Example 1. Suppose that real linguistic variables of the time series are {drop,
draw, drop, surge, soar, drop, surge, drop, draw, plunge}, then the corresponding
values of linguistic variables are {-0.5, 0, -0.5, 1.0, 0.5, -0.5, 1.0, -0.5, 0, -1.0}.
The outputting linguistic variables are {drop, draw, plunge, surge, draw, draw,
surge, drop, surge, soar}, then the corresponding values of linguistic variables
are {-0.5, 0, -1.0, 1.0, 0, 0, 1.0, -0.5, 1.0, 0.5}. By Definition 1, the MAFA can
be obtained.

MAFA = 1 −
∑10

t=1
|F Lt−RLt|

5−1
10 = 1 − 1

10 = 0.90

4 An Empirical Application

Following data source comes from the Center Bank of China monthly records of
JPY/USD and EUR/USD exchange rate from 2004/1 to 2005/12. The tenden-
cies of these data are shown in Fig. 2. From these data, T = max|�Xt| = 5.27
for JPY/USD, and T = max|�Xt| = 0.034 for EUR/USD can be obtained.

Fig. 2. Trend for Exchange Rate: JPY/USD and EUR/USD

4.1 Fuzzy Model Construction

After fuzzifying these data of monthly exchange rate, we can apply the method
mentioned in Section 3.1 to calculate data’s corresponding memberships in lin-
guistic variables Li as illustrated in Table 3 and 4.

4.2 Forecasting Performance

The memberships of monthly variations of JPY/USD and EUR/USD between
January 2004 and December 2005 can be observed from Table 3 and 4. Finally,

332 D.J.-F. Jeng et al.

Table 3. The ratios of primer and memberships for JPY/USD

Month �Xt
T

Pup : Pdown plunge drop draw soar surge

2004/1-2 0 5:5 0 0 1 0 0
2004/2-3 0.39 3:7 0 0 0.22 0.78 0
2004/3-4 -0.26 6:4 0 0.5 0.5 0 0
2004/4-5 1.00 1:9 0 0 0 0 1
2004/5-6 -0.58 7:3 0.16 0.84 0 0 0
2004/6-7 -0.02 5:5 0 0.04 0.96 0 0

...
...

...
...

...
...

...
...

2005/9-10 0.71 2:8 0 0 0 0.59 0.41
2005/10-11 0.68 2:8 0 0 0 0.64 0.36
2005/11-12 0 5:5 0 0 1 0 0

Table 4. The ratios of primer and memberships for EUR/USD

Month �Xt
T

Pup : Pdown plunge drop draw soar surge

2004/1-2 -0.06 5:5 0 0.12 0.88 0 0
2004/2-3 0.73 2:8 0 0 0 0.48 0.52
2004/3-4 0.54 3:7 0 0 0 0.92 0.08
2004/4-5 -0.01 5:5 0 0.02 0.98 0 0
2004/5-6 -0.28 6:4 0 0.56 0.44 0 0
2004/6-7 -0.25 6:4 0 0.50 0.50 0 0

...
...

...
...

...
...

...
...

2005/9-10 0.48 3:7 0 0 0 0.96 0.04
2005/10-11 0.47 3:7 0 0 0 0.94 0.06
2005/11-12 -0.16 5:5 0 0.32 0.68 0 0

Table 5. The ratios of two DNAs and memberships for JPY/USD after reaction

Month DNA1:DNA2 plunge drop draw soar surge

2004/1-2 52:48 0 0.08 0.92 0 0
2004/2-3 25:75 0 0 0 1 0
2004/3-4 69:31 0 0.76 0.24 0 0
2004/4-5 6:94 0 0 0 0.24 0.76
2004/5-6 58:42 0 0.32 0.68 0 0
2004/6-7 54:46 0 0.16 0.84 0 0

...
...

...
...

...
...

...
2005/9-10 52:48 0 0.08 0.92 0 0
Average 41:59 0 0 0.36 0.64 0
2005/11 38:62 0 0 0.52 0.48 0
2005/12 45:55 0 0 0.20 0.80 0
2006/1 47:53 0 0 0.88 0.12 0
2006/2 42:58 0 0 0.68 0.32 0

Fuzzy Forecasting with DNA Computing 333

the result from DNA forecasting is shown at Table 5 and 6. The memberships are
transformed from the concentration of DNA by C = 50−DNA1%

50 as illustrated at
Table 7, which is generated from Table 1.

Because this research is to explore the qualitative trend of time series, we
computed the transformed memberships through fuzzy rule base in fuzzy sys-
tems for getting their corresponding linguistic variables to facilitate analysis. We
compared it with best ARIMA model (p,d,q). The results derived from above
principles are shown at Table 8 and 9.

Table 6. The ratios of two DNAs and memberships for EUR/USD after reaction

Month DNA1:DNA2 plunge drop draw soar surge

2004/1-2 46:54 0 0 0.16 0.94 0
2004/2-3 13:87 0 0 0 0.52 0.48
2004/3-4 23:77 0 0 0.04 0.96 0
2004/4-5 51:49 0 0.04 0.96 0 0
2004/5-6 70:30 0 0.80 0.20 0 0
2004/6-7 68:32 0 0.72 0.28 0 0

...
...

...
...

...
...

...
2005/9-10 41:59 0 0 0.36 0.64 0
Average 52:48 0 0.08 0.92 0 0
2005/11 50:50 0 0 1 0 0
2005/12 45:55 0 0 0.20 0.80 0
2006/1 62:38 0 0.48 0.52 0 0
2006/2 58:42 0 0.32 0.68 0 0

Table 7. Memberships of DNA concentration C = 50−DNA1%
50

w.r.t the linguistic
variables

Membership
Plunge=-1 Drop=-0.5 Draw=0 Soar=0.5 Surge=1

C ≤ −0.5 −2(C + 0.5) 2(C + 1) 0 0 0
−0.5 < C ≤ 0 0 −2C 2(C + 0.5) 0 0
0 < C ≤ 0.5 0 0 −2(C − 0.5) 2C 0

0.5 < C 0 0 0 −2(C − 1) 2(C − 0.5)

Table 8. Forecasting comparison of JPY/USD

Time Real value Best ARIMA 1,0,01 DNA computing2 Fuzzy DNA computing3

2005/11 118.41 113.67 115.77 114.82 ⊕ (0.36
draw

+ 0.64
soar

)5.27
2005/12 118.43 112.75 117.14 115.77 ⊕ (0.48

draw
+ 0.52

soar
)5.27

2006/1 115.25 112.01 117.71 117.14 ⊕ (0.80
draw

+ 0.20
soar

)5.27
2006/2 111.41 118.05 117.71 ⊕ (0.88

draw
+ 0.12

soar
)5.27

2006/3 110.93 118.96 118.05 ⊕ (0.68
draw

+ 0.32
soar

)5.27
1 Xt+1 = 21.45 + 0.8Xt + εt
2 Xt+1 = Xt + (U − D)T
3 FXn+1 = Xn ⊕ (mi

Li
+ mi+1

Li+1
)T

334 D.J.-F. Jeng et al.

Table 9. Forecasting comparison of EUR/USD

Time Real value Best ARIMA 1,0,04 DNA computing5 Fuzzy DNA computing6

2005/11 0.849 0.835 0.831 0.832 ⊕ (0.08
draw

+ 0.92
soar

)0.034
2005/12 0.843 0.837 0.831 0.831 ⊕ (0

draw
+ 1

soar
)0.034

2006/1 0.825 0.838 0.835 0.831 ⊕ (0.20
draw

+ 0.80
soar

)0.034
2006/2 0.839 0.827 0.835 ⊕ (0.48

draw
+ 0.52

soar
)0.034

2006/3 0.840 0.822 0.827 ⊕ (0.32
draw

+ 0.68
soar

)0.034
4 Xt+1 = 0.203 + 0.759Xt + εt
5 Xt+1 = Xt + (U − D)T
6 FXn+1 = Xn ⊕ (mi

Li
+ mi+1

Li+1
)T

Table 10. Forecasting accuracy of Best ARIMA and DNA computing from Mean
Absolute Forecasting Accuracy

Exchange Currency Best ARIMA 1,0,1 DNA computing

JPY/USD 81.25% 81.25%
EUR/USD 75% 81.25%

The MAFA is defined in Section 3.6 for measuring the accuracy of forecasting
methods. From Table 8 and 9, we can find the DNA(1) model has better forecast-
ing performance than ARIMA model. The MAFA result is shown at Table 10.

The major reason why the prediction cannot hit real value is that we only
consider the greatest membership and omit others memberships. Therefore, only
with reasonable forecasting model can we decide investment strategy from fore-
casting results. Otherwise, without the direction of clear outlines, investors will
face a plight as to which information they should take.

5 Concluding Remarks and Future Works

DNA computing is so exciting because of the collaboration of chemists, biologists,
mathematicians, and computer scientists to understand and simulate fundamen-
tal biological processes and algorithms taking place within cells. Although DNA
computing might not replace conventional computing in the near future, they
still have endless potentials for other applications. The DNA computing has
clear advantages over conventional computing when applied to problems that
can be divided into separate, non-sequential tasks. The reason is that for non-
decomposable problems, those that require many sequential operations are much
more efficient on a conventional computer due to the length of time required to
conduct the biochemical operations.

In this research, we tried to make an appropriate process of constructing fuzzy
time series model and use this model to forecast the exchange rate of JPY/USD
and EUR/USD. Compare the DNA forecasting and DNA fuzzy forecasting model
with traditional ARIMA model by the performance of forecasting accuracy, we

Fuzzy Forecasting with DNA Computing 335

can find that the DNA model has better forecasting performance than that of
traditional ARIMA model. We hope this method will provide a new forecasting
technique for investors to make optimal decision with fuzzy information.

In spite of the forecasting performance for DNA forecasting model, there are
some problems for further studies. For example:

1. To make a general rule for fuzzy order identification instead of the Markov
relation. DNA computing can be more accurately described as a collection
of new computing paradigms rather than a single focus. Each of these differ-
ent paradigms within molecular computing can be associated with different
potential applications that may prove to place them at an advantage over
conventional methods. Many of these models share certain features that lend
them to categorization by these potential advantages. However, there exists
enough similarities and congruencies that hybrid models will be possible,
and that advances made in both “classic” and “natural” areas.

2. To extend our result to the multivariate fuzzy time series case. In fact, how
to solve the nonstationary or seasonal factors for the time series are still
open questions.

3. In this research, we adopt five-ranking classification and transform the time
series data into fuzzy numbers through membership functions. However,
seven-ranking classification used in social sciences may be used in future
studies for special situation, and it is yet to prove where it will provide
significant improvement on forecasting performance?

4. Future applications might make use of the error rates and instability of
DNA based computation methods as a means of simulating and predicting
the emergent behavior of complex systems. This could pertain to weather
forecasting, economics, and lead to more a scientific analysis of social science
and the humanities. Such a system might rely on inducing increased error
rates and mutation through exposure to radiation and deliberately inefficient
encoding schemes. Similarly, methods of DNA computing might serve as the
most obvious medium for use of evolutionary programming for applications
in design or expert systems. DNA computing might also serve as a medium
to implement a true fuzzy logic system.

References

1. Adams, J.: On the Application of DNA Based Computation. (1998)
http://publish.uwo.ca/˜jadams/dnaapps1.htm

2. Adleman, L.: Computing with DNA. Scientific American 279 (1988) 34–41
3. Adleman, L.: Molecular computation of solutions to combinatorial problems. Sci-

ence 226 (1994) 1021–1024
4. Boneh, D., Dunworth, C., Lipton, R., Sgall, J.: On the Computational Power of

DNA. DAMATH: Discrete Applied Mathematics and Combinatorial Operations
Research and Computer Science 71 (1996)

5. Chen, S.M., Hwang, J.R.: Temperature prediction using fuzzy time series. IEEE
Transactions on Systems, Man, and Cybernetics 30 (2000) 263–275

336 D.J.-F. Jeng et al.

6. Chiang, D., Chow, L., Wang, Y.: Mining time series data by a fuzzy linguistic
summary system. Fuzzy Sets and Systems 112 (2000) 419–432

7. Cho, A.: DNA Computing: Hairpins Trigger an Automatic Solution. Science 288
(2000) 1152–1153

8. Guarnieri, F., Fliss, M., Bancroft, C.: Making DNA Add. Science 273 (1996) 220–
223

9. Huarng, K.: Heuristic models of fuzzy time series for forecasting. Fuzzy Sets and
Systems 123 (2001) 369–386

10. Johnson, R.C.: Time to Engineer DNA Computers. EE Times (2001)
http://www.eetimes.com/story/OEG20001221s0032

11. Kari, L., Gloor, G., Yu, S.: Using DNA to solve the Bounded Post Correspondence
Problem. Theoretical Computer Science 231 (2000) 192–203

12. Kumar, K., Wu, B.: Detection of change points in time series analysis with fuzzy
statistics. International Journal of Systems Science 32 (2001) 1185–1192

13. Lipton, R.: DNA Solution of Hard Computational Problems. Science 268 (1995)
542–545

14. Liu, Q., Wang, L., Frutos, A.G., Condon, A.E., Corn, R.M., Smith, L.M.: DNA
computing on surface. Nature 403 (2000) 175–179

15. Miller, C.: Using DNA Algorithms to Solve NP-Complete Problems.
http://www.csd.uwo.ca/˜jamie/.Refs/Courses/CS881/charlotte.html

16. Normile, D.: Molecular Computing: DNA-Based Computer Takes Aim at Genes.
Science 295 (2002) 951

17. Ouyang, Q., Kaplan, P.D., Liu, S., Libchaber, A.: DNA Solution of the Maximal
Clique Problem. Science 278 (1997) 446–449

18. Owenson, G.G., Amos, M., Hodgson, D.A., Gibbsons, A.: DNA-based logic. Soft
Computing 5 (2001) 102–105

19. Parker, J.: Computing with DNA. European Molecular Biology Organization Re-
ports 4 (2003) 7–10

20. Păun, G.: Computing with Bio-Molecules: Theory and Experiments. Springer-
Verlag (1998)

21. Păun, G., Rozenberg, G., Salomaa, A.: DNA Computing - New Computing
Paradigms. Springer-Verlag (1998)

22. Reif, J.H., LaBean, T.H., Pirrug, M., Rana, V.S., Guo, B., Kingsford, C., Wick-
ham, G.S.: Experimental construction of a very large scale DNA database with
associatice search capability. In The 7th International Workshop on DNA-Based
Computers (2001) 241–250

23. Tseng, F., Tzeng, G.: A fuzzy SARIMA model for forecasting. Fuzzy Sets and
Systems 126 (2002) 367–376

24. Tseng, F., Tzeng, G., Yu, H., Yuan, B.: Fuzzy ARIMA model for forecasting the
foreign exchange market. Fuzzy Sets and Systems 118 (2001) 9–19

25. Winfree, E., Lin, F., Wenzler, L.A., Seeman, N.C.: Design and self-assembly of
two-dimensional DNA crystals. Nature 394 (1998) 539–545

26. Wu, B., Hung, S.: A fuzzy identification procedure for nonlinear time series: with
example on ARCH and bilinear models. Fuzzy Sets and Systems 108 (1999) 275–
287

“Reasoning” and “Talking” DNA:
Can DNA Understand English?

Kiran C. Bobba, Andrew J. Neel, Vinhthuy Phan, and Max H. Garzon

Computer Science, The University of Memphis, TN 38152-3240, U.S.A.
{kbobba, aneel, vphan, mgarzon}@memphis.edu

Abstract. Memory is a fundamental challenge in computing, particu-
larly if they are to store large amounts of interrelated data based on
content and be queried associatively to retrieve information useful to the
owners of the storage, such as self-assembled DNA structures, cells, and
biological organisms. New methods to encode large data sets compactly
on DNA chips have been recently proposed in (Garzon & Deaton, 2004)
[6]. The method consists of shredding the data into short oligonucleotides
and pouring it over a DNA chip with spots populated by copies of a ba-
sis set of noncrosshybridizing strands. In this paper, we probe into the
capacity of these memories in terms of their ability to discern semantic
relationships and discriminate information in complex contexts in two
applications, as opposed to their raw capacity to store volumes of uncor-
related data. First, we show that DNA memories can be designed to store
information about English texts so that they can “conduct a conversa-
tion” about their content with an interlocutor who wants to learn about
the subject contained in the memories. In this preliminary approach, the
results are competitive, if not better, with state-of-the-art methods in
conventional artificial intelligence. In a second application in biology, we
show how a biomolecular computing analysis based on similar techniques
can be used to re-design DNA microarrays in order to increase their sen-
sitivity to the level required for successful discrimination of conditions
that may escape detection by standard methods. Finally, we briefly dis-
cuss the scalability of the common technique to large amounts of data
given recent advances in the design of noncrosshybridizing DNA oligo
sets, as well other applications in bioinformatics and medical diagnosis.

Keywords: Semantic analysis and information retrieval; DNA chips and
microarrays; question answering; sensitivy analysis; data classification
and discrimination.

1 Introduction

Large associative memories have been envisioned since the early days of DNA-
based computing (Baum, 1995)[1]. Recently, much progress has been made in
the design and analysis of their performance based on recent advances in word
design and encodings for biomolecule-based computing (BMC) (Garzon Deaton,
2004; Bi et al., 2003; Garzon et al., 1997) [6,2,8]. Naive linear encodings of data

C. Mao and T. Yokomori (Eds.): DNA12, LNCS 4287, pp. 337–349, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

338 K.C. Bobba et al.

and information onto biomolecules have given way to more sophisticated meth-
ods based on sound theoretical analyses (Garzon et al., 1995) [8] and practical
constraints on implementation on DNA or current biotechnology (Garzon et al.,
2005) [10]. The biology of life shows that this is indeed feasible to levels of com-
plexity as clearly evident (e.g., in the cycle transcribe → express → translate) as
yet very poorly understood, despite enormous progress, encompassing such wide
array of phenomena as genetics, morphogenesis, and even perhaps ontogenetic
processes such as learning and adaptation. The problem of handling massive
amounts of extremely rich and complex data using DNA still bears an intriguing
potential as a major contribution of biomolecular computing in both biological
and non-biological applications. The search for the “killer app” is still on.

(Garzon et al., 2005; Garzon & Deaton, 2004) [10,6] showed how abiotic and
biological data can both be represented by signatures on a DNA chip, the spots
of which are copies of a so-called noncrosshybridizing basis. By placing adequate
thresholds on the stringency of reaction condition necessary for acceptable lev-
els of variability of the representation (i.e., the capacity to distinguish inputs
through their representations), the signatures of arbitrary inputs are completely
determined and require no precomputation or synthesis of any DNA strands,
other than the basis strands. In other words, this method provides a universal
and scalable method to represent data. For example, because of the superposi-
tion (linearity) property (modulo the variability implicit in the representation),
a corpus of English text can be automatically encoded just by finding representa-
tions for the words in the basic vocabulary (words) in the corpus. Thereafter, the
representation of a previously unknown piece of text can be inferred by superpo-
sition of the component words. There is evidence that these representations can
be used for semantic processing of text corpora in lieu of the original text (Neel
& Garzon, 2006; Garzon et al, 2003)[15,9]. Given the newly available large basis
sets (Chen et al., 2005; Chen et al., 2004) [3,5] approaching megasets, devices
with the ability to process data for information extraction appear now within
reach in a relatively short time.

In this paper, we present two novel applications of BMC based on recent de-
velopments in word design and data representation in DNA proposed in (Garzon
et al., 2005; Garzon & Deaton, 2004) [10,6]. The first one is an application to in-
formation retrieval of natural language (English) texts. The problem is whether
we can build a DNA-based memory of a corpus of data good enough for us to be
able to query it just by “having a conversation with it,” i.e., take turns in asking
it questions and getting answers, albeit at an extremely slow pace. In others
words, a question can be fairly complicated, but we may have to go through
a lot of chemistry to get the answer (in the order of hours, or even days per-
haps.) The prototype corpus used is qualitative Newtonian physics, as learned
by freshman college students. To illustrate the breadth of the technique, in Sec-
tion 2 we provide an experimental evaluation of the semantic capacity of the
technique for information retrieval in the area of natural language processing.
We compare it to what is considered the best method in conventional AI, namely
Latent Semantic Analysis(LSA), on the same task. The performance of DNA is

“Reasoning” and “Talking” DNA: Can DNA Understand English? 339

based on the judgment of physics professors (experts) on a selection of typical
questions asked to students when tutoring them on the subject. In Section 3, we
present a novel application to DNA chip design for bioinformatic analysis based
on the same technique. We show how current DNA chips could be re-designed
to increase their sensitivity and make possible discrimination between genomic
data currently impossible with current designs because of the noise inherent in
crosshybridization with the maximum number of genes normally packed on the
chip. Finally, in Section 4 we briefly discuss the their scalability to large amounts
of data given current advances in the design of noncrosshybridizing DNA oligo
sets on which they are based, as well as the potential of the techniques for similar
applications in bioinformatics, microbiology and genetics.

In the following section we summarize the structure of the memory presented
in (Garzon & Deaton, 2004) [6]. In the remaining two sections we will indicate
the refinements required, as well the results, for the two applications .

1.1 DNA Chips and Memory Devices

The obvious method to encode data on DNA, namely a one-one mapping of al-
phabet symbols (e.g., bits) or words (e.g., bytes or English words in a dictionary)
to DNA fragments could possibly be used to encode symbolic data (strings) in
DNA single strands. Longer texts can be mapped homomorphically by ligation
of these segments to represent larger concatenations of symbolic text. A funda-
mental problem with this approach is that abiotic data would appear to require
massive synthesis of DNA strands of the order of the amount of data to be en-
coded. Current lab methods may produce massive amounts of DNA copies of the
same species, but not of too many diverse species selected and assembled in very
specific structures such as English sentences in a corpus of data (e.g., a textbook),
or records in a large data warehouse. Even if the requisite number of species were
available, the mapping between the data and the DNA strands is hard to estab-
lish and maintain; as the species get transformed by the reactions, they must
get involved in and must be translated back to humanly usable expression.

An alternative more effective representation using recently available large sets
of noncrohybridizying oligonucleotides obtainable in vitro (Chen et. al., 2005; Bi
et. al, 2003) [3,2] has been suggested in (Garzon and Deaton, 2004) [6]. We
repeat next the basic definitions to make this paper self-contained. This method
can be regarded as a new implementation of the idea in (Head et al., 1999;
2001) [13,12] of aqueous computing for writing on DNA molecules, although
through a simpler set of operations (only hybridization.) Since binary strings
can be easily mapped to a four letter alphabet, we will simply assume that the
data are given in DNA form over {A, C, G, T}. Representations using sets with
crosshybridization present are usually ambiguous and cannot be reliably used.
More details on this point can be found in (Garzon and Deaton, 2004) [6].

Let B be a set of DNA molecules (the encoding basis, or ”stations” in Head’s
terminology (Head et al., 1999) [12], here not necessarily bi-stable), which is
assumed to be finite and noncrosshybridizing according to some model of hy-
bridization, denoted h(∗, ∗) (for example, the Gibbs energy, or the h-distance

340 K.C. Bobba et al.

in (Garzon et al, 1997) [7,8].) We will also assume that we are provided some
parameter coding for the stringency of reaction conditions τ (for example, a
threshold on the Gibbs energy or the h-distance) under which hybridization will
take place. For simplicity, it is further assumed that the length of the strands
in B is a fixed integer n, and that B contains no hairpins. For example, if the
h-distance is the hybridization criterion and τ = 0, two strands x, y can only hy-
bridize if they are perfectly complementary (i.e., h(x, y) ≤ 0), so a maximal such
set B can be obtained by selecting one strand from every (non-palindromic) pair
of Watson-Crick complementary strands; but if, on the other extreme, τ = n,
the mildest hybridization condition, any two strands can hybridize, so a maximal
set B consists of only one strand of length n, to which every other strand may
”hybridize” without further restrictions. Let m = |B| be the cardinality of B.
The basis strands will also be referred as probes. For easy visualization, we will
assume in the illustrating examples below that m is a perfect square (m = 121
or 49) and that the base set of probes has been affixed onto a DNA chip.

Given a string x (ordinarily much longer than the probe length n and even
perhaps the number of probes m), x is said to be h-dependent on B if there is
some concatenation c of elements of B that will hybridize to x under stringency τ ,
i.e., such that h(x, c) ≤ τ . Shredding x to the corresponding fragments according
to the components of c in B leads to the following slightly weaker but more
manageable definition. The signature of x with respect to B is a vector X of
dimension m that is obtained as follows. Shredding x to |x|/n fragments of size
n or less, Xi is the number of fragments f of x that are within threshold τ
from a strand i in B, i.e., such that h(f, i) < τ . The value Xi will thus be
referred to as a pixel at probe spot i. The input strands x will also be referred
as targets. Signatures can be just easily implemented using standard DNA oligo
chip technology.

Several questions about this representation were resolved in (Garzon et al.,
2005) [10]. First, the vector X is indeed well-defined if we make the representa-
tion be a sphere centered around the ideal representation of radius the standard
deviation of the distribution of all possible representations under the uncer-
tainty of the biochemical reactions in a test tube. Second, the sensitivity of this
representation may be high enough to make fine discrimination of microarray
data. We provide further evidence that this is the case in the applications under
consideration in the following sections.

2 Reasoning and Talking DNA

To construct the chip, 10K+ paragraphs were extracted from a physics text
appropriate for a freshman student. The paragraphs were sanitized to remove
common words, articles, etc and shredded into words. Each word was tran-
scribed into DNA by random assignment to a unique species from a family of
noncrosshybridizing 8−mers. PCR Selection (Deaton et al., 2004) [4] was then
performed on this input paragraph set (about 5000 species) to extract a subset
of noncrosshybridizing oligos. Finally, two DNA oligo chips were produced, the

“Reasoning” and “Talking” DNA: Can DNA Understand English? 341

“large chip” by fixing on the spots all DNA oligos extracted from the physics
text (full corpus) and the “small chip” by fixing on the spots only those oligos
species that survived the PCR Selection (the processed corpus). Now, the en-
tire corpus of paragraphs in a physics text book is compacted to a large set of
signatures found on a DNA chip. Further, two pieces of text can be compared
semantically by looking at the similarity of the signatures on the corresponding
DNA chips.

In order to compare the capabilities of DNA to organize this type of infor-
mation in a context-addressable fashion, we made a systematic comparison with
the best conventional method to store information in content-addressable form,
namely LSA (Latent Semantic Analysis) by (Laundauer et al., 1998)[17]. The ef-
fectiveness of LSA has been evaluated by comparison to human evaluation (four
experts on the knowledge in the corpus). Each expert human would judge a set
of 1187 student answers to a selected set of 57 questions about the material in
the corpus. The degree of agreement between the evaluations of LSA and the
expert human for each student answer yields a correlation of about 0.40 over the
entire set of questions (Graesser et al., 2006)[11].

2.1 Experimental Design

In a similar manner, we evaluated DNA memories using the same set of physics
paragraphs as above. Here we substituted DNA memories for LSA and performed
an analogous comparison to human judgments.

The paragraphs of ideal and student answers were transcribed into DNA by
two protocols. First, the ideal or student answer was transcribed as a unit.
Like words were mapped to their bases (e.g. paying was mapped to pay) before
encoding into DNA. Second, a copy of the DNA from the first method was
shredded. Their signatures were computed by pouring the resulting paragraphs
over the Large and Small Chip and allowing hybridizations to take hold. Next,
we objectively measured the similarity (or semantic quality) of each student
answer as compared to the ideal answer by taking the correlation of the signals
from each chip pair. The correlations of student answers (to ideal answers) were
then correlated with the expert human evaluations in (Graesser et al., 2006)[11].

Fig. 1 shows the results of 18 rounds of PCR Selection on a shredded physics
corpus (about 5000 DNA words). The min, max, average, and standard deviation
between every pair of strands after each successive round of PCR Selection were
calculated. An ideal result would be a maximally noncrosshybridizing set of
DNA where the minimum Gibbs free energy is greater than the threshold for
hybridization, which determines whether two oligos hybridize to a spot on the
chip (Gibbs energy under −6 Kcal/mole). The minimum free energy is never
greater than −9 Kcal/mole even though the energy stabilizes after round 10.
Similarly, the standard deviation decreases slightly after each round. Fig. 1 shows
that, while the minimum and standard deviation of pairwise energies in the set
are improving, the number of species is declining rapidly and eventually stabilizes
around 2, 400 oligos. Thus, a maximal noncrosshybrizing subset has been found
after 18 rounds of PCR selection.

342 K.C. Bobba et al.

2.2 Results

Fig. 2 presents the results of the comparison to human judgments. Low corre-
lations indicated poor semantic quality when transcribing the entire paragraph
for both the large and small chip or rather indicates poor quality regardless of
whether the entire corpus or a subset of the corpus is placed on the chip. After
shredding each paragraph, the semantic quality improves but is still negative
for the full corpus (large chip). However, the the quality of the small chip ap-
proaches that of LSA. Therefore, processing the DNA chip with PCR Selection
improved the results by two orders of magnitude. In the end, this application
helps demonstrate the competitiveness of DNA memories for semantic retrieval.

Fig. 1. Left: The simulations converge to a noncrosshybridizing subset of the seed set
in about four (4) rounds. This is in good agreement with the experimental value in
runs of the protocol in vitro . Right: A count of the number of species was made after
each successive round of PCR Selection. Here, the number of species remaining after
each round decreases as the minimum free energy (i.e., the noncrosshybridizing quality
of the set) increases.

3 DNA Microarray Design and Analysis

DNA microarrays, or their variant, DNA chips, are powerful tools that can pro-
vide snapshots of genetic activity inside a cell. Physically, a microarray is a small
solid slide (typically, glass or mica) on which single DNA strands (the probes)
are immobilized at regularly spaced spots on the slide. Typically, these strands
represent whole structural genes of a species and are either short oligonucleotides
(in DNA chips) or much longer cDNAs (in microarrays). We will focus our dis-
cussion to DNA chips in the remainder of the paper. Similar results can be
obtained with microarrays.

Genetic activity is measured by extracting a large number of mRNAs from a
cell under a given condition and pouring them onto a microarray to be studied.
Since these DNA strands immobilized on the array are complementary to these
mRNAs, they are expected to hybridize to the spots on the chip where enough
affinity is found. By adding fluorescent tags to the mRNAs and measuring the
intensity of each spot on the chip, the gene activity can be estimated. By looking
at the activity of a large number on genes on the chip, we can tell which genes
are active at that particular time and which sets are not. Further, by contrasting

“Reasoning” and “Talking” DNA: Can DNA Understand English? 343

Fig. 2. The quality of DNA semantic memory is improved when shredding paragraphs
into word-by-word representations for semantic retrieval. When compared to the best
conventional method available (LSA, left), the performance of long DNA strands (full
paragraphs from student answers) is dismal, regardless of whether a full corpus of
data or a noncrosshybridizing subset of words is placed on the chip (second and third
columns.) Shredding probes into words gives a notable improvement, but still yields
negative correlations with human standards on a large chip (fourth column). Finally,
on the small chip (noncrosshybridizing basis) the performance of the DNA memory
comes to levels comparable to that of LSA for the same task (last column).

with the expression of the same cell under different conditions, we can compare
the expressions of each group of genes and be able to tell which group up-regulate
or down- regulate over time.

Longer cDNAs produced by PCR can improve the specificity of microarray
signals, but unfortunately the synthesis of thousands of genes is time consuming
and can easily be error-prone. Thus, the usage of oligonucleotides has become
popular. Much shorter oligonucleotides are not as specific as cDNAs when it
comes to hybridization to targeted mRNAs. And the design of oligonucleotide
probes is a challenging task, as it affects the sensitivity and specificity of mi-
croarray signals. In an ideal design, a probe should hybridize with and only with
one target mRNA. As a probe is usually very short (order of 25−mers) they may
hybridize to untargeted mRNAs that happen to be very similar to the targeted
mRNAs at certain local regions, which are almost, but not quite complemen-
tary to the probe. There are different techniques to cope with this. Affymetrix,
for example, follows PM-MM (perfect match-mismatch) strategy to design their
probes in such a way that for each probe, there is one mismatched probe, which
contains a single mismatch located directly in the middle of the 25−mer probe.
This mismatch probe serves as a mechanism to detect non-specific sequences and
therefore helps to reduce spurious signals. To increase sensitivity, Affymetrix also
uses 22 copies for each probe for each expression measurement. Other approaches
propose different ways of design oligonucleotide probes. For example, (Rimour
et. al., 2005)[16] proposed concatenating disjoint complementary short oligos
to improve specificity and retain sensitivity of microarray signals. The probe

344 K.C. Bobba et al.

selection process must be done very carefully in selecting the best probes for
each mRNAs as it determines effectively the reliability, sensitivity and speci-
ficity of microarrays.

The crux of the matter is that when two genes whose sequences are homolo-
gous are placed on a chip, the target cDNA oligos will indiscriminately hybridize
to either one of them and thus introduce a good deal of noise in the chip readout.
In an extreme example, if oligos u and v are identical in two different spots, com-
plementary target oligos x close enough to u in hybridization (distance) similarity
will fluoresce with equal intensity on both spots, thereby reducing the signal in
each to one half the strength they would have if only one of the oligos (say u) were
present on the spot. The problem remains even if u and v only differ by a few
nucleotides (or, technically, are close to complement in hybridization affinity, or
distance), and is of course generalized over the entire chip if this kind of “cross-
talk” was to occur among a number of different pairs u, v. The consequences
on the practical use of the microarrays for diagnostic purposes, for example, is
likely to be a decreased sensitivity of the chip and an inability to offer enough of
a statistical margin of error to distinguish two different conditions in the target.

In order to address these problems, we propose a new approach to analyze
microarray data. This analysis will suggest a new architecture for a microarray
(or DNA chip). The method removes the crosstalk by extracting a noncrosshy-
bridizing subset of the genes by an application of the PCR selection protocol in
(Bi et al, 2003)[2]. The full set of genes in the original chips is each shredded into
small fragments (say 100−mers). After PCR selection, the remaining fragments
are re-grouped into the original genes and they are used on a smaller chip. The
resulting signatures should produce a much better signal-to-noise ratio (SNR)
of the original targets. We put this idea to the test as described next.

3.1 Experimental Design

Seven (7) diseases were selected to gauge the gains in SNR, as shown in Table 1.
The data was obtained from the Kyoto Encyclopedia of Genes and Genomes
(KEGG) pathway database (Kanehisa, 2002) [14]. This database contains cu-
rated metabolic and signaling pathways, which show a network of interacting
proteins. These networks depict the interactions involved in processes that carry

Table 1. Test set of seven (7) neurodegenerative diseases given by a number of critically
active genes

ReferenceNumber Disease Number of genes
1 Alzheimers disease 23
2 Amyotrophic lateral sclerosis (ALS) 17
3 Dentatorubropallidoluysian atrophy 15
4 Huntington’s disease 25
5 Neurodegenerative Disorders 16
6 Parkinson’s disease 14
7 Prion disease 11

“Reasoning” and “Talking” DNA: Can DNA Understand English? 345

Fig. 3. Common neurodegenerative disorder pathway for the seven diseases in Table 1

out biological functions such as metabolism or signal transduction. Information
on enzymatic reactions, enzymes, small molecules and genes are also available
from KEGGS. For our test data, we chose the set of genes encoding for the
proteins that are involved in the currently known neurodegenerative disorder
pathway. This pathway consists of five sub-pathways of five major neurodegen-
erative diseases. Table 1 shows the number of proteins involved in each disease.
Only a fraction of proteins in each of these sub-pathways are present in the com-
mon neurodegenerative disorder pathway. In particular, only 3 out of 21 of the
Alzheimer proteins are present in the common pathway; and 3 out of 19, 1 out
of 7, 1 out of 28, 6 out of 18, and 1 out of 11 of the other respective diseases
proteins are present in the common pathway. Fig. 3 below shows the common
neurodegenerative disorder pathway.

Based on these data, the signatures were generated in silico on two chips. The
first chip, referred to as the “large chip”, had all 121 genes occurring in any of
the seven diseases. The second chip, referred to as the “small chip”, has on it
only selected fragments of 121 genes by careful selection of noncrosshybridiz-
ing fragments from 7 genes with more frequent fragments from each disease
over all. So, each row in the small chip represents 7 genes that highly occur in
noncrosshybridizing fragments sets. This filtering goes beyond the Affymetrix
PM-MM strategy. In PM-MM strategy, mismatch probes are introduced with
the assumption that no foreground probes exist matching the mismatch probe.
Our strategy performs similar elimination but at a larger scale. According to our

346 K.C. Bobba et al.

strategy, we not only eliminate single mismatch probes but all the probes that are
more homologous to a selected probe. Several rounds of tuning the experiments
were done to obtain correct results in terms of being unbiased and selecting the
right hybridization criterion threshold for performing the experiment. To make a
fair comparison, the concentration of input strands was increased for large chip
signatures so as to give the probes on the large chip equal chances to match
the probes on the small chip. The stringency of the reactions, as given for by
a threshold h-distance for hybridization, was optimized to be not too stringent
and not too relaxed. Moreover, the resulting signatures were normalized by the
standard Z-scores transformation.

3.2 Results

Fig. 4 shows the resulting signatures for the diseases on the large (top) and small
(bottom) chip, respectively. Visually, the signatures on the small chip clearly look

Fig. 4. Top: Signatures of seven diseases (given by a number of critically active genes)
on a large chip (top row) and a small chip (second row). Bottom: Comparison of the
SNR reduction on the same chips using cosines (left) and Euclidean distance (right).
Lighter intensities indicate larger angles or distances. The signatures have been nor-
malized by the standard Z-scores transformation.

“Reasoning” and “Talking” DNA: Can DNA Understand English? 347

more easily distinguishable than the signatures on the large chip in terms of the
intensity and distribution of the pixel signals. However, this approach is bound
to fail for much larger chips needed in practice. Therefore, a more objective
analysis is required to quantify the gains and their significance. To this end,
we can regard the signatures as vectors in high dimensional Euclidean spaces
(121D and 49D, respectively). The cosine of the angle between these vectors
signatures and their Euclidean distances can be used to get the objective analysis
of the signatures if they are properly normalized to provide a faircomparison,
using standard Z-scores transformation. The left matrix in the bottom center
in Fig. 4 shows the cosine values are computed between each pair of disease
vectors in graphical form. Euclidean distances are also shown on the bottom right
between all possible pair of diseases. The top row shows the cosine matrix and
Euclidean distance matrix for large chip, while the bottom row is for small chip.
Euclidean distances were also normalized so as to compare the high dimensional
(121 for large chip) Euclidean distances with lower dimensional (49 for small
chip) Euclidean distances.

The difference in the cosine values matrices for large and small chip signa-
tures is now obvious, as is the improvement in the distribution of vectors in
Euclidean space. The brighter signatures shown imply either orthogonal vectors
or large spatial distances between signatures. (Dark values would imply that the
signature vectors are parallel or close by in Euclidean distance.)

4 Conclusions and Future Work

This paper probes the memory capacity of DNA oligochips beyond the raw ca-
pacity to store volumes of independent data. It gives experimental (in simulation)
and theoretical analyses of the ability of DNA to encode and discern semantic
relationships in contexts as complex and wide ranging as natural language and
bioinformatic analysis. First, we show how DNA memories can be designed to
store information about English texts so that they might be able to “conduct
a conversation” (perhaps extremely slowly, as slow as the chemistry on DNA
chips compared to natural language) about their content with an interlocutor
who wants to learn about the subject contained in the memories. In this pre-
liminary approach, the results suggest that these memories can capture enough
semantics of natural language to be competitive with, if not better than (due
to their scalability to very large corpora on large DNA chips), state-of-the-art
methods in conventional artificial intelligence.

A second application of the same essential idea and technique in bioinformatics
gives a consistent result in a different area. We show how a biomolecular comput-
ing analysis can be used to re-design DNA microarrays in order to increase their
sensitivity to the level required for successful discrimination of conditions that
may escape detection by standard methods, in disease diagnosis for example. A
direct application of the same technique used for semantic analysis constitutes
a new approach to genomic analysis that increases the signal-to-noise (SNR) ra-
tio in microarrays commonly used in bioinformatics. The method yields higher

348 K.C. Bobba et al.

resolution and accuracy in the analysis of genomic data, and only requires some
processing in what can be termed an “orthogonalization” procedure to the given
set of targets/genes before placing them on the microarrays. These advantages
may be critical for problems such as classification problems (disease/healthy
data). More details can be found in (Garzon et al., 2005)[10].

Advantages on the common technique used in this paper for both applica-
tions are worth pointing out. First, the selection protocol has been performed
in vitro (Chen et al., 2004)[5] and hence scales well to massive numbers of biotic
data, as well as, although not evidently to abiotic data (Garzon et al., 2005) [10].
Second, further applications of this technique can be easily envisioned to large
amounts of data given current advances in the design of noncrosshybridizing
DNA oligo sets on which they are based.

Acknowledgements

Partial support from the National Science Foundation grantQuBiC/EIA-0130385.

References

1. E. Baum. Building an associative memory vastly larger than the brain. Science,
268(5210):583–585, 1995.

2. H. Bi, J. Chen, R. Deaton, M. Garzon, H. Rubin, and D. Wood. A pcr-based
protocol for in vitro selection of non-crosshybridizing oligonucleotides. J. of Natural
Computing, 2:4:417–426, 2003.

3. J. Chen, R. Deaton, M. Garzon, J.W. Kim, D.H. Wood, H. Bi, D. Carpenter, J.S.
Le, and Y.Z. Wang. Sequence complexity of large libraries of dna oligonucleotides.
In 11th International Conference on DNA Computing, page in press, 2005.

4. J. Chen, R. Deaton, Max Garzon, D.H. Wood, H. Bi, D. Carpenter, and Y.Z.
Wang. Characterization of non-crosshybridizing dna oligonucleotides manufactured
in vitro. Proc. 8th Int Conf on DNA Computing DNA8.

5. J. Chen, R. Deaton, Max Garzon, D.H. Wood, H. Bi, D. Carpenter, and Y.Z.
Wang. Characterization of non-crosshybridizing dna oligonucleotides manufactured
in vitro. In L. Smith G.C. Mauri, editor, 10th International Workshop on DNA
Computing, pages 50–61, 2004.

6. M. Garzon and R. Deaton. Codeword design and information encoding in dna
ensembles. J. of Natural Computing, 3:253–292, 2004.

7. M. Garzon, R. Deaton, P. Neathery, D. R. Franceschetti, and R. C. Murphy. A new
metric for dna computing. In Second Annual Genetic Programming Conference,
pages 472–478, 1997.

8. M. Garzon, R. Deaton, P. Neathery, R.C. Murphy, D.R. Franceschetti, and
E. Stevens Jr. On the encoding problem for dna computing. In The Third DIMACS
Workshop on DNA-based Computing, pages 230–237, 1997.

9. M. Garzon, A. Neel, and K. Bobba. Efficiency and reliability of semantic retrieval
in dna-based memories. In 9th International Workshop on DNA Based Computers,
pages 157–169, 2003.

10. M. Garzon, V. Phan, K. Bobba, and R. Kontham. Sensitivity analysis of microarray
data: A new approach. In Proc. IBE Conference, Athens GA., 2005. Biotechnology
Press.

“Reasoning” and “Talking” DNA: Can DNA Understand English? 349

11. A.C. Graesser, P. Penumatsa, M. Ventura, Z. Cai, and X. Hu. Using lsa in au-
totutor: Learning through mixed initiative dialogue in natural language. In: T.
Landauer, D. McNamara, S. Dennis, and W. Kintsch (Eds.), LSA: A Road to
meaning. Mahwah, NJ: Erlbaum, page in press, 2006.

12. T. Head, M. Yamamura, and S. Gal. Aqueous computing: Writing on molecules.
1999. Proceedings of the Congress on Evolutionary Computing (CEC’99).

13. T. Head, M. Yamamura, and S. Gal. Relativized code concepts and multi-tube dna
dictionaries. In Finite vs Infinite: Contributions to an eternal dilemma (Discrete
math and Theoretical Computer SCience), pages 175–186, 2001.

14. M. Kanehisa, S. Goto, S. Kawashima, and A. Nakaya. The kegg databases at
genome net. Nucleic Acid Res., 30:42–46, 2002.

15. A. Neel and M.H. Garzon. Semantic retrieval in dna-based memories with gibbs
energy models. Biotechnology Progress, 21:in press, 2006.

16. S. Rimour, D. Hill, C. Militon, and P. Peyret. Goarrays -highly dynamic and
efficient microarray probe design. Bioinformatics, 21(7):1094–1103, 2005.

17. D. Laham T.K. Landauer, P.W. Foltz. Introduction to latent semantic analysis.
Discourse Processes, 25:259–284, 1998.

C. Mao and T. Yokomori (Eds.): DNA12, LNCS 4287, pp. 350 – 359, 2006.
© Springer-Verlag Berlin Heidelberg 2006

A New Readout Approach in DNA Computing Based on
Real-Time PCR with TaqMan Probes

Zuwairie Ibrahim1, John A. Rose2, Yusei Tsuboi3, Osamu Ono4, and Marzuki Khalid1

1 Center for Artificial Intelligence and Robotics, Department of Mechatronics and Robotics,
Faculty of Electrical Engineering, Universiti Teknologi Malaysia,

81310 UTM Skudai, Johor Darul Takzim, Malaysia
zuwairie@fke.utm.my, marzuki@utmkl.utm.my

http://fke.utm.my/~zuwairie
2 Institute of Information Communication Technology,

Ritsumeikan Asia Pacific University, 1-1 Jumonjibaru, Beppu-shi, Oita 874-8577 Japan
Japan Science and Technology Agency-CREST

jarose@apu.ac.jp
3 Bio-Mimetic Control Research Center, RIKEN, 2271-130 Anagahora,

Shimoshidami, Moriyama-ku, Nagoya, 463-0003, Japan
tsuboi@bmc.riken.jp

4 Institute of Applied DNA Computing, Meiji University, 1-1-1 Higashi-mita, Tama-ku,
Kawasaki-shi, Kanagawa-ken, 214-8571 Japan

ono@isc.meiji.ac.jp

Abstract. A new readout approach for the Hamiltonian Path Problem (HPP) in
DNA computing based on the real-time polymerase chain reaction (PCR) is in-
vestigated. Several types of fluorescent probes and detection mechanisms are
currently employed in real-time PCR, including SYBR Green, molecular bea-
cons, and hybridization probes. In this study, real-time amplification performed
using the TaqMan probes is adopted, as the TaqMan detection mechanism can
be exploited for the design and development of the proposed readout approach.
Double-stranded DNA molecules of length 120 base-pairs are selected as the
input molecules, which represent the solving path for an HPP instance. These
input molecules are prepared via the self-assembly of 20-mer and 30-mer sin-
gle-stranded DNAs, by parallel overlap assembly. The proposed readout
approach consists of two steps: real-time amplification in vitro using TaqMan-
based real-time PCR, followed by information processing in silico to assess the
results of real-time amplification, which in turn, enables extraction of the Ham-
iltonian path. The performance of the proposed approach is compared with that
of conventional graduated PCR. Experimental results establish the superior per-
formance of the proposed approach, relative to graduated PCR, in terms of im-
plementation time.

1 Introduction

Since the discovery of the polymerase chain reaction (PCR) [1], numerous applica-
tions have been explored, primarily in the life sciences and medicine, and importantly,
in DNA computing as well. The subsequent innovation of real-time PCR has rapidly

 A New Readout Approach in DNA Computing 351

gained popularity and plays a crucial role in molecular medicine and clinical diagnos-
tics [2]. All real-time amplification instruments require a fluorescence reporter mole-
cule for detection and quantitation, whose signal increase is proportional to the
amount of amplified product. Although a number of reporter molecules currently
exist, it has been found that the mechanism of the TaqMan hydrolysis probe is very
suitable for the design and development of readout method for DNA computing, and
is thus selected for the current study.

A TaqMan DNA probe is a modified, non-extendable dual-labeled oligonucleo-
tides. The 5’ and 3’ ends of the oligonucleotide are terminated with an attached re-
porter, such as FAM, and quencher fluorophore dyes, such as TAMRA, respectively,
as shown in Fig. 1 [3]. Upon laser excitation at 488 nm, the FAM fluorophore, in
isolation emits fluorescence at 518 nm. Given proximity of the TAMRA quencher,
however, based on the principle of fluorescence resonance energy transfer (FRET),
the excitation energy is not emitted by the FAM fluorophore, but rather is transferred
along the sugar-phosphate-backbone to TAMRA. As TAMRA emits this absorbed
energy at a significantly longer wavelength (580 nm), the resulting fluorescence is not
observable in Channel 1 of real-time PCR instruments [4].

Fig. 1. Illustration of the structure of a TaqMan DNA probe. Here, R and Q denote the reporter
and quencher fluorophores, respectively.

The combination of dual-labeled TaqMan DNA probes with forward and reverse
primers is a must for a successful real-time PCR. As PCR is a repeated cycle of three
steps (denaturation, annealing, and polymerization), a TaqMan DNA probe will anneal
to a site within the DNA template in between the forward and reverse primers during the
annealing step, if a subsequence of the DNA template is complementary to the sequence
of the DNA probe. During polymerization, Thermus aquaticus (Taq) DNA polymerase
will extend the primers in a 5’ to 3’ direction. At the same time, the Taq polymerase
also acts as a “scissor” to degrade the probe via cleavage, thus separating the reporter
from the quencher, as shown in Fig. 2 [5], where R and Q denote the reporter and
quencher dyes, respectively. This separation subsequently allows the reporter to emit its
fluorescence [6]. This process occurs in every PCR cycle and does not interfere with the
exponential accumulation of PCR product. As a result of PCR, the amount of DNA
template increases exponentially, which is accompanied by a proportionate increase in
the overall fluorescence intensity emitted by the reporter group of the excised TaqMan
probes. Hence, the intensity of the measured fluorescence at the end of each PCR po-
lymerization is correlated to the total amount of PCR product, which can then be de-
tected, using a real-time PCR instrument for visualization.

352 Z. Ibrahim et al.

In this paper, we propose a new readout method tailored specifically to HPP in
DNA computing, which employs a hybrid in vitro-in silico approach. In the in vitro
phase, O(|V|2) TaqMan-based real-time PCR reactions are performed in parallel, to
investigate the ordering of pairs of nodes in the Hamiltonian path of a |V|-node in-
stance graph, in terms of relative distance from the DNA sequence encoding the
known start node. The resulting relative orderings are then processed in silico, which
efficiently returns the complete Hamiltonian path. To the best of our knowledge, the
proposed approach is the first experimentally validated optical method specifically
designed for the quick readout of HPP instances, in DNA computing. Previously,
graduated PCR, which was originally demonstrated by Adleman [7], was employed to
perform such operations. While a DNA chip based methodology, which makes use of
biochip hybridization for the same purpose has been proposed [8-10], this method is
more costly, and has yet to be experimentally implemented.

Fig. 2. Degradation of a TaqMan probe, via cleavage by DNA polymerase

2 Notation and Basic Principle

First of all, v1(a)v2(b)v3(c)v4(d) denotes a double-stranded DNA (dsDNA) which contains
the base-pairs subsequences, v1, v2, v3, and v4, respectively. Here, the subscripts in
parenthesis (a, b, c, and d) indicate the length of each respective base-pair subse-
quence. For instance, v1(20) indicates that the length of the double-stranded subse-
quence, v1 is 20 base-pairs (bp). When convenient, a dsDNA may also be represented
without indicating segment lengths (e.g., v1v2v3v4).

A reaction denoted by TaqMan(v0,vk,vl) indicates that real-time PCR is performed
using forward primer v0, reverse primer

lv , and TaqMan probe vk. Based on the pro-

posed approach, there are two possible reaction conditions regarding the relative loca-
tions of the TaqMan probe and reverse primer. In particular, the first condition occurs
when the TaqMan probe specifically hybridizes to the template, between the forward
and reverse primers, while the second occurs when the reverse primer hybridizes
between the forward primer and the TaqMan probe. As shown in Fig. 3, these two
conditions would result in different amplification patterns during real-time PCR,
given the same DNA template (i.e., assuming that they occurred separately, in two
different PCR reactions). The higher fluorescent output of the first condition is a typi-
cal amplification plot for real-time PCR. In contrast, the relatively lower fluorescent
output of the second condition, which reflects the cleavage of a lower number of
TaqMan probes via DNA polymerase due to the ‘unfavourable’ hybridization position

 A New Readout Approach in DNA Computing 353

of the reverse primer, is due to linear rather than exponential amplification of the
template. Thus, TaqMan(v0,vk,vl) = YES if an amplification plot similar to the first
condition is observed, while TaqMan(v0,vk,vl) = NO if an amplification plot similar to
the second condition is observed.

Fig. 3. An example of amplification plots corresponding to TaqMan(v0,vk,vl) = YES (first con-
dition) and TaqMan(v0,vk,vl) = NO (second condition)

3 The Proposed Readout Approach

Let the output of an in vitro computation of an HPP instance of the input graph be
represented by a 120-bp dsDNA v0(20)v2(20)v4(20)v1(20)v3(20)v5(20), where the Hamiltonian
path V0 V2 V4 V1 V3 V5, begins at node V0, ends at node V5, and contains
intermediate nodes V2, V4, V1, and V3, respectively. Note that in practice, only the
identities of the starting and ending nodes, and the presence of all intermediate nodes
will be known in advance to characterize a solving path. The specific order of the
intermediate nodes within such a path is unknown.

The first part of the proposed approach, which is performed in vitro, consists of
[(|V|-2)2-(|V|-2)]/2 real-time PCR reactions, each denoted by TaqMan(v0,vk,vl) for all k
and l, such that 0 < k < |V|-2, 1 < l < |V|-1 , and k < l. For this example instance, so that
the DNA template is dsDNA v0v2v4v1v3v5, these 6 reactions, along with the expected
output in terms of “YES” or “NO” are as follows:

(1) TaqMan(v0,v1,v2) = NO
(2) TaqMan(v0,v1,v3) = YES
(3) TaqMan(v0,v1,v4) = NO
(4) TaqMan(v0,v2,v3) = YES
(5) TaqMan(v0,v2,v4) = YES
(6) TaqMan(v0,v3,v4) = NO

354 Z. Ibrahim et al.

Note that the overall process consists of a set of parallel real-time PCR reactions,
and thus requires O(1) laboratory steps for in vitro amplification. The accompanying
SPACE complexity, in terms of the required number of capillary tubes is O(|V|2).
Clearly, only one forward primer is required for all real-time PCR reactions, while the
number of reverse primers and TaqMan probes required with respect to the size of
input graph are each |V|-3.

After all real-time PCR reactions are completed, the in vitro output is subjected to a
pseudo-code for in silico information processing, producing the satisfying Hamiltonian
path of the HPP instance in O(n2) TIME (here, n denotes vertex number) as follows:

Input: A[0…|V|-1]=2 // A[2, 2, 2, 2, 2, 2]
A[0]=1, A[|V|-1]=|V| // A[1, 2, 2, 2, 2, 6]

for k=1 to |V|-3
for l=2 to |V|-2

 while l>k
 if TaqMan(v0,vk,vl) = YES
 A[l] = A[l]+1
 else A[k] = A[k]+1
 endif
 endwhile
 endfor
 endfor

It is assumed that a Hamiltonian path is stored in silico, in an array (e.g., A[0…|V|-
1]), for storage, information retrieval, and processing, such that A[i]∈A returns the
exact location of a node, Vi∈V, in the Hamiltonian path. Based on the proposed
pseudo-code, and the example instance, the input array A is first initialized to A = {1,
2, 2, 2, 2, 6}. During the loop operations of the pseudo-code, the elements A[0]∈A
and A[|V|-1]∈A, are not involved, as these two elements may conveniently be initial-
ized to the correct values, as the distinguished starting and ending nodes of the Hamil-
tonian path are known in advance. The loop operations are thus strictly necessary only
for the remaining elements, A[1,2,3…, |V|-2]∈A. Again, for the example instance,
the output of the in silico information processing is A = {1, 4, 2, 5, 3, 6}, which repre-
sents the Hamiltonian path, V0 V2 V4 V1 V3 V5. For instance, in this case, it is
indicated that V3 is the fifth node in the Hamiltonian path, since A[3] = 5, and so on.

4 Experiments

4.1 Preparation of Input Molecules

A pool of 120-bp input molecules v0(20)v2(20)v4(20)v1(20)v3(20)v5(20) is prepared, via stan-
dard protocol of parallel overlap assembly (POA) of single-stranded DNA strands
(ssDNAs). For this purpose, 11 ssDNAs are required, including additional ssDNAs,
which act as link sequences for self-assembly. These strands are listed in Table 1.
After completion, amplification via PCR was performed using the same protocol as
POA. The forward primers and reverse primers used for the PCR reaction were 5’-
CCTTAGTAGTCATCCAGACC-3’ and 5’-CCACTGGTTCTGCATGTAAC-3’,
respectively.

 A New Readout Approach in DNA Computing 355

Table 1. The required single-stranded DNAs for the generation of input molecules

Name DNA Sequences (5’-3’) Length

v0 CCTTAGTAGTCATCCAGACC 20
v2 CGCGCACCTTCTTAATCTAC 20
v4 ATGCGCCAGCTTCTAACTAC 20
v1 TGGACAACCGCAGTTACTAC 20
v3 TCCACGCTGCACTGTAATAC 20
v5 GTTACATGCAGAACCAGTGG 20
v2v4 GCAGCGTGGAGTAGTTAGAA 20
v4v1 AAGGTGCGCGGTATTACAGT 20
v1v3 CGGTTGTCCAGTAGATTAAG 20
v0v2 GCTGGCGCATGGTCTGGATGACTACTAAGG 30
v3v5 CCACTGGTTCTGCATGTAACGTAGTAACTG 30

The PCR product was subjected to gel electrophoresis and the resultant gel image
was captured, as shown in Fig. 4. The 120-bp band in lane 2 shows that the input
molecules have been successfully generated. Afterwards, the DNA of interest is ex-
tracted. The final solution for real-time PCR was prepared via dilution of the ex-
tracted solution, by adding ddH2O (Maxim Biotech, Japan) into 100 μl.

4.2 Real-Time PCR Experiments

The real-time PCR reaction involves primers (Proligo, Japan), TaqMan probes
(Proligo, Japan), and LightCycler TaqMan Master (Roche Applied Science, Ger-
many). The sequences for forward primers, reverse primers, and TaqMan probes are
listed in Tables 2 and Table 3. In Table 2, the GC contents (GC%) and melting tem-
perature (Tm), are also shown. The LightCycler TaqMan Master essentially contains 1
vial of enzyme, 3 vials of master mix, and 2 vials of PCR grade/water. The master
mix contains FastStart Taq DNA polymerase, reaction buffer, MgCl2, and dNTP mix
(with dUTP instead of dTTP). PCR grade/water is important to adjust the final reac-
tion volume for real-time PCR. Subsequently, a reaction mix is prepared by pipetting
10 μl of enzyme into the master mix.

For real-time PCR, as recommended by the manufacturer, the final concentration
of primers should be between 0.1-1 μM, whereas the final concentration of the DNA
probes should be between 0.05-0.1 μM. The final concentration for primers is set to
0.5 μM in this study, and for the TaqMan probes, the maximum final concentration,
which is 0.1 μM, is chosen and prepared.

In this study, real-time PCR was performed on a LightCycler 2.0 Instrument
(Roche Applied Science, Germany) where amplification is carried out in a 20 μl
LightCycler capillary tube (Roche Applied Science, Germany). Two solutions were
prepared for each reaction: (1) 3 μl of a 10x primer/probe solution (5 μM of primers
and 1 μM of probes), prepared by mixing 0.75 μl of 20 μM forward primer solution,
0.75 μl of a 20 μM reverse primer solution, and 1.5 μl of a 2 μM probe solution; and,
(2) 15 μl of PCR mix, containing 4 μl of reaction mix, 9 μl PCR grade/water, and 2 μl
of the previous 10x primer/probe solution. Note that even though 3 μl of 10x

356 Z. Ibrahim et al.

Fig. 4. Gel image for the preparation of input molecules. Lane M denotes a 20-bp molecular
marker, lane 1 is the product of initial pool generation based on parallel overlap assembly, and
lane 2 is the amplified PCR product.

Table 2. Sequences for forward primer and reverse primers employed for the real-time PCR

Primer DNA Sequences (5’-3’) GC% Tm (ºC)

Forward primer, v0 CCTTAGTAGTCATCCAGACC 0.5 53.5
Reverse primer,

2v GTAGATTAAGAAGGTGCGCG 0.5 59.8
Reverse primer,

4v GTAGTTAGAAGCTGGCGCAT 0.5 59.4

Reverse primer,
1v GTAGTAACTGCGGTTGTCCA 0.5 58.6

Reverse primer,
3v GTATTACAGTGCAGCGTGGA 0.5 59.7

 A New Readout Approach in DNA Computing 357

Table 3. Sequences for TaqMan dual-labeled probes

TaqMan Probes Sequences

Taqw R-5’-CGCGCACCTTCTTAATCTAC-3’-Q
Taqx R-5’-ATGCGCCAGCTTCTAACTAC-3’-Q
Taqy R-5’-TGGACAACCGCAGTTACTAC-3’-Q
Taqz R-5’-TCCACGCTGCACTGTAATAC-3’-Q
Taqw R-5’-CGCGCACCTTCTTAATCTAC-3’-Q

primer/probe solution was prepared, only 2 μl of that solution was used for the prepa-
ration of PCR mix. 15 μl of PCR mix was then injected via pipette into a capillary
tube. Afterwards, 5 μl of the input molecule solution was injected into the same capil-
lary tube. The capillary tube was then sealed with a stopper, and placed in an adapter.
The adapter containing the capillary was placed into a microcentrifuge, and the cen-
trifugation was performed at 3000 rpm.

Seven separate real-time PCR reactions, including a negative control were per-
formed, in order to implement the first stage of the proposed HPP readout. Note that
the seventh reaction is for a negative control, which contains PCR grade/water instead
of input molecules. The amplification consists of 45 cycles of denaturation, annealing,
and extension, performed at 95ºC, 48ºC, and 72ºC, respectively. The annealing tem-
perature is primer-dependent, and should be selected at 5ºC below the calculated
primer melting temperatures. In the current study, the lowest primer melting tempera-
ture was estimated at 53.5ºC. Accordingly, an annealing temperature of 48ºC was
selected. The resulting real-time PCR amplification plots are illustrated in Fig. 5.

Fig. 5. Output of real-time PCR and grouping of output signals into three regions: amplification
region (YES), non-amplification region (NO), and negative control region. The amplification
phase, static phase, and error phase are also shown. The numbering 1 to 6 indicate the [(|V|-2)2-
(|V|-2)]/2 reactions TaqMan(v0,vk,vl) of input instance, while the seventh reaction is for negative
control.

358 Z. Ibrahim et al.

6 Discussion

As discussed in Section 2, in the in vitro stage of the proposed approach, each real-time
PCR reaction is mapped to a binary output (i.e., either “YES” or “NO”), based on the
occurrence or absence of the typical exponential amplification. More specifically, a
combination of forward primer, reverse primer, and TaqMan probe, operating on an
input template molecule produces an output signal, which may then be recognized as
an amplification plot corresponding to either the first or second condition, respectively.
Based on the output plot of Fig. 5, the output of the negative control (seventh reaction)
can be distinguished easily. As shown in Fig. 5, the real-time PCR output signals can
be grouped into three regions: an amplification region, a non-amplification region, and
a negative control region. Given the existence of this grouping, the subsequent in silico
information processing is able to determine the Hamiltonian path of the input instance
(e.g., V0 V2 V4 V1 V3 V5, for the example instance).

In this study, each real-time PCR reaction consists of 45 cycles, and requires about
1 hour and 10 minutes. The resulting set of real-time PCR output signals may collec-
tively be subdivided into three phases: an amplification phase, a static phase, and an
error phase. Here, the amplification phase is defined as the initial time period, during
which amplification-like signals are observed. The static phase, on the other hand, is
defined as the subsequent time period, in which nearly all of the output signals exhibit
only slight increases in fluorescence, with an increasing number of cycles. Lastly, the
error phase is defined as the time period in which the negative control signal behaves
as an amplification-like signal. Consideration of this effect is important, as shown by
the current example instance. In particular, during the error phase (only), the output
signal of reaction 3, which is properly clustered into the non-amplification region,
enters the amplification region erroneously. In practice, real-time PCR may be halted,
if desired, after the 11th cycle (i.e., after 25 min), as the output signals may already be
easily distinguished and grouped into the above defined regions, and a set of binary
output (i.e., either “YES” or “NO”) data may be obtained, as the static and error
phases are not important for this purpose. Note that at present, however, this grouping
itself is not computerized.

If the ability to extract molecular information is graded based on time factors, the
proposed TaqMan-based real-time PCR approach is superior to conventional gradu-
ated PCR. In particular, for the case of graduated PCR, following DNA extraction,
roughly 30 min is normally required to perform each PCR reaction, 30 min for gel
electrophoresis, and another 30 min to stain the gel with SYBR Gold solution. Thus,
graduated PCR is proven to be a very time consuming method. As discussed previ-
ously, it required about 25 min for the real-time PCR, and the in silico information
processing can be done in less than 1 min. Hence, it would appear that the proposed
approach is superior, in terms of implementation time compared to conventional
graduated PCR.

7 Conclusion

This research offers an improved and effective readout approach for DNA computing,
which consists of in vitro real-time amplification and in silico information processing,

 A New Readout Approach in DNA Computing 359

respectively. It is clear that the use of real-time PCR, as proposed in this paper differs
from the conventional application of real-time PCR in the life sciences and medicine.
Note that although the current approach has been developed here specifically for HPP
readout, variations of this approach could also be applied to other computation models
of DNA computing, in which automated and rapid visualization of the computational
output are required.

Acknowledgments. Zuwairie Ibrahim is very thankful to Universiti Teknologi Ma-
laysia (UTM) for granting a study leave in Meiji University, Japan, under SLAB-JPA
scholarship. This work was supported, in part, by a Grant-in-Aid for Scientific Re-
search B (18300100; J. Rose), from the Japan Society for the Promotion of Science
(JSPS).

References

1. Mullis, K. et al.: Specific Enzymatic Amplification of DNA in vitro: The Polymerase
Chain Reaction, Cold Spring Harbor Symposium on Quantitative Biology, Vol. 51 (1986)
263-273

2. Overbergh, L. et al.: The Use of Real-Time Reverse Transcriptase PCR for the Quantifica-
tion of Cytokine Gene Expression, Journal of Biomolecular Techniques, Vol. 14 (2003)
pp. 33-43

3. Walker, N.J.: A Technique Whose Time Has Come, Science, Vol. 296 (2002) 557-559
4. Bubner, B. and Baldwin, I.T.: Use of Real-Time PCR for Determining Copy Number and

Zygosity in Transgenic Plants, Plant Cell Reports, Vol. 23 (2004) 263-271
5. Heid, C.A. et al.: Real-Time Quantitative PCR, Genome Research, Vol. 6 (1996) 986-994
6. Holland, P.M. et al.: Detection of Specific Polymerase Chain Reaction Product by Utiliz-

ing the 5’ 3’ Exonuclease Activity of Termus Aquaticus DNA Polymerase, Proceedings
of the National Academy of Sciences of the United States of America, Vol. 88 (1991)
7276-7280

7. Adleman, L.: Molecular Computation of Solutions to Combinatorial Problems, Science,
Vol. 266 (1994) 1021-1024

8. Rose, J.A. et al.: The Effect of Uniform Melting Temperatures on the Efficiency of DNA
Computing, DIMACS Workshop on DNA Based Computers III (1997) 35-42

9. Wood, D.H.: A DNA Computing Algorithm for Directed Hamiltonian Paths, Proceedings
of the Third Annual Conference on Genetic Programming (1998) 731-734

10. Wood, D.H. et al.: Universal Biochip Readout of Directed Hamiltonian Path Problems,
Lecture Notes in Computer Science, Vol. 2568 (1999) 168-181

C. Mao and T. Yokomori (Eds.): DNA12, LNCS 4287, pp. 360 – 373, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Automating the DNA Computer: Solving n-Variable
3-SAT Problems

Clifford R. Johnson

Dept. of Chemistry
New York University
crjohnso@usc.edu

Abstract. In the decade since the first molecular computation was performed, it
has been shown that DNA molecules can perform sophisticated, massively
parallel computations avoiding the Von Neumann bottleneck. However,
progress in the field has been slow. The largest problem solved to date is an
instance of the 20-variable 3-CNF SAT problem. Performing the computation
took more than two man-weeks to complete because every aspect of the
computation was performed by hand. Molecular computations are extremely
labor intensive and error prone--automation is necessary for further progress.

The next step, (the second generation DNA computer – that of taking the
laborious, laboratory bench protocols performed by hand, and automating
them), has been achieved with the construction of an automated DNA computer
dubbed EDNAC. It employs the same paradigm that was used to solve the
labor-intensive instance of the 20-variable 3-CNF SAT problem. Using a
combinatorial DNA library and complementary probes, EDNAC solves
instances of the n-variable 3-CNF SAT problem. A 10 variable instance of the
3-CNF SAT problem was essayed. The computation took 28 hours to perform.
EDNAC correctly computed nine of the ten variables, with a tenth variable
remaining ambiguous. This result is comparable to current results in the
molecular computation community. This research tested the critical properties,
such as complexity, robustness, reliability, and repeatability necessary for the
successful automation of a molecular computer.

1 Introduction

In the decade since the first molecular computation [1], the largest problem solved to
date is a 20 variable instance of the 3-CNF SAT problem performed by the Adleman
Laboratory for Molecular Science [2]. Using the theoretical model and techniques
discussed in the two papers, [2], and [3], first an instance of the 6-variable 3-CNF
SAT problem was solved, then an instance of the 20 variable 3-CNF SAT. Both
computations were performed by hand. The 20 variable computation took more than
two man-weeks to perform, not including time for set up and sequencing. It almost
goes without saying that this is laborious and very error prone. Molecular
computations require “many laborious separation and detection steps, which will only
increase as the scale increases.” [4] Automation is essential for progress in the field.

 Automating the DNA Computer: Solving n-Variable 3-SAT Problems 361

An automated DNA computer, dubbed EDNAC has been designed, built, and
tested. An instance of the 10 variable 3-CNF SAT problem was essayed. EDNAC
correctly computed 9 out of 10 variables, with the tenth variable remaining
ambiguous. This is comparable to current results in the molecular computation
community. The automated computation took 28 hours to perform. By extrapolation,
a 20 variable problem would take 2 days on EDNAC as compared to more than two
weeks by hand. Furthermore, EDNAC is amenable to miniaturization with a
concomitant reduction in computation time.

2 The Computational Paradigm

The computational paradigm used by EDNAC is the same one used for previous 6
variable and 20 variable 3 SAT computations, based on Lipton encoding of DNA [5],
and, in fact uses exactly the same chemistry as in references [2] and [3]. The basic
unit of computation is separation, performed by using a combinatorial library and
Watson-Crick complementary probes. Probes, immobilized in plugs of acrylamide
gel, perform the separation operation by annealing to complementary subsequences
on strands of the combinatorial library.

The library sequences and details on synthesis, are found in references [2] and [3].
Recalling the terminology used in [2], variables are represented as Xi , 1 i n.

Each variable has 2 distinct 15-mer sequences one for Xi = True (represented as Xi
T)

and another sequence for Xi = False (represented as Xi
F). The 15-mer Watson-Crick

complements of these sequences (i.e., the probes) are represented by Xi
T and Xi

F
respectively.

A typical instance of the 3-CNF SAT problem presented to EDNAC is the
following 10 variable 14-clause problem:

(X2 v X4 v X9) ^ (X8 v ¬X10 v X5) ^ (¬X6 v ¬X8 v ¬X10) ^
φ = (X2 v ¬X4 v ¬X9) ^ (¬X9 v ¬X3 v X6) ^ (X10 v X5 v X7) ^ Eq. (1)

(¬X7 v X1 v ¬X2) ^ (X2 v ¬X4 v X9) ^ (X3 v X6 v ¬X8) ^
(¬X5 v X7 v X1) ^ (¬X2 v ¬X4 v ¬X9) ^ (X2 v X4 v ¬X9) ^
(¬X1 v ¬X2 v X4) ^ (X2 v ¬X4 v X9)

Here φ has the unique solution:

 X1 = F, X2 = T, X3 = T, X4 = F, X5 = F, X6 = F, X7 = F, X8 = T, X9 = F, X10 = T.

In the above equation, each expression enclosed by a parenthesis is called a clause.
In the molecular world, these clauses are formed by covalently bonding (and thus
immobilizing) Acrydited® oligonucleotide probes (represented by Xi

T and Xi
F) to the

acrylamide gel in a computation module. The encoded, combinatorial ssDNA library
(representing every possible solution) is moved via electrophoresis through the
module. The module is maintained at 15° C ± 1° C under hybridizing conditions.
DNA strands that are complementary to the probe strands anneal and remain in the
module while strands that are not complementary pass through. The annealed strands
are strands that satisfy the clause. The non-annealing strands do not satisfy the
clause, and pass on through to waste.

362 C.R. Johnson

For example, in Figure 1, probes X2
T, X4

F, X9
F (which are the probes

complementary to the subsequences representing X2
T, X4

F, X9
F) are covalently

bonded to the acrylamide gel. Thus, library strands that have the X2 bit True, OR the
X4 bit False, OR the X9 bit False, will satisfy the clause and will be captured by
hybridizing to these probes. Strands with X2

F AND X4
T AND X9

T will not satisfy
the clause and will pass through the computational module to the waste well.

I The combinatorial library enters

the computation module, which

acts as a test for the clause.

II Strands that satisfy the clause,

hybridize to the covalently bound

probes and remain in the module.

Strands that do not satisfy the

clause pass through to waste. Satisfying strands

are captured.

Computation

module

Non satisfying strands

pass to waste.

Combinatorial

Library Probes

Fig. 1. The molecular implementation of a 3-CNF SAT computation

To continue the computation, the captured strands are released by heating to 65° C,
and then pass via electrophoresis to the next (cooled) computation model. Once
again, those strands that satisfy the clause hybridize and are captured; those that fail
the clause pass through the module and go on to waste. The computation
concatenates in this fashion to the final answer module. The final module will contain
the answer strands, i.e., those strands that have successfully satisfied all clauses.

3 Implementation of Automation

EDNAC has three major subsystems: I. The Computation Core, II. The Motion
Control System, and III. The Control System Shell.

I. The Computation Core
Figure 2 shows the basic architecture used
for EDNAC. Module 1 is heated (65° C ±
5° C). The strands pass to module 2 (15° C
± 1° C) via the electrophoretic current
going from buffer well A to buffer well C.
Those strands not satisfying the module-2
clause, pass through the module, to end up
in buffer waste well C, where they are
destroyed. As the computation progresses,
each module in the system is first cooled to
capture satisfying strands, then heated to

Fig. 2. Basic Architecture

 Automating the DNA Computer: Solving n-Variable 3-SAT Problems 363

release them for the next computation. To perform this function, a heater and a
Peltier junction slide underneath the modules on a sled. This sled also carries a set of
electrical commutators that progresses along with heating/cooling unit to provide the
correct voltages at the buffer wells A, B, C, and D in Figure 2.

1 3 42

Fig. 3. EDNAC architecture viewed from above

(1) Stator (2) Computation Core (3) Buffer well (4) Computation Module White arrow (lower
left) shows direction of computation.

Computation Core construction - In Figure 3 above, we see EDNAC’s
computation core, viewed from above, in the process of a computation. The buffer
wells are visible, as are the copper heating/cooling components of the computation
modules. The computation core comprises a 20" long, 4" wide, 1" thick, slab of High
Density Polyethylene (HDP). The HDP was milled so that 1" x 1" x ¾" slugs of
copper could be inserted at 1" intervals. These were secured with threaded bolts and
epoxied in place. The ¼" electrophoresis computation trough is milled through the
center of the copper slugs. Electrophoresis channels ¼" wide were milled between
the copper slugs to the buffer wells. The electrophoresis channels were then coated
with a thin layer of vacuumed epoxy to prevent current bypass.

The underside of the computation core electrophoresis unit, along the copper slug
edge, was milled and polished to allow the aluminum sled, securing the heating and
cooling units, to slide easily under the copper slugs. Platinum electrode wire was
tacked into each buffer well with aquarium silicon cement and soldered to 1” long
gold plated stator rails. Recessed head bolts holes were drilled every inch along the
edge for securing the core unit to a surfaced U-beam aluminum section.

364 C.R. Johnson

In Figure 3, the "sled" arrow points to the heater/cooler sled that slides under the
copper computational modules. The eighth module from the right is being heated to
65° C, while the seventh module from the right is being cooled to 15° C. Library
strands released from the eighth module pass via electrophoresis to the seventh
module, where the next computation is performed. The sled, with the heater/cooler
and commutators, chases the DNA combinatorial library down the electrophoresis
channel, left to right, through the clauses. The white arrow (lower left in photo)
indicates the channel center and shows the computation direction. The channels
between the copper slugs lead to the buffer wells.

Construction of a computation module - A plastic gel comb is placed in the trough,
and 0.8% agarose is poured into the troughs and channels. No gel is used in the
buffer wells. Once the agarose is set, the comb is lifted leaving a ¼ inch3 well for the
placement of the computation module. Approximately 150 l of ag-ac gel with
probes is pipetted into the well, then photo-catalyzed. Ag-ac is a mixture of the two
gel types, agarose (0.8%) and acrylamide (8.0%), and three probes at 100 pmoles
each. Once the agarose component has set, the acrylamide is catalyzed under UV
light for 3 minutes. In this manner, a ¼ inch3 computation gel module is formed and
centered in the trough of each of the copper slugs.

Preventing laminar flow disruption at channel junction points - Experiments
showed that when an opening occurs in the main electrophoresis channel, laminar
flow is disrupted. In particular, at the points where a buffer well channel joins the
main electrophoresis channel, eddy currents form, disrupting the laminar flow. The
eddy currents diffuse into the channel and deposit oligonucleotides there. This
becomes a source of contamination.

One remedy is to inject a small electrophoretic current into the adjoining channel
to counteract diffusion pressure at the juncture point. Experiments performed with
dyes and radioactively tagged oligonucleotides have shown that an injected counter
current equal to 1/10 of the main electrophoretic current is sufficient to maintain
laminar flow. In Figure 2, the small negative sign in buffer well B denotes this
injected counter current.

Similarly, to prevent non-satisfying strands from by-passing the channel leading to
buffer waste well C (where they are to be destroyed) and continuing on towards
module 3, a small electrophoretic counter current is applied from buffer well D to
buffer waste well C (denoted by a small negative sign in buffer well D in Figure 2).

The Sled – The frame of the automated computer is a modified HP plotter frame.
The sled is attached to the HP plotter pen bracket, which gives horizontal motion.
The sled contains a heater, Peltier junctions for cooling, a custom-machined
commutator system, and brackets for holding delivery lines from peristaltic pumps.
The heater and cooler units are separated by ¼” of insulation. This allows efficient
heating and cooling of juxtaposed computational modules. Because of the proximity
of the two units though, a single Peltier junction was insufficient for reliable cooling.
Two Peltier junctions, in a front to back configuration, were used to maintain the
necessary module temperature at 15º C.

• Heating unit – the heater is made from a milled block of copper with fiberglass
coated heating wires, running internally through the copper block. The tempe-
rature is adjusted with a Variac controlling an ac voltage ranging from 0 to 140

 Automating the DNA Computer: Solving n-Variable 3-SAT Problems 365

volts AC. The heater temperature can be adjusted from room temperature to
250ºC.

• Cooling unit – the cooling unit is formed from doubled Peltier junctions,
hermetically sealed to prevent condensation from shorting the junctions. A
forced air heat sink is used to improve heat convection off the hot side of the
Peltier. The Peltier temperature is adjusted with a DC power supple capable of
supplying 13 volts DC at 6 amps. At running temperature, with the heater
maintaining 65° C at the adjacent module, the Peltier junction set can maintain
the capture module at 15º C.

• Commutators – Four flexible strips of copper move along with the sled (in Figure
2, they would supply the current for wells A, B, C, and D.) They are held over
the computation core by an L-shaped brace, making contact from above with the
gold plated stators. (In Figure 3, the stators are visible as silvery bars tangential
to the bottom of the buffer wells. Though they look silver, they are gold plated.)
Each commutator strip has a 1k variable resistor placed in series to allow
individual regulation of current flow through the well electrode.

• Buffer delivery and evacuation – Individual peristaltic pumps can fill and
evacuate buffer fluid from each of the wells. This keeps fresh buffer in the wells
to avoid ion depletion, and allows the removal of unsuccessful DNA library
strands from the target waste well.

• Thermal transfer - Even though the computer was machined to precise tolerances
(1/10,000”), it is subjected to temperature gradients that cause minute physical
deformations preventing effective thermal conduction from the heater to the
release module. Even though the Computation Core is tightly bolted in place,
there is still enough of a geometrical deformation when heated so that a space is
formed between the heater sled and the release module. The heat transfer from
the heater to the release module is affected. Though the gap formed is only
1/5,000 of an inch wide, disruption of heat flow occurs. A water bearing was
incorporated into the machine to insure good thermal conduction between the
heating unit and the release module. This consists of a pumping system
delivering 100 μl of distilled water between the two surfaces at 2-minute
intervals. The Peltier-junction cooling unit did not require any heat transfer
assistance. When properly set up, it takes on the order of 75 seconds for the
temperature of the release module to reach 60º C, well above the Tm (denaturing
temperature) for the hybridized library strands, and for the capture module to
reach 16º C, well within the capture temperature range. It takes about 30 minutes
for the released DNA library strands to reach the capture module and another
hour for non-satisfying strands to pass through the module and to pass into the
waste well.

Visualizing a computation - To substantiate the oligonucleotide advance as the
computation is being performed, an aliquot of the 10-variable library was
radioactively labeled with 32P ddATP, and a series of images was obtained using a
phosphor imaging system (Molecular Dynamics Storm 860). Figure 4 is a composite
of multiple phosphor screen images, showing the tagged library progressing through a
computation. Shown are the first seven computations of a 10-variable 3-SAT
problem. The three images of Figure 5 are: 1) An image taken of the library prior to

366 C.R. Johnson

the computation, 2) An image taken at the end of the first computation, and 3) The
image of the partial solution after 7 computations. The reason for the extreme
radioactivity in the first well (Figures 4 and 5) is that it contains labeled free
mononucleotides as well as labeled library. Only failing strands are seen in the waste
wells thereafter.

Fig. 4. Composite images showing the progression of a computation

2.) Strands
satisfying clause
remain bound.

3.) Partial
solution after 7
computations.

1.) Library
prior to
computation.

2.) Non-satisfying strands
pass through module to the
waste wells.

Fig. 5. Diagram of the composite image

II. The Motion Control System – The motion control system manages the move-
ment of the heating/cooling unit. This unit slides under the computation gels
supplying the correct temperatures and voltages for a computation. As a computation
ends (for a 20 variable problem, there are 24 computations performed), the heating
cooling unit will move down to the next computation unit to perform a new
computation. The sled carries with it temperature sensors, dispensers for buffer
replenishment, electrodes to provide the correct voltages to each well, as well as the

 Automating the DNA Computer: Solving n-Variable 3-SAT Problems 367

heating and cooling devices. Nominally, the sled moves once every two hours -
however through the operator control panel this time can be adjusted from 500 milli-
seconds to 999.99 hours.

An Astrosyn MiniAngle stepper motor is attached, via a custom-machined bracket
and a dual cog synchronous belt system, to the HP plotter’s horizontal plotting-pen
mechanism. The sled is attached to the plotting-pen bracket and thus its position can
be controlled backward and forward by the stepper motor. Every 100 steps on the
stepper motor equals 1” of horizontal motion of the sled.

The stepper motor is coupled with a Pontech STP100 stepper motor controller
board, with an on-board e-prom to decode serial commands from the Labview
Management Program. An XT PC power supply powers the board and stepper motor.

III. The Control System Shell – To provide an easy, intuitive operator interface and
to handle the various processes for the molecular computation, a controller shell was
developed using LabView 6.0. The program was developed on a generic Pentium 4, 1
GHz computer. Digital and analog I/O is handled by a National Instruments PCI-
6025E digital I/O board (a 200 kS/s, 12-Bit, 16 Analog Input, Multifunction DAQ
board). With the Shell Program and the PCI-6025E DAQ board, all important aspects
of the computation process can be monitored and controlled. The Shell Program
provides a GUI (graphical user interface) for data acquisition, data analysis, and
process control. Sled position, ion depletion control, process timing, pump timing,
and voltage adjustment are all monitored and controlled. (Temperature control was
not completely implemented for the first experiments.) It also provides an intuitive
operator interface for easy manipulation of the control parameters.

Figures 6a and 6b show the Control Panel (6a) and the EDNAC frame (6b) during
a computation.

Fig. 6a. Control Panel displaying computation parameters

368 C.R. Johnson

Computation
Core

Control Panel Sled

Stepper motor
assembly

Fig. 6b. EDNAC performing a computation

4 Materials and Methods

The Library and Probes - The library used was one half of the twenty variable library
used in [2]. The library and probes were designed and synthesized according to
procedures described in [2] and [3]. They were tested for capture/release and for the
equi-molar distribution of answer strands following the procedures as described in the
two references [2] and [3].

Running the DNA Computer
Set-Up Procedure
A gel comb is inserted the length of the electrophoresis channel. The teeth of the
comb are centered on the copper slugs. These will form wells for the placement of
the computation modules. Agarose, 0.8%, is poured into the electrophoresis channel.

When the agarose is set, the comb is removed. Each copper slug will have a well
centered in it about ¼” square and ¼” deep. This well will hold about 150 l of
agarose/acrylamide/probe mixture, that is, the computation module. All but the first
well will hold a computation module. The first well is where the DNA library is
introduced.

When the computation modules have gelled, the buffer wells are filled with
1xTBE. The DNA library is pipetted into the first well.

The commutator heater/cooler sled is positioned under the first module.

 Automating the DNA Computer: Solving n-Variable 3-SAT Problems 369

Data is entered into the Management Shell Program for the number of variables,
release time, and buffer refresh time (and eventually, for the temperature and voltage
parameters). The computation is ready to be performed.

Selecting the start button starts the computation.
The release module is heated to 65º C ± 5° C while the capture module is cooled to

15º C ± 1° C. Because the length of the electrophoresis distance remains constant, the
voltage is maintained at about 125 V ± 15 V, to give a constant current of 3 mA. As
already mentioned, because of the reduced size of the unit, buffer in the wells is
replenished automatically, under control of the Shell Program, at regular intervals to
prevent buffer ion depletion.

5 Results

To obtain a read out of the answer strand, after the computation has finished, the last
module is excised from the electrophoresis gel. The DNA is leached out of the final
module by crushing the module in 1 ml of DD H2O and then incubating the material
at 65° C overnight. The DNA solution is decanted from the gel and desalted, then
assayed for the answer by graduated PCR or DNA sequencing.

Three different instances of the 10 variable 3-CNF SAT were run on EDNAC. All
three instances gave approximately the same result: EDNAC resolved nine of the ten
variables, with the 10th variable remaining ambiguous. Equation 1 was one of the
instances of the 10 variable 3-CNF SAT problem essayed on the DNA computer. An
analysis of the result of that computation follows.

Determination of the Answer
Once the computation is finished, a read-out of the answer strands, that is, those
strands found in the final module, is performed by graduated PCR (detailed in
references [2] and [3]). In graduated PCR, the answer strand is PCR amplified using
primer sets. The first primer set is for the 5' most subsequence, i.e., for bit X1 and for
the 3' most subsequence i.e., X10. That is, aliquots are PCR amplified using as the
primer sets <X1

F
 , X10

F>, <X1
T , X10

F>, <X1
F , X10

T>, <X1
T , X10

T>. Theoretically,
only one set of primers should show any amplification. In reality, more than one set
shows a PCR signal. The procedure for answer readout is as follows: Take the
decanted solution and serially dilute it in steps of 1:10. PCR amplify each of the
serial dilutions with the four primer sets. The primer set that amplifies the most dilute
aliquot is deemed to represent the truth-value assignments of the variables X1 and X10.
The number of dilution steps between the answer signal and the next strongest signal
is a measure of computation error.

The Full length PCR amplification - Assigning truth values to X1 and X10
Figure 7a and 7b show the results of the PCR amplification using the primers <X1

F ,
X10

F>, <X1
F , X10

T>, <X1
T , X10

F>, <X1
T , X10

T>. These are full-length strand
amplifications. The aliquot stock was 10-fold serially diluted from 10^-2 to 10^-4,
annotated on the images as -2, -3, and -4, and then PCR amplified. No PCR
amplification appeared after the 10^-5 dilution for any primer pair. All primer pairs
had a signal appear for at least 10^-2 dilutions. The primer pair <X1

F , X10
T> shows

the strongest signal-a signal can be observed at 10-4. Based on this, X1 is assigned the
value False; and X10 is assigned the value True.

370 C.R. Johnson

X1
FX10

F
X1

FX10
T

Fig. 7a.

X1
TX10

F X1
TX10

T

Fig. 7b.

Ideally, the primer pair <X1
F , X10

T> should have been the only primer pair to
exhibit PCR amplification. Here the <X1

F , X10
T> primer pair simply appears to be

the dominant species (right hand side, Figure 7a). The numbers –2, -3, -4 represent
1:10 dilutions. Thus, it takes a dilution of 10-5 of the final answer solution before the
<X1

F , X10
T> primer pair PCR no longer exhibits a signal. This is about ten-fold better

than the <X1
T , X10

T> and the <X1
F , X10

F >primer pair. This ten-fold difference
between correct answer strands and wrong answer strands is poor, and is probably the
reason for ambiguous resolution later on. Ideally, we would like to see absolutely no
PCR amplification for any primer pairs, outside of those for the answer strands.

Graduated PCR of inner subsequences - Assigning truth values to X2, X3, ... , X9
Once we have determined the truth assignments for the outer variables X1 and X10,

we continue with graduated PCR on the answer strand to identify the remaining
variable values.

Aliquots of this answer stock are then amplified via PCR with the appropriate
primers to assign truth-values to the variables X2 through X9. Keeping the 5' primer
as X1

F, we test the closest 3' subsequence with the primer sets (X1
F , X2

F) and (X1
F ,

X2
T) to assign the X 2 variable. Then we test the subsequent 3' subsequence with the

primer set (X1
F , X3

F), (X1
F , X3

T), to assign the X3 variable, and so on, finally testing
the X9 variable with the primer sets (X1

F , X9
F), (X1

F , X9
T). This gives each bit has a

signature oligonucleotide length; thus, we can readily identify the appropriate bits by
the length of their PCR product.

Again, looking for the dominant species (the PCR lane that gives the highest PCR
amplification) we can assign the variables their values.

The labels on the gels shown in 8a and 8b are in-house identifiers for the variables.
They represent:

E-->X2, F-->X3, G-->X4, H-->X5, I-->X6, J-->X7, K-->X8, L-->X9, and M-->X10.

Thus, for example, E0 represents X2
F, and E1 represents X2

T.
Using the in-house terms for the moment, by inspection, E1, F1, G0, H0, I0 are

dominant, (Figure8a), and in fact give the correct variable assignment.

 Automating the DNA Computer: Solving n-Variable 3-SAT Problems 371

Fig. 8a.

Fig. 8b.

However, in the inspection of the second gel (Figure 8b) obtaining the K value
poses a problem. The brightness of K0 and K1 are very close together, and an
objective evaluation of the correct value is impossible. In fact, K0 (the wrong value)
although smaller, appears brighter, and K1 (the correct value) appears dimmer, but
has a larger area. Inspection of the other variables gives the values of J0, L0, and M1,
which are the correct variable assignments. Of the 10 variables, 9 can be discerned
objectively. K0 and K1 cannot be convincingly distinguished, and the variable K is
ambiguous.

The unique truth assignment satisfying as determined by EDNAC is,

 X1 = F, X2 = T, X3 = T, X4 = F, X5 = F, X6 = F, X7 = F, X8 = ?, X9 = F, X10 =T.

For this computation, we were unable to unambiguously assign a value to X8.

6 Discussion

Three different instances of the 10 variable 3-CNF SAT were run on EDNAC.
(Equation 1 was one of the three.) All three instances gave approximately the same
result: EDNAC resolved nine of the ten variables, with the 10th variable remaining
ambiguous.

These results leave room for improvement. However, with each computational run
of EDNAC, the variable differences became easier to identify. Since exactly the same
chemistry was used for EDNAC as was used in the successful 20 variable problem
[2], the ambiguity that EDNAC has in solving a 10 variable SAT problem is probably
not due to a fundamental flaw in the paradigm; but rather, is due to difficulties in
translating the bench protocols into automation. The project was terminated before
these difficulties could be elucidated and corrected.

The following are considered good candidates for improving performance:
Changing the electrophoresis trough from epoxy to glass. Preliminary experiments

using glass show promise. Epoxy was first used to coat the electrophoresis trough
because it was easy to apply; it acted as an electrical insulator; and the surface was

372 C.R. Johnson

thin enough to not inhibit thermal transfer from the sled. However, microscopic
inspection of the epoxy surface uncovered the formation of pinholes. Pinholes
disappeared somewhat when the epoxy was catalyzed under a vacuum and applying it
to the surface just before hardening occurred. This required following a precisely
timed protocol. With glass, thermal transfer is not as good; however, we can control
the hydro-phobicity of the surface better; the trough is easier to clean between runs;
and we would avoid the problems of the epoxy peeling, and of micro-fissures forming
due to thermal stress.

Better characterization of the gel pre-run and gel density conditions. If the gel
density can be optimized, the computation will run faster. That is, DNA travels faster
through lower percentage acrylamide gels, but the gel is more fragile. The problem
becomes balancing the fragility of the gel against the rate of movement of the
oligonucleotides.

Better characterization of the agarose-acrylamide polymerization. The gel used in
this paper, a photo-catalyzed agarose-acrylamide gel, is a non-standard gel, and is not
well characterized in the literature. Experiments need to be undertaken to optimize
the gel for DNA computation.

Characterize the capture temperature. 1) The capture temperature is currently set
at 15° C. This is a temperature that is heuristically chosen and that seems to work.
However, optimizing the capture temperature may mean a faster computation and
better capture efficiency. 2) Joule heating of the gel needs to be better characterized
for the same reasons.

7 Conclusion

The 3 CNF SAT computation provides a model system that allows the development
and study of protocols and methods for large molecular computations. It is the
"hydrogen atom" for molecular computations in that it provides a simple model for
experimentation in biology's inherently noisy environment.

However, simply optimizing FSAT computations by increasing problem size and
diminishing computation time is not a goal by itself - for one thing, solving FSAT
problems with a fixed memory, as performed in this paper, is computationally limited.
Yet, this research is significant in that

1. The ability to automate DNA computation is demonstrated.
2. EDNAC demonstrates that DNA computation is scalable. (In fact, EDNAC was

designed physically to perform 3-CNF SAT problems with up to 50 variables.)
3. EDNAC is easy to use. The control system was designed to be user friendly and

flexible, giving the operator straightforward access to all of the reaction
parameters: temperatures, voltages, timing, buffer fills, etc. After 15 minutes of
instruction, a complete novice was able to perform a 10 variable molecular
computation.

4. Finally, there are easy paths to miniaturization for this architecture. For example,
a nano-technology group at NIST is currently working with micro-fluidic chips
very similar to EDNAC's architecture [6]. One can almost cut and paste their
micro-channel chip implementation into EDNAC while maintaining the same

 Automating the DNA Computer: Solving n-Variable 3-SAT Problems 373

control shell system. Shrinking the travel lengths from centimeters to millimeters
at the micro-chip level will decrease computation time. A 20 variable 3-CNF
SAT problem using microfluidics is estimated to run in about 2 hours time.

Acknowledgements

I would like to thank friends, and colleagues at the USC Laboratory for Molecular
Science for their support, in particular Len Adleman, Rebecca Anderson, Ravi Braich,
Nickolas Chelyapov, Ramon Del Gadillo, Victor Jordan, Howard Lukefahr, Jim
Merritt, Dustin Reishus, Paul Rothemund, Bilal Shaw, Areio Soltani, and Don
Wiggins.

References

1. Adleman, L.; Molecular computation of solutions to combinatorial problems. Science:266
1021-1024 (1994)

2. Braich, R., Chelyapov, N., Johnson, C., Rothemund, P., Adleman, L.; Solution of a 20-
Variable 3-SAT Problem on a DNA Computer. Science:296 499-502 (2002)

3. Braich R., Johnson C., Rothemund P.W.K., Hwang D., Chelyapov N., Adleman, L.;
Satisfiability Problem on a Gel Based DNA Computer. DNA Computing – DNA 6 2000,
Springer Verlag Volume 2054, New York (2000)

4. Reif, J.H.; Computing. Success and challenges. Science:268 478-479 (2002)
5. Lipton, R.J.; DNA solution of hard computational problems. Science:268 542-545 (1995)
6. Olsen, K., Ross, D., Tarlov, M.; Immobilization of DNA Hydrogel Plugs in Microfluidic

Channels. Anal. Chem. 74: 1436-1441 (2002)

Local Area Manipulation of DNA Molecules for
Photonic DNA Memory

Rui Shogenji1,�, Naoya Tate1, Taro Beppu2, Yusuke Ogura2, and Jun Tanida2

1 Japan Science and Technology Agency (JST-CREST),
2 Department of Information and Physical Sciences, Graduate School of Information

Science and Technology, Osaka University
{tate, ogura, tanida}@ist.osaka-u.ac.jp

Abstract. The address space in DNA memory can be extended by com-
bining information of spatial position and base sequences. Controlling the
states of DNA in a local area is an essential technique to use positional
information. In this paper, we focus on a photonic DNA memory, which
uses optical techniques for addressing on the basis of positional informa-
tion. We present the concept of photonic DNA memory and describe the
read out method using local area manipulation of DNA molecules.

1 Introduction

Generally, when information is stored in memory, the information is assigned to
an individual address. The stored information can be read out by reference to this
address. A huge address space is needed to store large amounts of information.

DNA memory, embodied by DNA molecules and DNA reactions, has been
proposed as a specific example of DNA computing[1,2]. If the base sequence of a
DNA molecule in the DNA memory is different, it behaves as a different molecule.
Therefore, on individual molecule can be identified with a unique address. That
is to say, the sequence of DNA molecules determines the address in the DNA
memory. In this paper, this type of address is referred to as a molecular address.
Addressing with the molecular address is based on Watson-Crick base pairing.
Many requirements on the design of the sequences should be considered for highly
accurate addressing, so that extending the address space is difficult when only
using the molecular address. On the other hand, conventional memory media,
such as an optical disk, utilizes positional information.

Positional information can be applied to the DNA memory when DNA
molecules are fixed to a solid, such as a glass substrate. The address space can
be extended as compared to the single use of molecular addressing. For utilizing
positional information, the states of DNA must be controlled in the local area.
Especially, the transfer of DNA from one substrate to another in a local area is
an important technique.

We have proposed the concept of photonic DNA computing, which is a par-
allel computing scheme that uses DNA cooperatively with light[3,4]. To achieve
� Now at Shizuoka University, 3-5-1 Johoku, Hamamatsu, Shizuoka 432-8011.

C. Mao and T. Yokomori (Eds.): DNA12, LNCS 4287, pp. 374–380, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Local Area Manipulation of DNA Molecules for Photonic DNA Memory 375

photonic DNA computing, photonic techniques for DNA manipulation are stud-
ied and useful data accumulated.

In this paper, we present an implementation of the photonic DNA memory
and describe the read-out method using photonic techniques. Implementation of
the idea might realize compact and high-capacity memory media.

2 Photonic DNA Memory

Figure 1 shows a schematic diagram of photonic DNA memory. DNA molecules
are used as a data storage medium in photonic DNA memory as well as in
conventional DNA memory. When DNA molecules are fixed to a solid, such as
a glass substrate, the positional information can be used as an address. The
storing space of DNA is hypothetically divided into multiple small spaces. We
call this sort of address a spatial address.

The address space can easily be extended by combining positional information
and molecular base sequences. The reactions of DNA molecules are controlled
independently in the individual spatial addresses. The address space can be
divided into any shape. For example, the address spaces can be scrambled by
division into a random shape. This is useful for achieving secure DNA memory.

Base sequence, structure, and fluorescent label of a DNA molecule in the
DNA memory can be treated as information. Large amounts of information can
be stored by joining a data sequence to an end of the sequence of a molecu-
lar address. Also, the existence of a DNA molecule or the structure of a DNA
molecule, such as a hairpin-like structure, can be treated as information.

Laser beams for local temperature control

Laser beams for optical manipulation

DNA cluster

Light-absorbing layer

Fig. 1. Schematic diagram of photonic DNA memory

376 R. Shogenji et al.

As mentioned above, DNA molecules in the DNA memory are used as a datum
in contrast to the regular memory. This means that the DNA memory can be
used not only for storage of information but also for storage of macro molecules,
such as DNAs, RNAs, and proteins. Thus, applying to DNA microreactor and
DNA computer can be expected.

In this paper, a data sequence joined with a molecular address sequence,
which is called a tag DNA, was used and is called a data DNA. That is to say,
a data DNA consisted of tag and data parts. A data DNA was hybridized with
an anti-tag DNA, which had the complimentary sequence of the tag part.

Writing to memory corresponds to attaching data DNA to a substrate. Erasing
a datum corresponds to detaching data DNA from a substrate. Reading a datum
corresponds to storing data DNA, which is detached from a substrate, in another
place as reusable memory.

To use positional information, control of the states of DNA in a local area
is essential. We have proposed photonic DNA computing, which is a parallel
computing scheme that uses DNA cooperatively with light. Optical techniques
used for photonic DNA computing are applicable to photonic DNA memory.
Optical manipulation and local temperature control via light irradiation are
useful optical DNA controlling techniques to implement photonic DNA memory.

Optical manipulation is method to manipulate nano or microscopic object
that uses radiation pressure force induced by the interaction between light and
the object. Optical manipulation has the following useful characteristics.

– Optical trap is a non-contact manipulation method.
– Surface tension is not generated.
– Precise operation of an object can be achieved because of its pico-newton

order forces.
– Strength and direction can be changed by changing the irradiating pattern

of the optical field.

An optical trap has many advantages as a method to manipulate microscopic
objects. However, the length of DNA molecules used for photonic DNA memory
is very short, typically a few nanometers long. Direct control of DNA molecules is
difficult by optical trap. Therefore, a DNA cluster, which combines data DNAs
with the surface of a microscopic bead, is used for optical trap. A schematic
diagram of a DNA cluster is shown in Fig. 2. The DNA cluster makes it easy to
control the position of data DNA. Also, a large amount of DNA molecules can
be transfered at a time.

A local temperature control method by light irradiation is one of the most
important techniques to achieve photonic DNA memory. In reactions of DNA
molecules, such as hybridization and denaturation, the temperature setting is
extremely important. These reactions in the photonic DNA memory correspond
to writing, reading, and erasing data to the memory. To control reactions in the
local area, a substrate is coated with a material to absorb light energy. The tem-
perature of the solution can be controlled by changing the power of a laser beam.

We have previously demonstrated experiments for attaching/detaching data
DNAs to/from a substrate or a bead in a solution with optical techniques[3,5].

Local Area Manipulation of DNA Molecules for Photonic DNA Memory 377

Fig. 2. Schematic diagram of DNA cluster

Transfer of data DNA from a substrate to a bead is necessary to read data DNA
in the photonic DNA memory.

The flow of reading data DNA by using optical DNA controlling techniques is
as follows: A bead with no data DNA is moved to an area where the data DNA
is combined to a substrate by optical manipulation. This operation corresponds
to addressing the spatial address. The substrate is then irradiated with a laser to
control the temperature over the bead. The substrate absorbs the laser energy
and converts it into heat, then the data DNA is transfered from the substrate to
the bead by an autonomous response of DNA molecules in the local area. Reading
out the data DNA from the memory can be performed by these operations.

3 Experiments

In the photonic DNA memory, reading data corresponds to transferring a data
DNA from a substrate to a bead. To demonstrate validity of the reading tech-
niques for photonic DNA memory, we performed experiments on transferring a
data DNA from a substrate to a bead.

The procedure for transferring data DNA from a substrate to a bead is shown
in Fig. 3. We irradiated the bead from above with the lasers to control the
position of the bead and the temperature of the solution.

A cross sectional view of the substrate for controlling is shown in Fig. 4. The
substrate consisted of a gold layer, a titanyl phthalocyanine (TiOPc) layer, and
a glass plate. Gold was deposited on the TiOPc layer to fix anti-tag DNA. As an
anti-tag DNA, which is DNA thiolated at the 5’ end, a substrate was used to fix
the combined molecules by gold-thiol bonds. The gold-thiol bond is extremely
stable and hardly desorbs[6]. The TiOPc layer absorbs the light energy and
converts it into heat.

378 R. Shogenji et al.

Translate bead

Controlling temperature

Fig. 3. Transferring of data DNAs from substrate to bead

Gold layer

TiOPc layer

Glass plate

Fig. 4. Appearance and cross sectional view of substrate

A 6 μm diameter streptavidin-coated microscopic polystyrene bead was used
as a DNA cluster. The anti-tag DNA, which is biotinated at the 5’ end, for
the DNA cluster can be attached to a bead via a streptavidin-biotin bond. The
streptavidin-biotin interaction is the strongest noncovalent biological interac-
tion. The bond formation between streptavidin and biotin is unaffected by most
extremes of pH, organic solvents, and denaturing reagents[7].

The data DNA were fluorescent-labeled with Alexa Fluor 546 (Molecular-
Probes, U-21652). The absorption and fluorescence emission maxima of Alexa
Fluor 546 were 555 nm and 570 nm.

A bead was first moved to the area to be transfered onto DNA molecules
on the substrate by optical manipulation. The wavelength of laser for optical
manipulation was 800 nm. The laser for controlling the temperature irradiated
the substrate over the bead and detached the data DNAs. The laser power was
set to 2 mW. By translating the bead, data DNAs detached from a substrate
could be attached with the whole bead surface of the bead. The translating speed
was 1 μm/sec. Therefore, irradiated energy on each local area was 2mJ.

Figure 5 shows a fluoresce image before and after laser irradiation. The bead
to be operated is arrowed. The results show that the fluorescence intensity of
the bead increased. In contrast, the fluorescence intensity of the bead’s route on
the substrate decreased. The results show that data DNAs were transfered from
the substrate to the bead by laser irradiation.

Local Area Manipulation of DNA Molecules for Photonic DNA Memory 379

10μm

(a) Before irradiation (b) After irradiation

Fig. 5. Fluorescent images of transferring data DNA from substrate to bead

10μm 10μm 10μm 10μm

(a) 1 mW (b) 2 mW (c) 3 mW (d) 4 mW

Fig. 6. Experimental results on data DNA detaching by changing laser power

9

8

7

6

5

4

3

2

1

0

Laser power [mW]

0 1 2 3 4

M
in

im
u
m

 r
ea

ct
io

n
 a

re
a

 d
ia

m
et

er
 [

μ
m

]

Fig. 7. Relationship between laser power and reaction area diameter

To measure the minimum diameter of the reaction area, the laser power was
changed, and denaturation was performed. The power of the irradiation beam
used was 1, 2, 3, or 4 mW. The fluorescent images are shown in Figs. 6 (a) - (d).
The results show that the reaction area extended as the laser power increased.
Also, the results show that the reaction area could be controlled by changing
the laser power. Figure 7 shows the relationship between the laser power and

380 R. Shogenji et al.

the diameter of the reaction area. We found that the minimum diameter of the
reading data DNA was approximately 2 μm in this experimental system.

4 Conclusion

As a fundamental technology for implementing photonic DNA memory, we
demonstrated transferring DNA molecules from a substrate to a bead by laser
irradiation. Reading data of the photonic DNA memory was performed by this
technique. The minimum diameter of the reading data DNA was approximately
2 μm in this experimental system. Realization of all functions of the photonic
DNA memory requires, for example, further discussion and experiment on accu-
rate and prompt control of DNA molecules from a bead to a substrate.

Acknowledgments

This work was supported by JST CREST and the Ministry of Education, Science,
Sports, and Culture, Grant-in-Aid for Scientific Research (A), 15200023, 2003 -
2005. The authors would thank Akira Suyama, Masami Hagiya, and Masahiro
Takinoue (The University of Tokyo) for valuable discussion.

References

1. J. Chen, R. Deaton, and Y. Wang, “A DNA-based memory with in vitro learning
and associative recall,” in Proc. of Ninth Annual Meeting on DNA-Based Computers,
pp. 127–136 (2003).

2. M. Takinoue and A. Suyama, “Molecular reactions for a molecular memory based
on hairpin DNA,” Chem-Bio Informatics Journal, 4 (3), pp. 93–100 (2004).

3. Y. Ogura, T. Beppu, F. Sumiyama, and J. Tanida, “Translation of DNA molecules
based on optical control of DNA reactions for photonic DNA computing,” in Proc.
SPIE 5931, pp. 110–120 (2005).

4. Y. Ogura, R. Shogenji, S. Saito, and J. Tanida, “Evaluation of Fundamental Char-
acteristics of Information Systems Based on Photonic DNA Computing,” in Proc.
of Second International Workshop, Bioadit 2006, pp. 192–205 (2006).

5. Y. Ogura, T. Beppu, F. Sumiyama, and J. Tanida, “Toward photonic DNA com-
puting: developing optical techniques for parallel manipulation of DNA,” in Proc.
SPIE 5897, pp. 34–43 (2005).

6. S. O. Kelley, J. K. Barton, N. M. Jackson, L. D. McPherson, A. B. Potter, E. M.
Spain, M. J. Allen, and M. G. Hill, “Orienting DNA helices on gold using applied
electric fields,” Langmuir, 14, pp. 6781–6784 (1998).

7. A. Jenne and M. Famulok, “Disruption of the Streptavidin Interaction with Bi-
otinylated Nucleic Acid Probes by 2-Mercaptoethanol,” BioTechniques 26 (2), pp.
249–254 (1999).

Unravel Four Hairpins!

Atsushi Kameda1, Masahito Yamamoto1,2, Azuma Ohuchi1,2,
Satsuki Yaegashi1, and Masami Hagiya1,3

1 Japan Science and Technology Corporation
2 Graduate School of Information Science and Technology, Hokkaido University
3 Graduate School of Information Science and Technology, University of Tokyo

Abstract. DNA machines consisting of consecutive hairpins, which we
have previously described, have various potential applications in DNA
computation. In the present study, a 288-base DNA machine containing
four consecutive hairpins was successfully constructed by ligation and
PCR. PAGE and fluorescence spectroscopy experiments verified that all
four hairpins were successfully opened by four opener oligomers, and
that hairpin opening was dependent on the proper openers added in the
correct order. Quantitative analysis of the final results by fluorescence
spectroscopy indicated that all four hairpins were open in about 1/4 to
1/3 of the DNA machines.

1 Introduction

DNA machines consisting of consecutive hairpins, which have been introduced
previously by the authors, have various potential applications in DNA com-
putation [3]. As depicted in Fig. 1, the inputs for this type of machine are
single-stranded oligomers called openers, each of which consists of leading and
invading sections. The leading section of an opener hybridizes with the single-
stranded region of the DNA machine, and the invading section disrupts the stem
of the adjacent hairpin by branch migration, thus opening the hairpin. Conse-
quently, the region flanking the succeeding hairpin becomes single-stranded, and
the opener for the adjacent hairpin can hybridize with the machine (Fig. 1b).
The single-stranded region flanking a hairpin is also called the leading section of
the hairpin.

As described previously [3], this type of DNA machine can serve as a memory
unit with a hierarchical address wherein each opener corresponds to one address
digit. The memory unit is considered accessible only when all of the address
digits match the machine address and all of the hairpins are opened. Since the
second hairpin can be opened only after the first hairpin has opened, a machine
consisting of two hairpins can serve as an AND gate that detects the existence of
both openers. When the loop of the second hairpin becomes exposed as single-
stranded DNA, it can hybridize with another structure, such as the hairpin
shown in Fig. 2, to yield the output of the AND gate [5].

DNA machines that make state transitions by conformational changes have
been the subject of active research in the field of DNA computing [9,4,6,5]. The

C. Mao and T. Yokomori (Eds.): DNA12, LNCS 4287, pp. 381–392, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

382 A. Kameda et al.

Fig. 1. Opening of a DNA machine consisting of four hairpins. (a) The leading section
of the first opener hybridizes with the leading section of the first hairpin. (b) The first
hairpin has been opened, and the second opener is ready to hybridize. (c) The second
hairpin has been opened.

Fig. 2. An AND gate consisting of two hairpins. The second hairpin is opened only
when both openers are present. Since the loop of the second hairpin is exposed as
single-stranded DNA, it can hybridize with another structure, such as a hairpin. This
reaction is the output of the AND gate.

simple machine made of consecutive hairpins presented in the present report
could easily be combined with other machines proposed thus far. The use of
hairpins has also been advocated in the hybridization chain reaction [1]; this
application is of interest in light of the present study because consecutive hairpins
can also trigger the chain reaction.

In the present study, we successfully constructed a DNA machine consisting of
four consecutive hairpins with a total length of 288 bases by ligation and PCR.
The PCR conditions were carefully selected so that oligomers containing hairpin
structures would be properly amplified. PAGE and fluorescence experiments
then confirmed that the four openers successfully opened all four hairpins, and
that the hairpins could be opened only when the openers were added in the

Unravel Four Hairpins! 383

correct order. From spectrophotometric measurements, we estimate that all four
hairpins were opened in a ratio of about 1/4 to 1/3.

2 Materials and Methods

2.1 Sequence Design

The DNA sequences of the four hairpins were designed by a method based on
selectivity and ordinality, as reported in our previous papers [3,7]. “Selectivity”
means that each hairpin can be opened only by the particular opener that has
leading and invading sections complementary to the leading section and stem of
the hairpin, respectively. “Ordinality” means that a hairpin can be opened only
when the adjacent hairpin has already been opened, and its leading section is
exposed as single-stranded DNA.

The entire 288-mer sequence of the DNA hairpin machine, designated the
“Hairpin Template,” is listed in Table 1. In addition to the four hairpins (desig-
nated Hairpins A, B, C, and D, starting from the 5′-end), the Hairpin Template
has a 20-base, single-stranded region on each side. Two sets of four openers were
prepared: Openers A, B, C, and D were designed to open the hairpins from the
5′-side of the Hairpin Template, whereas Openers RD, RC, RB, and RA were
designed to open them from the 3′-side. Each 30-mer opener is composed of a
10-base leading section that hybridizes with the corresponding hairpin and a
20-base invading section that is complementary to the hairpin stem sequence.

2.2 Preparation of Hairpin Template

Ligation. We tried to synthesize the Hairpin Template using two different
strategies. In one strategy, the Hairpin Template was divided into four frag-
ments (shown in Fig. 3a), each of which was chemically synthesized. The four
fragments were then concatenated by a ligase reaction. In the other strategy, the

Table 1. Sequences of the Hairpin Template and the openers. One set of four openers
was prepared for opening hairpins from the 5′-side of the Hairpin Template, and another
set was prepared for opening from the 3′-side.

384 A. Kameda et al.

Fig. 3. Ligation of the Hairpin Template. We employed two strategies to synthesize the
Hairpin Template. (a) The Hairpin Template was divided into four fragments. (b) The
double-stranded Hairpin Template was divided into five fragments with loop sequences
as sticky ends.

double-stranded Hairpin Template was divided into five fragments in which the
loop sequences were sticky ends.

PCR amplification. The Hairpin Template thus obtained was amplified by
PCR with 20-mer primers corresponding to the single-stranded regions of the
Hairpin Template. The reverse primer was 5′-biotinylated. Reaction conditions
were carefully selected with the consideration that hairpin-forming DNA
molecules might not be correctly amplified by PCR. PCR reactions were carried
out in a final volume of 100μl with 0.5 U of KOD DASH DNA Polymerase (Toy-
obo) and 0.5 pmol/μl each primer. Thirty cycles of denaturation (94◦C for 15
s), annealing (55◦C for 15 s), and extension (74◦C for 15 s) were carried out in a
thermal cycler. The PCR product was then verified by the standard sequencing
protocol and it was confirmed that its sequence was correct.

Alkali treatment with magnetic beads. The completed PCR reaction
solution was incubated with BioMag Streptavidin beads (Qiagen) at room tem-
perature according to the manufacturer’s instructions. Beads bound to double-
stranded Hairpin Template were then re-suspended in purified water. To
obtain non-biotinylated, single-stranded Hairpin Template, double-stranded DNA
molecules were denatured with sodium hydroxide, which was added until the
mixture turned alkaline. Since the reverse primer was 5′-biotinylated in this
case, the strands complementary to the Hairpin Template were adsorbed to the
BioMag beads. Single strands of the Hairpin Template were then obtained from
the supernatant fraction and transferred to a new tube. Hydrochloric acid was
added to neutralize the resulting sample.

2.3 Gel Electrophoresis

Solutions containing the Hairpin Template and various combinations of openers
(as described in Table 2) were incubated at various temperatures (20, 40, 45, 50,
or 55◦C). The total volume of the mixture solution was 10 μl in all cases. Each
mixing step was followed by a 15-min waiting period to allow time for the opener

Unravel Four Hairpins! 385

Table 2. Opener combinations used for three PAGE experiments. In the first experi-
ment (A), the reaction temperature was varied, whereas in the other two experiments
(B and C), the reaction temperature was fixed at 45◦C. Concentration values shown
represent the final concentration of the added opener in pmol/μl. The volume of the
final mixture solution was 10 μl in all cases. A 15-min waiting period followed each
mixing step.

386 A. Kameda et al.

to hybridize with the Hairpin Template and to ensure that the target hairpin
structure was opened. The resulting DNA duplexes were separated according
to their length and structure by PAGE. Five microliters of each mixture were
subjected to 10% PAGE for 40 min at a constant voltage of 200 V. After elec-
trophoresis, DNA in the gel was visualized by SYBR Gold staining (Molecular
Probes, Inc.) or FITC fluorescence detection (for FITC-modified openers).

2.4 Spectrophotometric Detection

Fluorescence spectroscopy is preferable to PAGE for detecting hairpin opening
for three reasons: First, fluorescence detection is generally more precise and
simpler to use in verifying conformational changes of DNA molecules; second,
fluorescence detectors can be inexpensively produced [8]; and third, fluorescence
detection yields data that are suitable for quantitative analysis.

To determine whether the final hairpin was opened, two types of fluorescence-
modified oligomers were used. One type hybridized with the 20-base, singled-
stranded region on one side of the Hairpin Template, and the other type
hybridized with the stem sequence of the final hairpin. Fig. 4 illustrates the case
in which the four hairpins are opened from the 3′-side of the Hairpin Template.
The 5′-FAM-modified 20-mer is expected to hybridize with the single-stranded
region on the 5′-side of the Hairpin Template, whereas the 3′-BHQ-modified 20-
mer is expected to hybridize with the stem sequence flanking the single-stranded
20-base region. Therefore, if the final hairpin is open, the BHQ-modified oligomer
should hybridize with the Hairpin Template, and the fluorescence from FAM
should be quenched by BHQ.

Fig. 4. Opening of the final hairpin was verified using oligomers modified with FAM
(yellow circle) or with BHQ (black circle). If the final hairpin is open, both oligomers
should hybridize with the Hairpin Template, and the FAM fluorescence should be
quenched by BHQ.

An F-2500 spectrophotometer (Hitachi) was set to time-scale fluorescence
measurement mode, with excitation and emission wavelengths of 494 and 518
nm, respectively. The excitation and emission slit widths were each 5 nm. The
spectrophotometer was connected to an isothermal bath (Lauda) to maintain
the quartz cell at 45◦C.

Unravel Four Hairpins! 387

The Hairpin Template solution was first mixed with openers RD, RC, RB, and
RA (in that order) at 45◦C, with a 30-min waiting period after each mixing step.
The concentrations of the Hairpin Template and the openers were adjusted to
0.1 μM. The total volume of the solution was 400 μl to accommodate the quartz
spectrophotometer cell. The solution was then put into a cell containing 4 μl
of a 10-μM solution of the FAM-modified oligomer. After a 15-min incubation,
measurement of FAM fluorescence was initiated. The FAM baseline was mea-
sured for a few minutes, and then 4 μl of a 10-μM solution of the BHQ-modified
oligomer was added to the cell.

3 Results

The Hairpin Template and the openers were mixed in various combinations
(as described in Table 2) to investigate the secondary structures of the four
template hairpins. The various structures assumed by the Hairpin Template were
separated by 10% PAGE (Fig. 5), and the bands were visualized by SYBR Gold
staining and FITC detection. Analysis of the gel bands confirmed that opening
of each hairpin required a specific combination of openers. Quantitative analysis
of the resulting structures by fluorescence spectroscopy led us to conclude that
only about 1/4 to 1/3 of the Hairpin Template molecules reached the final state
in which all four hairpins were open.

In the PAGE analysis, the initial state of the Hairpin Template with four
closed hairpin structures generated the single band shown in Lane HT of Fig. 5.
As more hairpins were opened, the mobility of this band was shifted.

3.1 Influence of Reaction Temperature on Hairpin Opening

We examined the influence of reaction temperature on hairpin opening by per-
forming experiments at five different temperatures (20, 40, 45, 50, and 55◦C).
The results are shown in Fig. 5A. At 20◦C, little change in the mobility of
the Hairpin Template band was observed when openers were added. At 40◦C,
the HT band shifted slightly upward when Opener A was added (Lane 1), in-
dicating that Opener A opened Hairpin A. When Opener B was subsequently
added, a new band appeared (Lane 2), indicating that Opener B opened Hair-
pin B. In some of the Hairpin Template molecules, however, Hairpin B remained
closed, as shown by the fact that the band observed in Lane 1 was still present in
Lane 2. Similarly, addition of Opener C caused another band to appear (Lane 3),
corresponding to the structure in which Hairpins A, B, and C were all open.
Unexpectedly, when Opener D was then added, a new band corresponding to
opening of the final hairpin was not observed (Lane 4), possibly due to an overlap
with the band observed in Lane 3. This issue was further examined by detec-
tion with FITC, as described in the next section. Opening of hairpins from the
3′-side of the Hairpin Template was observed to occur in a similar fashion
(Lanes 5–8).

At 40◦C, some bands that appeared in one step persisted in succeeding steps,
suggesting that not all of the target hairpins opened when the corresponding

388 A. Kameda et al.

(A)

(B)

(C)

Fig. 5. PAGE analysis of the experiments summarized in Table 2. The gel was stained
with SYBR Gold, with the exception of Lanes 11–20 in (C). Lanes labeled HT indicate
the mobility of the Hairpin Template in the absence of openers, so that all hairpins are
closed. (A) Five reaction temperatures (20, 40, 45, 50, and 55◦C) were investigated. (B)
Various combinations of openers and the effect of order of addition were investigated.
(C) Fluorescence detection was used to determine whether the fourth opener hybridized
with the Hairpin Template. In Lanes 11–20, FITC fluorescence was detected in the same
sample as that of Lanes 1–20.

Unravel Four Hairpins! 389

opener was added. At 45◦C or higher temperatures, persistent bands either did
not appear or were smeared.

3.2 Influence of Openers and Order of Addition

We next examined the influence of the added openers and their order of addition.
Except for the particular openers used and their orders of addition, experimental
conditions were the same as those described above (Section 3.1) at 45◦C. The
openers and their orders of addition are described in Table 2, and the results are
shown in Fig. 5B.

As shown in Lanes 1–4 of Fig. 5B, only Opener A was able to open Hairpin
A. Since the position of the HT band (which represents four closed hairpins)
did not shift in Lanes 2–4, we can conclude that other openers could not open
Hairpin A. Similarly, only Opener RD opened Hairpin D from the 3′-side of
Hairpin Template (Fig. 5B, Lanes 5–8). When openers B, C, or D were added to
the state in which Hairpin A was already opened, only Opener B was observed
to open Hairpin B, as shown in Lanes 9–11 of Fig. 5B. In Lanes 12–14, on the
other hand, only the combination of openers RD and RC could open the two
hairpins, resulting in the new band in Lane 12. In Lanes 15 and 16, Openers
C and D were added to the Hairpin Template in which Hairpins A and B had
already been opened by Openers A and B, respectively. As a result, the next
hairpin was opened only by Opener C. Similarly, Opener RB could open Hairpin
B (Lane 17), but Opener RA could not open the next hairpin (Lane 18).

Using fluorescence detection, we attempted to address the overlap problem
for the bands corresponding to the states with three and four open hairpins. We
modified the final opener with a 5′-FITC tag so that hybridization of the FITC-
tagged opener with the Hairpin Template could be detected in the gel image
using fluorescence detection, as shown in Fig. 5C. In Lanes 15 and 20, fluorescent
bands of the same mobility as those observed in Lanes 5 and 10, respectively,
were clearly detected, demonstrating that the FITC-modified opener successfully
hybridized with the Hairpin Template. These results still do not unequivocally
demonstrate whether the final hairpin (Hairpin D or A) was opened, however.
Hybridization of the final opener with the Hairpin Template is more definitively
addressed below.

3.3 Quantitative Spectrophotometric Analysis

As shown in Fig. 6, addition of the BHQ-modified oligomer to the FAM fluores-
cence experiment reduced the FAM fluorescence intensity by about 1/4 to 1/3,
compared with the FAM fluorescence baseline, due to quenching by BHQ. In the
complementary experiment in which openers except RA were added and hairpins
D, C, and B were considered opened, almost no reduction of the FAM fluores-
cence intensity was observed upon addition of the BHQ-modified oligomer, as
shown in Fig. 6.

In additional experiments, the FAM- and BHQ-modified oligomers were re-
placed with the unmodified oligomers FAMseq and BHQseq, which have the

390 A. Kameda et al.

Fig. 6. Fluorescence spectroscopy measurements of hairpin opening. The upper trace
represents the case in which Hairpin A is not open, and the lower trace represents the
case in which all four hairpins are open.

Fig. 7. PAGE analysis of the experiment shown in Fig. 6. Each lane is characterized
by a combination of oligomers. FAMseq and BHQseq denote unmodified oligomers
that have the same sequences as those of the FAM- and BHQ-modified oligomers,
respectively.

same sequences as the FAM- and BHQ-modified oligomers, respectively. The
resulting species were examined by 8% (w/v) PAGE (Fig. 7), where the concen-
tration of each species is set to 0.05 μM. When the Hairpin Template, openers
RD, RC, RB, and RA, FAMseq, and BHQseq, were mixed, three bands were

Unravel Four Hairpins! 391

observed (Fig. 7, Lane 9). Comparison with Lanes 8 and 6 suggests that the
lowest band in Lane 9 represents the hybrid species with four open hairpins and
containing FAMseq. The middle band in Lane 9 appears to represent the hybrid
species in which Hairpin A is not open.

These results appear to explain our fluorescence spectroscopy data indicating
that 3/4 to 2/3 of the FAM fluorescence was not quenched by BHQ. The up-
permost band in Lane 9 of Fig. 7 represents the hybrid species with four open
hairpins and containing both FAMseq and BHQ. The intensity of this upper
band is much less than that of the middle band in the same lane. Therefore, this
additional gel electrophoresis experiment confirms our previous results, obtained
by fluorescence spectroscopy, in which only 1/3 to 1/4 of FAM fluorescence was
quenched by BHQ.

In the PAGE experiments described in the previous section, the opener con-
centrations in later steps were increased because qualitative analysis was the
major concern. In this quantitative analysis, we adjusted the concentrations of
the openers to be equal to that of the Hairpin Template. With the same con-
centrations as those in the PAGE experiments, however, we obtained almost the
same result (data not shown), indicating that increasing the opener concentra-
tions did not significantly affect the ratio of hairpin opening.

4 Discussion

Opening of two consecutive hairpins was demonstrated in our previous study [3].
In the present study, we used PAGE and fluorescence spectroscopy to demon-
strate opening of four consecutive hairpins. We also overcame the initial experi-
mental challenge of obtaining sufficient Hairpin Template to conduct consecutive
hairpin-opening experiments. This problem was solved by careful adjustment
of PCR and alkaline treatment conditions, as described in the Materials and
Methods.

In the study described here, we devised two major improvements in the exper-
imental conditions for hairpin opening, compared to our previous study. First,
the leading section of the openers was shortened (from 20 bases to 10 bases) to
inhibit formation of undesirable secondary structures that could hinder hairpin
opening. Shortening of the leading section also minimized interactions between
the openers, as explained below. Second, we raised the reaction temperature
to overcome the energy barrier to opening of the target hairpin while avoiding
disruption of the intact hairpins.

An important experimental challenge in increasing the number of consecutive
hairpins in the model system was avoiding interactions between the openers.
Openers for consecutive hairpins should have a complementary subsequence.
In our previous study, successive openers had a complementary, 20-base subse-
quence that led to hybridization of the openers. In the present study, the com-
bination of the shortened leading section and the higher reaction temperature
seems to have eliminated this problem. In a PAGE experiment, we confirmed
that consecutive openers did not hybridize with one another (data not shown).

392 A. Kameda et al.

We also confirmed that sequential addition of successive openers caused hairpin
opening as expected.

The interesting question of how many hairpins can successfully be concatenated
remains unanswered. A template molecule designed to form four consecutive
hairpins might be expected to form an undesirably complex tertiary structure, but
the Hairpin Template used in the present experiments did not appear to form such
a structure. Hairpin templates with additional hairpins might form even more com-
plex structures that would hinder proper opening in response to openers.

Acknowledgements

The work presented in this paper was partially supported by Grand-in-Aid for
Scientific Research on Priority Area No.14085202, Ministry of Education, Cul-
ture, Sports, Science and Technology, Japan.

References

1. Dirks, R.M. and Pierce, N.A.: Triggered amplification by hybridization chain reac-
tion, Proc. Natl. Acad. Sci., Vol.101, No.43, 2004, pp.15275–15278.

2. Hagiya, M., Yaegashi, S. and Takahashi, K.: Computing with Hairpins and Sec-
ondary Structures of DNA, Nanotechnology: Science and Computation, Natural
Computing Series, Springer, 2005, pp.293–308.

3. Kameda, A., Yamamoto, M., Uejima, H., Hagiya, M., Sakamoto, K. and Ohuchi, A.:
Hairpin-based state machine and conformational addressing: Design and experiment,
Natural Computing, Vol.4, No.2, 2005, pp.103–126

4. Seelig, G., Yurke, B., and Winfree, E.: DNA Hybridization Catalysts and Cata-
lyst Circuits, DNA Computing, 10th International Workshop on DNA Computing,
Lecture Notes in Computer Science, Vol.3384, 2005, pp.329–343.

5. Takahashi, K., Yaegashi, S., Kameda, A. and Hagiya, M.: Chain Reaction Systems
Based on Loop Dissociation of DNA, DNA Computing: 11th International Workshop
on DNA Computing, DNA11, Lecture Notes in Computer Science, Vol.3892, 2006,
pp.347–358.

6. Takahashi N., Kameda A., Yamamoto M. and Ohuchi A.: Aqueous Computing with
DNA Hairpin-based RAM, DNA Computing, 10th International Workshop on DNA
Computing, Lecture Notes in Computer Science, Vol.3384, 2005, pp. 355–364.

7. Uejima, H. and Hagiya, M.: Secondary Structure Design of Multi-state DNA Ma-
chines Based on Sequential Structure Transitions, DNA Computing, 9th Interna-
tional Workshop on DNA-Based Computers, Lecture Notes in Computer Science,
Springer, Vol.2943, 2004, pp.74–85.

8. Yan, H.: An Inexpensive LED-Based Fluorometer Used to Study a Hairpin-Based
DNA Nanomachine, DNA Computing, 10th International Workshop on DNA Com-
puting, Lecture Notes in Computer Science, Vol.3384, 2005, pp.399–409.

9. Yurke, B., Turberfield, A. J., Mills, Jr., A. P., Simmel, F. C., and Neumann, J. L.: A
DNA-fuelled molecular machine made of DNA, Nature, Vol.406, 2000, pp.605–608.

Displacement Whiplash PCR: Optimized Architecture
and Experimental Validation

John A. Rose1,2,3,�, Ken Komiya3,4, Satsuki Yaegashi3, and Masami Hagiya2,3

1 Institute of Information Communication Technology, Ritsumeikan Asia Pacific University
jarose@apu.ac.jp

2 Department of Computer Science and UPBSB, The University of Tokyo
hagiya@is.s.u-tokyo.ac.jp

3 Japan Science and Technology Agency-CREST
yaegashi@lyon.is.s.u-tokyo.ac.jp

4 Dept. of Computational Intelligence and Systems Science, Tokyo Institute of Technology
komiya@dis.titech.ac.jp

Abstract. Whiplash PCR-based methods of biomolecular computation (BMC),
while highly-versatile in principle, are well-known to suffer from a simple but
serious form of self-poisoning known as back-hybridization. In this work, an op-
timally re-engineered WPCR-based architecture, Displacement Whiplash PCR
(DWPCR) is proposed and experimentally validated. DWPCR’s new rule pro-
tect biostep, which is based on the primer-targeted strand-displacement of back-
hybridized hairpins, renders the most recently implemented rule-block of each
strand unavailable, abolishing back-hybridization after each round of extension.
In addition to attaining a near-ideal efficiency, DWPCR’s ability to support
isothermal operation at physiological temperatures eliminates the need for ther-
mal cycling, and opens the door for potential biological applications. DWPCR
should also be capable of supporting programmable exon shuffling, allowing XW-
PCR, a proposed method for programmable protein evolution, to more closely im-
itate natural evolving systems. DWPCR is expected to realize a highly-efficient,
versatile platform for routine and efficient massively parallel BMC.

1 Introduction

In Whiplash PCR (WPCR), autonomous molecular computation is implemented by the
recursive, self-directed polymerase extension of a DNA hairpin mixture [1]. When com-
bined with a method for generating a combinatorial library of encoded strands, WPCR
is theoretically capable of solving instances of a variety of NP-complete problems,
including Inductive Inference [1] and Hamiltonian Path (HPP) [2]. WPCR has also
been shown to be capable of supporting evolutionary computation, including: solution
of HPP instances, via restriction-based crossover (Evolutionary WPCR (EWPCR)) [3];
co-evolution of poker strategies, via Parallel Overlap Assembly-based crossover [4];
and, programmable protein evolution, via EWPCR-based pseudo-module shuffling and
RNA-protein fusion (XWPCR) [5].

� To whom correspondence should be addressed.

C. Mao and T. Yokomori (Eds.): DNA12, LNCS 4287, pp. 393–403, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

394 J.A. Rose et al.

Transition Rule Region
Initial State A

B A C B

A

B A C B

___ _

_ _ _

rule block a b rule block b c

A

ε ≅ 12

r1 r2

r1

_

B A C B
___ _

rule block a b rule block b c

Ar1 r2

New State B

A

B A
_

Protection 1:

r

1

B

r

1

_

_

protected

C B
__

r2 r2

B A C B
_ _ _

Transition 2:

(b c)

r1

_
r2

B

x

rule block b c
protected

rule block a b
protected

A B

Final State C

CB A C B
___ _

r1 r2

B

Transition 1:

(a b)

B

B A
_

Protection 2:

r

1

C

r

2

_

_

C B r2

_ _

p (bh) ≅ 0
2

No Backhybridization ()

A

B A C B
_ _ _ _

B A C B A
___ _

B

Transition 1:

(a b)

Transition 2:
(b c)

New State B

AB

B A C B
_ _ _ _

B A C B A
___ _

B

Final State C

C

Completed
Computation

(1)

(2)

Transition Rule Region Initial State A

rule block a b rule block b c

B A C B A
___ _

Backhybridization ()p (bh)
2

≅ 1

-5ε ≅ 102

(a) Whiplash PCR (b) Displacement Whiplash PCR

Completed
Computation

Fig. 1. (a) Whiplash PCR Top panel depicts a DNA strand encoding a WPCR program for exe-
cuting the short computational path, a → b → c. Strand 3’ and biotinylated 5’ ends are indicated
by black circles and arrowheads, respectively. Spacer and stop sequences are indicated by dark
squares and light gray lines, respectively. In practice, efficient implementation is prevented by
self-poisoning due to competitive hairpin formation, or back-hybridization (dotted line). (b) Dis-
placement Whiplash PCR In DWPCR, encoded strands are re-engineered to support the addi-
tion of a back-hybridization eliminating rule protect step, which proceeds via primer annealing,
extension, and strand displacement at target sequence, ri, following transition, i.

Although the fundamental feasibility of using WPCR to implement multiple state
transitions and test-scale instances has been demonstrated experimentally [2,6,7], a
serious barrier confronting scaling for realistic application is a systematic tendency
for WPCR strands to participate in a powerful form of self-inhibition called back-
hybridization [8,9]. Attempts to improve WPCR efficiency have involved both tuning of
reaction conditions [6], and redesign of the basic WPCR architecture [8]. However, be-
cause the generation of highly-stable back-hybridized hairpins is favored energetically,
elimination via either reaction condition optimization or strand-encoding strategies is
impossible. Furthermore, the previous attempt to redesign the WPCR architecture to
support targeted PNA2/DNA triplex formation (PWPCR [8]), thereby reducing the oc-
cupancy of back-hybridized structures was not fully optimal.

In this work, an optimally re-engineered WPCR-based architecture, Displacement
WPCR (DWPCR) is proposed and experimentally validated. DWPCR provides a crit-
ical improvement for WPCR, by adding a new rule protect operation after each ex-
tension. This operation, which replaces thermal cycling, renders the most recently
implemented rule-block of each computing strand unavailable via primer-targeted

Displacement Whiplash PCR 395

strand-displacement, virtually eliminating back-hybridization. In addition to achiev-
ing a near-ideal efficiency, DWPCR presents several other advantages, including:
isothermal operation at physiological temperatures, opening the door for biological
applications; and, the ability to support programmable exon shuffling, allowing XW-
PCR [5] to more closely imitate natural evolving systems. DWPCR is thus expected
to realize a highly-efficient, versatile platform for routine and efficient massively par-
allel BMC.

Paper organization is as follows. Sec. 1.1 presents the original WPCR architecture,
followed in Sec. 1.2 with a discussion of back-hybridization and proposal of the DW-
PCR architecture. Sec. 2 then presents a set of experiments designed to establish the
fundamental feasibility of DWPCR, which rests on the efficiency of the key operation,
rule protect. Sec. 3 presents experimental results, followed in Sec. 4 with a discussion of
experiment results, combinatorial DWPCR implementation, and potential applications.

1.1 The Whiplash PCR Architecture

The original WPCR architecture [1] is illustrated in Fig 1(a). As shown, state transi-
tions are implemented via the recursive template-directed polymerase extension of a
DNA hairpin mixture. For clarity, this process is described for a 3-state, 2 step imple-
mentation, a → b → c. Prior to computation, a single-stranded (ss) DNA molecule is
encoded with three regions (top panel). The transition rule region contains a set of state
transition rule-blocks, each of which encodes a transition from computational state x to
state y. If X and X respectively denote the DNA word for state x, and its Watson-Crick
reverse complement, then the rule-block for executing transition x → y is formed by
catenated words, 5′ −Y X − 3′. The completed transition rule region is formed by the
concatenation of all rule-blocks, separated by short DNA stop sequences. In Fig. 1, the
transition rule region contains rule-blocks for transitions a → b and b → c. The 3’-most
codeword (word A (top panel)) is the head, which encodes the initial state of the WPCR
strand. A short DNA spacer sequence is placed between these two regions.

Each WPCR state transition is implemented via a three-step process of hybridization,
polymerase extension, and denaturation, shown in Fig. 1(a). Each transition is initiated
via hybridization of the 3’ head with a complementary DNA word in the transition rule
region. The transition encoded by the hybridized rule-block is then executed via poly-
merase extension of the head (horizontal arrow in each transition), which appends the
DNA word for the transition target state to the strand’s 3’ end. Polymerase extension is
terminated automatically when the DNA polymerase encounters the transition block’s
5’ stop sequence, usually implemented using a short stop sequence (AAA), combined
with the absence of free dTTP in the buffer. Following thermal denaturation of the
newly-extended hairpin, the strand is ready for the next round of hybridization and ex-
tension (process b → c). Upon completion of all encoded transitions, a record of the
computed path is encoded at the strand’s 3’ end, as an ordered string of DNA words
(5′ −ABC− 3′ in Fig. 1 (bottom). As each strand is encoded to execute a distinct set
of transition rules autonomously, massively parallel computation may be achieved by
generating a combinatorial mixture of WPCR strands, and iteratively applying a ther-
mal cycle appropriate for the parallel hybridization, extension, and denaturation of all
strands.

396 J.A. Rose et al.

1.2 Back-Hybridization and Displacement WPCR

Unfortunately, WPCR state transition efficiency is compromised by a serious form of
self-poisoning, known as back-hybridization. This effect is illustrated in Fig. 1(a; dotted
line) via formation of the extended hairpin structure (hairpin (1)), generated via transi-
tion, a → b, which competes with formation of the extendable structure, (unextended
hairpin (2)) required for transition b → c. The effect of back-hybridization has been
modeled theoretically [8], and shown to be sufficiently serious to render massively-
parallel WPCR infeasible. Experimental verification of basic model predictions for
competitive hairpin formation has also been undertaken [9]. Back-hybridization is fun-
damentally less tractable than mis-hybridization (i.e., error duplex formation), in that
the availability of back-hybridized structures in all rounds after the first is not an error.
As a result, while mis-hybridization may be effectively minimized via strand-encoding
strategies, difficulties due to back-hybridization will remain, regardless of the encod-
ing method employed. For this reason, the fundamental re-engineering of the WPCR
architecture is considered to be required.

The re-engineering of the WPCR architecture to support the primer-directed conver-
sion of each implemented rule-block to double-stranded (ds) DNA, via targeted primer-
directed strand displacement after each round of extension, is here proposed. The essen-
tial details of the resulting WPCR-based architecture, here referred to as Displacement
WPCR (DWPCR), are illustrated in Fig. 2. DWPCR implements the same series of basic
biotechnological operations applied in standard Whiplash PCR, adding only a protec-
tion step, which proceeds via primer annealing, extension, and strand displacement at
target sequence, ri, following each successful transition, i. Given use of an excess of
DNA primer, and a DNA polymerase with high strand-displacement activity, such as
the Klenow fragment of DNA polymerase I (see [10]), this protection operation is ex-
pected to result in the high efficiency conversion of the targeted rule-block to dsDNA,
virtually eliminating the potential for back-hybridization in each successive round.

2 Materials and Methods

2.1 Strand Design and Characterization

The feasibility of high-efficiency DWPCR rests upon that of the rule protect biostep,
which employs primer-directed opening of a DNA hairpin via strand displacement by
DNA polymerase. Although the ability of a number of polymerases lacking 5’ exonucle-
ase ability (e.g. the Klenow fragment of DNA polymerase I) to displace an encountered
strand during extension is well-known, the efficiency of using this process for open-
ing a hairpin loop, representing a computational step should be explicitly established.
Characterization of this process was accomplished via observation of the FRET system
shown in Fig. 1, which consists of two DNA strands. Strand (a) is an 78 nucleotide (nt)
template strand, which was encoded so that the 5’ and 3’-most 15 bases (codewords
1 and 1’, respectively) were Watson-Crick complementary, to facilitate formation of
a 15 base-pair (pb) hairpin (panel (c)). To support observation of the binary folding
state of this hairpin, the fluorophores FAM and tetramethylrhodamine (TAMRA) were
covalently attached to the strand’s 5’ and 3’ ends, respectively. Codewords 1-4 were

Displacement Whiplash PCR 397

Fig. 2. Model Hairpin System for validating the Rule Protect operation (a) The hairpin-
forming template strand, composed of catenated DNA words 1, 2, 3, 4, and 1’, shown separated
with intervening dashes for clarity. This strand is 5’ and 3’-substituted with FAM and TAMRA
fluorescent groups, respectively; (b) primer strand, complementary to template codeword 3; (c)
hairpin formed by normal closure of the template strand. Here, blunt-end duplex formation places
the FAM/TAMRA pair in close contact, resulting in loss of FAM fluorescence at 518 nm by FRET
or contact quenching; (d) the hairpin displacement process under study, directed by hybridization
of primer strand at template codeword 3, followed by primer extension. Successful primer ex-
tension, with full penetration into the template hairpin stem is accompanied by hairpin opening,
with an observable increase in FAM fluorescence at 518 nm; (e) the fully-extended primer.

derived from those employed in [7], designed to avoid mis-hybridization according to
the strategy in [11]. Strand (b) is a 15 nt primer strand (sequence 3’) Watson-Crick re-
verse complementary to bases 46-60 (codeword 3) of the template strand. DNA strands
(a,b) and strand (c) were purchased from Nippon EGT and Sigma-Genosys, respectively
(strand (c) was kindly gifted from M. Yamamura, Tokyo Institute of Technology).

2.2 System Operation

The essential idea of the hairpin test system is shown in Fig. 2. In the absence of primer
and DNA polymerase, hairpin closure is assured by a reaction temperature beneath the
characteristic Tm value of template strand (a). Upon excitation of the FAM fluorophore
at 494 nm, the typical FAM fluorescence at 518 nm will be inhibited by FRET or con-
tact quenching [12], due to the close proximity of TAMRA, provided by the blunt-end
duplex design (d; left). Followed by the addition of the primer strand, and DNA poly-
merase (Klenow fragment of DNA polymerase I), at 37 oC and under appropriate buffer
conditions, successful primer extension (d; right) resulting in the hairpin displacement
characteristic of DWPCR will be directly observable by the fluorescence of the excited
fluorophore (FAM). On the other hand, failure of the hairpin displacement operation
will be observable by the lack of a change in fluorescence, due to the maintenance of
FRET and contact quenching. Panel (e) illustrates the fully-extended primer, which was
also commercially synthesized separately, for comparison purposes.

A preliminary analysis was performed to ensure that the melting temperatures (T ′
ms)

of the template hairpin (c) and primer-template pair (d; right) were substantially above

398 J.A. Rose et al.

the planned experimental temperature of 37oC, at reaction conditions of interest. The
thermal stability of the template hairpin was characterized via a standard DNA melting
curve obtained by observing the fluorescence of SYBR Green� I (Molecular Probes)
using an Real-time PCR machine OPTICON2 (Bio-rad), yielding a hairpin Tm of
78.2oC, at an ionic strength of 0.165 M (data not shown). To avoid difficulties with
multiplecurveresolution,thethermalstabilityoftheprimer-targetpairwasinvestigatedvia
simulation using the software package, NucleicPark [13] which employs the parameters
in [14], with an enhanced statistical zipper model. Simulations yielded a primer-template
Tm of 52.3oC, and a transition width of ΔTm = 6.8oC at an ionic strength of 0.165 M
and [template] = [primer] = 0.1 μM. These results were taken as sufficient to indicate
proper formation of the expected DNA helices, at reaction conditions of interest.

2.3 Hairpin Displacement Experiments

Hairpin-displacement via primer extension by DNA polymerase was performed and ob-
served, using a fluorescence spectrophotometer F-2500 (Hitachi) with a compact low-
temperature thermostats RC6CP (Lauda), upon excitation at the characteristic FAM
absorbance frequency (494 nm). A polyacrylamide gel electrophoresis (PAGE) exper-
iment was also performed to visualize the variation in the size of the primer-mediated
strand-displaced products. A set of wavelength fluorescence scans on polymerization
was first performed to investigate the basic feasibility of primer-directed strand dis-
placement and hairpin opening. A 0.1 μM final concentration of the template hairpin
was prepared in a 300 μl reaction buffer consisting of 1X Klenow buffer (50mM NaCl,
10mM Tris-HCl, 10mM MgCl2, 1mM DTT), 2 mM dNTPs and 0.1 μM strand displace-
ment primer. This mixture was incubated at 37oC, and subsequently, 5 units of DNA
Polymerase I Klenow Fragment (New England BioLabs) was added, as appropriate.
The fluorescence spectrophotometer excitation and emission slit widths were each set
to 5 nm. The fluorescence of the following samples were tested: blank (B; buffer only);
a template-only sample (T; strand (a) and buffer (no primer)); a template-primer hy-
bridized sample (T+P; strands (a), (b), and buffer); and a template/primer/polymerase
sample (T+P+K; strands (a), (b), Klenow Fragment, and buffer). Samples other than
strand displaced template-primer samples were used as controls. The applied scan range
was from 450 nm to 650 nm, and the scan speed was set to 3000 nm/min. For the T+P+K
run, the spectral scan measurement was repeated at various time points, beginning from
5 sec after adding Klenow Fragment, to 10 min thereafter.

Secondly, a time-scale fluorescence scan on polymerization was performed to inves-
tigate the rapidity of the formation of extended product. The change in the fluorescence
of the excited fluorophore (FAM) accompanying hairpin opening was measured at the
emission wavelength of 518 nm, in real time. The T+P mixture without Klenow Frag-
ment was first monitored at 37 oC to measure the baseline of the fluorescence for the
first 90 sec. The time scan was then continued for around 1 hour, after which 5 units of
Klenow DNA polymerase was added. To investigate the impact of target saturation with
primer strand, this experiment was repeated with a ten-fold saturation of primer strand
(i.e., a total primer concentration of 1.0 μM).

A third polymerization experiment was performed to independently confirm the pro-
duction of extended DNA product via PAGE, as follows. Polymerization was performed

Displacement Whiplash PCR 399

in 50 μl T+P+K mixture under incubation at 37 oC, and then halted after various in-
cubation time periods (5, 10, 20, 30, 60, and 600 sec), by adding the equal volume of
Phenol:Chloroform:Isoamyl alcohol (25:24:1) (Nacalai Tesque) to the sample. Samples
were then run on a 12% (w/v) polyacrylamide gel.

Fig. 3. Experimental Results (a,b) Fluorescence wavelength and time scans from the first and
second polymerization experiments, respectively. See text for discussion.

3 Results

Fig. 3(a) illustrates the results of the first polymerization experiment, and the resulting
set of fluorescence wavelength scans. The fluorescence peak at 518 nm, obtained in all
curves is characteristic of FAM emission, stimulated via excitation at 494 nm, with the
accompanying spike at 494 nm indicative of scattering of the incident excitation beam.

400 J.A. Rose et al.

The smaller peak at 580 nm is due to TAMRA (via FRET transfer from FAM, and re-
emission). For runs without DNA polymerase (runs T and T+P), equally-low fluores-
cence values were obtained at 518 nm, indicating FRET or contact quenching, resulting
from the closure of hairpin (c) in Fig 2. However, following addition of Klenow frag-
ment, even minimal polymerization time is accompanied by a sizable increase in the
fluorescence signal at 518 nm (5 sec; yellow curve). Additional polymerization time is
accompanied by successively higher peaks, which rapidly reach saturation, by 600 sec.
This result is consistent with the rapid abolition of FRET/TAMRA contact quenching,
indicative of successful primer extension, strand displacement, and hairpin opening.

Fig. 3(b) illustrates the results of the second polymerization experiment, in terms
of the fluorescence increase of the excited fluorophore (FAM; 518 nm) vs. time. As
in the above experiment, the accompanying fluorescence time scan indicates that ad-
dition of Klenow fragment is accompanied by a rapid increase in fluorescence at 518
nm, reaching saturation within 600 seconds, for both equimolar and a ten-fold excess
of primer:template. This result is again consistent with the rapid abolition of FRET/
TAMRA contact quenching, indicative of successful primer extension, strand displace-
ment, and hairpin opening, with essential completion within 600 seconds.

Fig. 4 illustrates the PAGE gel resulting from the third polymerization experiment.
The band with high mobility in the control run (lane 7; Template+Primer only; bottom
arrow), which runs just under 80 bps, as judged via comparison with the 20 bp ladder
(lane 8) is indicative of unpolymerized DNA product (i.e., T+P). On the other hand,
lanes 1 (immediate inactivation of Klenow primer) through 6 (600 sec of polymeriza-
tion by Klenow primer) indicate the essentially immediate disappearance of the band
with high mobility beneath 80 bps (difficult to see after only 5 sec of polymerization
(lane 1)), and the rapid appearance of a band with lower mobility, running at 80 bps
(top arrow), which is consistent with the increasing accumulation of polymerized DNA
product (lanes 1-6). To independently verify the identity of the band at 80 bps as the
fully-extended product of polymerase extension, the mobility of the hybridized tem-
plate and fully-extended primer was also investigated separately, and found to run at 80
bps (top arrow), as required (data not shown).

4 Discussion

The presented experimental results provide an unambiguous validation of the funda-
mental feasibility of targeted primer-directed hairpin displacement. Both the FRET and
PAGE experiments indicate the rapid attainment of a high degree of completion of ds-
DNA product, corresponding to the hybridized tempate/extended-primer pair. In DW-
PCR, this basic operation, employed as the Rule Protect biostep, not only achieves
hairpin displacement, but also abolishes back-hybridization by converting the most re-
cently executed rule-block of all strands in an encoded mixture to double-stranded form,
forcibly preventing hairpin formation within this region. As the template/extended-
primer duplex which forms the protected rule-block will clearly remain stable during the
isothermal operation characteristic of DWPCR (thermal cycling has been eliminated)
the experimental validity of DWPCR as a high-efficiency method for implementing
massively parallel autonomous computation is considered to be firmly established, as
well.

Displacement Whiplash PCR 401

Fig. 4. Experimental Results PAGE gel from the third polymerization experiment. Lane 1-6:
T+P+K, with polymerization inactivated just after (5 sec) and following addition of Klenow frag-
ment at 10, 20, 30, 60, and 600 sec, respectively. Lane 7: Control (T+P only; no Klenow). Lane
8: 20 bp ladder. Lane 9: 100 bp DNA ladder. See text for discussion.

Given that the per-transition efficiencies estimated for WPCR and PWPCR are very
low (roughly 10−5 and 10−2 successful transitions per polymerase-hairpin encounter),
the per-transition efficiency approaching unity achieved by DWPCR for successfully
protected rule-blocks represents a fundamental advance. Completion appears to be rapid
and substantial. In contrast with WPCR, which exhibits low reaction efficiency, and
requires a high temperature ofr operation (e.g., 80 ◦C), DWPCR could proceed with an
efficiency of nearly unity under physiological conditions (37 ◦C), and thus open the door
for practical biological applications. Further investigation regarding a determination of
the absolute concentration of fully-extended product is our concern. Issues related to a
quantitative determination of efficiency are deferred to later work.

Implementation of the rule protect biostep to achieve high-efficiency DWPCR-based
massive parallelism requires a method for preparing a combinatorial mixture of en-
coded DWPCR strands. Although in principle, various methods could be employed, the
5’ to 3’ ordering of transition rules provided by the combinatorial assembly method
presented for PWPCR in [5] provides a number of clear advantages. First of all, this
ordering ensures the round-by-round shortening of the hairpin loops required for suc-
cessive state transitions on all strands. In this case, computational efficiency for each
strand should increase as the computation progresses. Secondly, the accompanying seg-
regation of successively-generated, protected rule-blocks towards each strand’s 5’ end
avoids potential difficulties due to loop stiffness due to duplex islands within the loops
used for hairpin computation. Finally, as noted in [5], this ordering supports implemen-
tation of a properly coordinated cross-over operation, to generate valid daughter strands
in WPCR-based processes evolutionary computation (i.e.,, EWPCR and XWPCR. Ac-
cordingly, a 5’ to 3’ transition rule ordering is adopted by the DWPCR architecture.

402 J.A. Rose et al.

A striking secondary advantage of DWPCR over PWPCR regards its fundamentally
superior ability to support WPCR-based evolutionary protein design. In particular, the
polymerization of target sequences for PNA binding between state codeword pairs in
the growing 3’ tail compromises PWPCR’s utility for evolutionary protein design by
pseudo-module shuffling (XWPCR) [5]. As RNA-protein fusion-based expression of
the 3’ tail as a single, unbroken gene is required by XWPCR, the unavoidable pres-
ence of glycine loops resulting from translation of transcribed target sequences, left
over from the PWPCR process is strongly destabilizing to shuffled polypeptides (see
[5] for a discussion). In contrast, target sequences for primer extension in DWPCR are
within the rule-region rather than the growing 3’ tail, so that destabilization due to the
translation of targeting artifacts from the computational process will be completely ab-
sent, which itself constitutes a major advance. Furthermore, the architectural freedom
gained by the absence of these transcribed glycine coils, which necessitates system-
atic placement at pseudo-module boundries in PWPCR-based XWPCR, will also al-
low DWPCR-based XWPCR to support exon shuffling (i.e., protein module rather than
pseudo-module shuffling), enabling XWPCR to more closely imitate naturally-evolving
systems. Thus, the ability to employ DWPCR, rather than PWPCR as the underlying
state transition method represents a significant advance for XWPCR.

The fundamental primer-directed hairpin displacement operation should also be use-
ful for non-WPCR DNA computing applications. For instance, this operation might be
employed, rather than simple primer displacement, to direct state transitions in alterna-
tive hairpin-based architectures [15]. Beyond directing state transitions, this operation
is also useful for parallel-processing of single-stranded DNA molecules during and after
computation, such as in directing the conversion to dsDNA form following completed
computation, required for gene expression in XWPCR [5]. The current fundamental
operation is thus taken to have significance beyond simple WPCR-based applications.

Acknowledgements

Financial support generously provided by Grants-in-Aid for Scientific Research (Kiban
B, 15300100 and 18300100), from the Japan Society for the Promotion of Science
(JSPS) and by JST-CREST. The authors are also grateful to M. Yamamura of the Tokyo
Institute of Technology for the kind gift of primer strand (c).

References

1. Hagiya, M., Arita, M., Kiga, D., Sakamoto, K., Yokoyama, S.: Towards parallel evaluation
and learning of boolean μ-formulas with molecules. In Rubin, H., Wood, D., eds.: DNA
Based Computers III. (2000) 57–72

2. Sakamoto, K., Kiga, D., Komiya, K., Gouzu, H., Yokoyama, S., Ikeda, S., Sugiyama, H.,
Hagiya, M.: State transitions by molecules. Biosystems 52 (1999) 81–91

3. Rose, J.A., Hagiya, M., Deaton, R.J., , Suyama, A.: A DNA-based in vitro genetic program.
J. Biol. Phys. 28 (2002) 493–498

4. Wood, D., Bi, H., Kimbrough, S., Wu, D.J., Chen, J.: DNA starts to learn poker. In: DNA
Computing. 7th Int’l Workshop on DNA-Based Computers. (2002) 22–32

Displacement Whiplash PCR 403

5. Rose, J.A., Takano, M., Hagiya, M., Suyama, A.: A DNA computing-based genetic program
for in vitro protein evolution via constrained pseudomodule shuffling. Journal of Genetic
Programming and Evolvable Machines 4 (2003)

6. Komiya, K., Sakamoto, K., Gouzu, H., Yokohama, S., Arita, M., Nishikawa, A., Hagiya,
M.: Successive state transitions with I/O interface by molecules. In Condon, A., Rozenberg,
G., eds.: DNA Computing. 6th Int’l Workshop on DNA-Based Computers. Volume 2054.,
Springer-Verlag, Berlin (2001) 17–26

7. Komiya, K., Sakamoto, K., Kameda, A., Yamamoto, M., Ohuchi, A., Kiga, D., Yokoyama,
S., Hagiya, M.: DNA polymerase programmed with a hairpin DNA incorporates a multiple-
instruction architecture into molecular computing. Biosystems 83 (2006) 18–25

8. Rose, J.A., Deaton, R.J., Hagiya, M., Suyama, A.: Equilibrium analysis of the efficiency of
an autonomous molecular computer. Phys. Rev. E 65 (2002) 1–13 Article 021910.

9. Komiya, K., Yaegashi, S., Suyama, A., Hagiya, M., Rose, J.A.: Experimental validation of
the statistical thermodynamic model for prediction of the behavior of autonomous molecular
computers based on DNA hairpin formation. In: DNA Computing. 12th Int’l Workshop on
DNA-Based Computers. (2006) in press

10. New England Biolabs: Klenow Fragment (3L → 5L exo-). (2004) Technical Bulletin M0212.
11. Arita, M., Nishikawa, A., Hagiya, M., Komiya, K., Sakamoto, K., Gouzu, H., Yokoyama,

S.: Improving sequence design for DNA computing. In: Proc. 5th Genetic and Evolutionary
Computation Conference (GECCO99), Las Vegas (2000) 875–82

12. Marras, S., Kramer, F., Tyagi, S.: Efficiencies of FRET and and contact-mediated quenching
in oligonucleotide probes. Nucl. Acids. Res. 30 (2002) e122

13. Rose, J.A., Deaton, R.J., Suyama, A.: Statistical thermodynamic analysis and design of
oligonucleotide based computers. Natural Computing 3 (2004)

14. SantaLucia, Jr., J., Hicks, D.: The thermodynamics of DNA structural motifs. Annu. Rev.
Biophy. Biomolec. Struct. 33 (2004) 415–40

15. Kubota, M., Ohtake, K., Komiya, K., Sakamoto, K., Hagiya, M.: Branching DNA machines
based on transitions of hairpin structures. In: Proc. Congr. Evol. Comp. (CEC’03). (2003)
2542–2548

C. Mao and T. Yokomori (Eds.): DNA12, LNCS 4287, pp. 404 – 417, 2006.
© Springer-Verlag Berlin Heidelberg 2006

MethyLogic: Implementation of Boolean Logic Using
DNA Methylation

Nevenka Dimitrova
1
 and Susannah Gal

1,2

1 Philips Research, 345 Scarborough Rd.
Briarcliff Manor, NY 10510, USA

nevenka.dimitrova@philips.com

2 Department of Biological Sciences
Binghamton University

Binghamton, NY 13902, USA
sgal@binghamton.edu

Abstract. The MethyLogic method performs flexible and reversible modifica-
tion of DNA in order to establish the logical value of true or false for a set of
clauses. It combines both the biological meaning and experimental procedure
with the logical implementation of the basic Boolean operators: OR, AND, and
NOT. The original feature of methylation logic, MethyLogic, is the use of the
reversibility of DNA methylation of cytosine and adenine. Logic variables can
be negated by reversing the DNA methylation status. We introduce four im-
plementation scenarios: three of them use methyl-sensitive restriction enzymes
and the fourth uses methyl-binding proteins. Encoding can use either single or
double-stranded DNA. In addition, we show how to solve a three variable SAT
problem and how to implement a logic circuit.

1 Introduction

DNA Methylation refers to adding a methyl group, CH3 to the fifth carbon on cyto-
sine or to the sixth carbon of adenine. DNA Methylation is a mechanism known both
in animals and plants as an important means for gene expression regulation [1] [2] . In
bacteria, it acts as a protection mechanism from attack by foreign DNA [3]. As a
biological process, DNA methylation is reversible. DNA methyltransferases catalyze
the transfer of a methyl group from S-adenosyl-L-methionine to cytosine or adenine
bases in DNA whereas native DNA polymerases do not copy the methylation status
when they replicate DNA.

Assays that are experimental tools for the analysis of developmental biology and
cancer are mainly used for finding the epigenetic or methylation state of candidate
genes and their involvement in a certain biological process [4]. In our method, we
propose a conceptual framework of mathematical logic that will allow for more com-
plex operations on the DNA in the process of making diagnostic decisions. As op-
posed to other methods that are used in DNA computing, our method allows writing
and re-writing for DNA computations. Currently aqueous computing suffers from the
limitation due to the inability to rewrite or overwrite on existing DNA. Once a piece
of DNA has been “processed” it is no longer reusable. The existing methods are not

 MethyLogic: Implementation of Boolean Logic Using DNA Methylation 405

reversible. This new approach would allow reversible methylation of the DNA se-
quences to change the truth value of the encoded variables.

Molecular computing models have approached different NP-complete problems
since Adleman’s historic experiment in 1994 [5-7]. Lederman et al. developed an
array of seven deoxyribozyme-based molecular logic gates that behaves as a full ad-
der in a single solution [8, 9]. Liu et al. used a surface chemistry based DNA com-
puter to solve a four-variable four-clause SAT problem [10]. Recently Su et al. have
implemented a DNA computer capable of simulating Boolean logic circuits. They
constructed NOR and OR gates and combined them into a simple logic circuit [11].
Head et al. proposed a novel way for recording information on DNA molecules while
they are dissolved in water [12]. The resulting solution of information containing
molecules is considered to constitute a “fluid memory.” This group also introduced
schemes for reading information from these molecules. A simple instance of the Satis-
fiability Problem of a set of Boolean Clauses was proposed [13]. Given a set of Boo-
lean clauses the problem is to find truth values for which all of the clauses are
satisfied, “true”. A procedure for solving this SAT problem illustrates the DNA com-
puting method called 'Aqueous Computing' [14]. Benenson et al. implemented an
automaton where the computation is performed by a reversible software molecule
with input molecule hybridization followed by an irreversible software-directed
cleavage of the input molecule [15].

The original feature of methylation logic, MethyLogic, is the use of the reversibil-
ity of DNA methylation of cytosine and/or adenine. Here we use DNA methylation of
cytosine as an example. The advantage of this approach is that it can be implemented
with the use of methylation sensitive restriction enzymes or with methyl-binding
proteins. The DNA sequences that encode the “true” and “false” values of a particu-
lar logic variable do not have to be encoded with different sequences. Instead, the
negation of a variable is encoded with the opposite state: if a variable has value of
“true” and is encoded with a methylated sequence, then the negation of this variable is
encoded with the same DNA sequence but unmethylated.

There are two types of nucleotides that have the methylation mark: adenine and cy-
tosine, and the methylation logic implementations that are based on either adenine or
cytosine are called A- implementation and C- implementation, respectively. In this
paper we will focus on C-implementation. This is distinct from the approach taken
previously by Gal et al. where unidirectional methylation of specific restriction enzyme
sites was used to implement a specific SAT problem [16]. Methylation as a computa-
tional strategy for aqueous computing was previously introduced by Head [17].

The rest of this paper is organized as follows. Section 2 gives an overview of the
biochemical tools available for implementing DNA methylation logic. Section 3 gives
an introduction into various implementation scenarios, encoding schemes and imple-
mentation of basic logical operators: AND, OR and NOT. Section 4 gives two exam-
ple experimental plans. Section 5 concludes and gives directions for future work.

2 Biochemical Tools for MethyLogic

There are a large number of commercially available tools that we can use in our Me-
thyLogic approach to computation. One can prepare methylated DNAs of specific

406 N. Dimitrova and S. Gal

sequence simply by ordering oligonucleotides and requesting specific nucleotides as
methyl-cytosine (Integrated DNA Technologies, http://www.idtdna.com). There are
well studied methyl transferases, methyl binding proteins and methyl-specific restric-
tion enzymes that can be used in the implementation of MethyLogic.

There are a variety of enzymes that can methylate DNA at specific 4-6 base pair
recognition sites [18] [19]. Over 13 different DNA methyl transferases are commer-
cially available at this time (from New England Biolabs [http://www.neb.com] or
from Takara Mirus Bio [http://www.takaramirusbio.com/]). The human Dnmt1 en-
zyme methylates the cytosine in the C-G context, but only if one strand is already
methylated, so called hemi-methylated DNA, to make it fully methylated on both
strands [20] .

To physically separate methylated from unmethylated DNA, one can use methy-
lated DNA binding proteins. Several different ones are known: Kaiso, MBD1,
MBD2, MBD3, MBD4, and MeCP, some of which are sequence specific [21] [22].
There are also antibodies to methylated cytosine residues that are available
(http://www.avivasysbio.com/).

One can also carry out specific biochemical reactions to distinguish methylated
from unmethylated DNA. Bisulfite treatment modifies unmethylated cytosines and
converts them to uridine residues [23] [24]. Methylated cytosines are unmodified.
This conversion of a cytosine to a uridine creates a single base mismatch between a
uridine on one strand and a guanine on the other. A few endonucleases are available
that can cleave this structure specifically [25, 26]. Alternatively one can use DNA
sequencing, oligonucleotide hybridization or PCR to distinguish the different levels of
the two types of sequences as has previously been done [27, 28]. Recently a specific
DNA endonuclease, McrBC has been isolated that only cuts hemi-methylated or
methylated DNA [29]. This enzyme has been used to screen for methylated DNA
sequences in human DNA [30]. There are also sequence specific DNA cleavage
enzymes, restriction endonucleases that either can cleave methylated DNA or only
unmethylated DNA (for example MspI and HpaII). When a pair of these enzymes are
used with the same sequence specificity, one that can cut methylated DNA and the
other that can not, comparison of the cleavage status in each reaction can indicate
whether a specific DNA is methylated or not even in a complicated mixture such as
the human genome [13].

All of these well-studied tools are available to use for the analysis of logic algo-
rithms using DNA methylation as described next.

3 Boolean Logic Implemented with DNA Methylation

We introduce Boolean logic using DNA methylation. Since DNA methylation is a
reversible process, it allows for an abstract framework and several physical imple-
mentations. The goal is to have an implementation procedure that gives more freedom
on the choice of the DNA sequences. DNA methylation is important because the
write-erase steps can be implemented as methylate-unmethylate in solution. We
define a “methylation logic” that allows for using differently encoded strings. The
requirement is that encoded logical variables contain at least one cytosine – for the C-
implementation or at least one adenine for the A- implementation.

 MethyLogic: Implementation of Boolean Logic Using DNA Methylation 407

One of the DNA methylation states is taken as true while the other methylation
state is taken as false. For example, we can consider methylation of cytosine to be
equivalent to “True”.

Encoding: Logic variables can be encoded using single or double stranded DNA.
Write: Writing corresponds to applying DNA methylation in vitro or in vivo. In vi-

tro this corresponds to applying one of the methyl-transferase enzymes listed above.
In vivo, there is a maintenance methyltransferase DNMT1 which methylates C within
a CpG dinucleotide only if one of the strands is already methylated and de novo me-
thyltransferases DNMT3a and DNMT3b that methylate all the CpG dinucleotides.

Erase: Erasing corresponds to any procedure listed in section 2 that removes DNA
methylation mark in vitro or in vivo. Copying of DNA using a DNA polymerase like
in PCR is one way of losing the methylation modification on a residue.

Destroy: This is any procedure that destroys either unmethylated or methylated
DNA. This refers to applying enzymes that digest specifically methylated or un-
methylated DNA.

Separate: Methylated DNA binding proteins can separate strands of DNA that
have methylated nucleotides from those without any methyl groups attached

Read: The readout procedure can distinguish if a piece of DNA is fully, hemi, par-
tially methylated or completely unmethylated. Methylation sensitive restriction en-
zymes, bisulfite treatment and PCR can be used for this purpose.
In any computation process, there is always duality between encoding/reading proce-
dures and computation procedures. A computation procedure can be implemented
using various physical and chemical processes, and the reading procedure can be used
to interpret the result – again acting as a computation step. Here we propose four
different implementation scenarios, the first three can be implemented using methyl-
sensitive restriction enzymes, whereas the fourth case uses methyl-binding proteins.
We describe implementation of AND and OR logical operators. Implementation of
NOT is by reversing the methylation status of the input sequence (variable). This
could be done with the “write” and “erase” processes mentioned above.

Implementation case 1:
• Encoding: Sequences are encoded with single-stranded DNA, the “logical op-

erators” are evaluated after allowing sequences to hybridize
• AND: both strands and all Cs should be methylated to have a truth value of

“True” else the truth value is “False”;
• OR: hemi-methylated or fully methylated DNA are treated as “True” whereas

unmethylated DNA is treated as “False.”
Implementation case 2:

• Encoding: Sequences are encoded as double-stranded DNA, the operation
is the same for AND and OR, but the readout is interpreted differently
based on the intended operator:

• AND: requires the entire length of the sequence to be methylated to have
“True”, else it is “False”. Of course both strands have to continue to be me-
thylated.

• OR: requires any region to be methylated to have “True” else it is “False.”

408 N. Dimitrova and S. Gal

Implementation case 3: Combined implementation of 1 and 2 where single
stranded DNA represents logical variables, and ligating double-stranded DNA is used
to implement complex logical expressions.

Implementation case 4:
• Encoding: Logic variables are encoded as single or double-stranded DNA.

Using methyl binding proteins including methyl specific antibodies, we can
separate double-stranded DNA into a “bound” fraction (having methylated
DNA) and an “unbound” fraction (having only unmethylated DNA). En-
coded sequences are allowed to hybridize and then methyl-binding proteins
are used to fish out any DNA sequence that is methylated. Using PCR, we
can distinguish in a sensitive and sequence specific manner whether se-
quences are in the bound or unbound fraction or both. With not very com-
plicated mixtures, we might be able to just see the DNA on a gel, but if we
want to implement logical variables that involve representations from the
human genome, we need to use PCR to see in which fraction a given se-
quence is present.

• AND: if the DNA sequences are both in the “bound” fraction, the truth
value is “True”. Otherwise, it evaluates to “False”.

• OR: if either DNA sequence is in the “bound” fraction, means that at least
some of the DNA sequence is methylated, so it evaluates to “True”. If both
DNA sequences are in the unbound fraction, means that the DNA sequence
is unmethylated and it evaluates to False.

3.1 Methylation Logic Using Single-Stranded DNA (ssDNA)

Logical Operator AND using ssDNA
Table 1 shows the Boolean logic and methylation logic equivalent for the logical
operator AND. The logical variables are encoded as single-stranded DNAs that are
converted to double-stranded DNA by hybridizing the strands. In this case, A and B
are two single-stranded DNAs that are hybridized. The truth value of the hybridized
product is “True” if and only if the double-stranded DNA is methylated on both
strands.

There are various implementation considerations to be mentioned here. Implemen-
tation of AND will need an experimental procedure that checks for full methylation.
One way to do that would be to apply digestion by the enzyme HpaII to maintain
intact only completely methylated DNA. This restriction enzyme is sensitive to me-
thylation and so can not cut methylated DNA. It remains to be tested whether it can
cut hemi-methylated DNA. If that is the case, to distinguish hemi-methylated from
methylated DNA, we would apply the bisulfite treatment first, then use enzymes that
cut at a mismatch. The bisulfite treatment would convert an unmethylated-C to a U
and make a mis-paired base with the G on the opposite strand. Those mis-paired
bases can then be cut with the specific enzymes recognizing the mismatch. This pro-
tocol should give us only intact fully methylated DNA.

 MethyLogic: Implementation of Boolean Logic Using DNA Methylation 409

Table 1. Methylation logic table for AND operator using ssDNA

Boolean Logic MethyLogic
A B A AND B A B A AND B

Realization

T T T M M M fully methylated on both strands
T ⊥ ⊥ M U U unmethylated at least on one

strand (hemi-methylated DNA)
⊥ T ⊥ U M U unmethylated at least on one

strand (hemi-methylated DNA)
⊥ ⊥ ⊥ U U U fully unmethylated on both

strands

Logical Operator OR using ssDNA
Table 2. shows the Boolean logic and methylation logic equivalent for the logical
operator OR. The logical variables are encoded as single-stranded DNA then con-
verted to double-stranded DNA using hybridization. The truth value of the hybridized
product is equal to “True” if the double stranded DNA is methylated on at least one
strand. Implementation of OR uses the experimental procedure to check if a sequence
is hemi- or fully methylated. We can apply the McrBC enzyme to cut all methylated
or hemi-methylated sequences. This will keep intact only the unmethylated se-
quences. Alternatively, we can use the methyl binding proteins, as mentioned in
implementation scenario 4, to fish out anything that has methylation. The unmethy-
lated DNA would be in the unbound fraction.

Table 2. Methylation logic table for OR operator using ssDNA

Boolean Logic MethyLogic
A B A OR B A B A OR B

Realization

T T T M M M fully methylated on both strands
T ⊥ T M U M unmethylated at least on one

strand (hemi-methylated)
⊥ T T U M M unmethylated at least on one

strand (hemi-methylated)
⊥ ⊥ ⊥ U U U fully unmethylated on both

strands
As in the case of AND, A and B are two single-stranded DNAs that are hybridized.

Logical Operator NOT using ssDNA
Table 3. shows the Boolean logic and methylation logic equivalent for the logical
operator NOT. A logical variable is encoded as single-stranded DNA. The truth value

Table 3. Methylation logic table for the NOT operator using ssDNA

Boolean Logic MethyLogic
A NOT A A NOT A

Realization

T ⊥ M U unmethylated ssDNA

⊥ T U M methylated ssDNA

410 N. Dimitrova and S. Gal

is reversed by using PCR if the sequence is methylated because during PCR the me-
thylation mark gets lost. Changing the truth value from false to true is equivalent to
applying a DNA methyltransferase that sets the methylation mark.

3.2 Methylation Logic Using Double-Stranded DNA (dsDNA)

Logical Operator AND using dsDNA
The logical variables are encoded as double-stranded DNAs that are ligated. Table 4.
shows the Boolean logic and methylation logic equivalent for the logical operator
AND. The truth value of the ligated product is “True” if and only if the whole DNA
sequence is methylated.

Table 4. Methylation logic table for AND operator using dsDNA

Boolean Logic MethyLogic
A B A AND B A B A AND B

Realization

T T T M M M fully methylated sequence
T ⊥ ⊥ M U U at least one C or A unmethylated
⊥ T ⊥ U M U at least one C or A unmethylated
⊥ ⊥ ⊥ U U U fully unmethylated sequence

Implementation of AND will need an experimental procedure that checks for full
methylation and detects if even a single C within a sequence is unmethylated. The
bisulfite treatment converts an unmethylated-C to a U and makes a mis-paired base
with the G on the opposite strand. Those mis-paired bases can then be cut with the
specific enzymes recognizing the mismatch. This protocol should give us only intact
fully methylated DNA.

Logical Operator OR using dsDNA
Table 5. shows the Boolean logic and methylation logic equivalent for the logical
operator OR using dsDNA. As in the case of AND, A and B are double-stranded
DNAs that are ligated or where A and B are two different subsequences on a longer
double-stranded DNA sequence. The truth value of the ligated product is equal to
“True” if the double stranded DNA is methylated at least partially.

Table 5. Methylation logic table for OR operator using dsDNA

Boolean Logic MethyLogic
A B A OR B A B A OR B

Realization

T T T M M M fully methylated
T ⊥ T M U M partially methylated
⊥ T T U M M partially methylated

⊥ ⊥ ⊥ U U U fully unmethylated

 MethyLogic: Implementation of Boolean Logic Using DNA Methylation 411

Implementation of OR uses the experimental procedure to check if a sequence is
partially methylated. Bisulfite treatment followed by DNA sequencing is a method
that can check for methylation of single sites and therefore could be used for this
purpose. Alternatively, we can use the methyl binding proteins including methyl C-
specific antibodies, as mentioned in implementation scenario 4, to fish out anything
that is methylated. The unmethylated DNA would be in the unbound fraction.

Logical Operator NOT using dsDNA
A logical variable is encoded as double-stranded DNA. Table 6. shows the Boolean
logic and methylation logic equivalent for the logical operator NOT. The truth value
is reversed by using PCR if the sequence is methylated because during PCR the me-
thylation mark gets lost. Changing unmethylated to methylated DNA can be done by
applying a DNA methyltransferase.

Table 6. Methylation logic table for the NOT operator using dsDNA

Boolean Logic MethyLogic
A NOT A A NOT A

Realization

T ⊥ M U unmethylated dsDNA or unmethylated at a
particular position

⊥ T U M methylated dsDNA

4 Two Examples of an Experimental Plan for MethyLogic

Example 1: Let p, q, r be Boolean variables and let p’, q’, r’, be their respective
negations. Does there exist an assignment of truth values (T / F) to the variables p,
q and r for which each of the four clauses p OR q, p’OR q OR r’, q’ OR r’, p’ OR r
has the value true? The same example was used by Head et al. and Gal and Head to
demonstrate aqueous computing [12, 16]. In this example, we use the variables
encoded as three distinct double-stranded DNAs and ligate them together as neces-
sary. Here we equate the methylated p (Mp) site with p, the unmethylated p site
(Up) with p’, Mq with q, Uq with q’ and Mr with r and Ur with r’. We would create
all 8 possible combinations of these variables using ligation of the methylated and
unmethylated double-stranded elements (MpMqMr, MpUqMr, MpMqUr, MpUqUr,
etc.). There would be a vast amount of these molecules available. The elements
will be defined so that there exists a binding protein that can specifically bind to the
methylated form of each element independently. For these clauses, to save the p’
form, we will apply the DNA to the methyl-binding protein specific for the p site
and save the DNA that does not bind (saves only the unmethylated or Up form). To
save the p or methylated form, we will apply the DNA to the same protein, but save
the bound DNA. Details for each clause are given below. We visualize the first two
computational steps in Figures 1 and 2. The rest of the steps are carried out in a
similar fashion.

412 N. Dimitrova and S. Gal

Step 1: Compute p OR q. Figure 1 describes this process.
1.1 Separate the vast mixture of the starting DNAs into two pots.
1.2 In one, apply the mixture to the methyl-binding protein specific for the p site

and in the other pot, apply the mixture to the methyl-binding protein specific
for the q site.

1.3 In both cases, save the bound material, those that contain either Mp or Mq
(p OR q). This sample would contain p OR q OR r and p OR q OR r’.

1.4 Recombine these two bound samples. This mixture now contains six differ-
ent double-stranded DNAs: MpUqMr, MpUqUr, UpMqMr, UpMqUr,
MpMqMr, and MpMqUr.

Step 2: Compute p’ OR q OR r’. Fig. 2. describes this computational step.
2.1 Separate the mixture of the DNA from the last step into three pots.
2.2 In one, apply the mixture to the methyl-binding protein specific for the p site

and save the unbound material. In another pot, apply the mixture to the
methyl-binding protein specific for the q site and save the bound material. In
the third pot, apply the mixture to the methyl-binding protein specific for the r
site and save the unbound material.

2.3 Recombine the three saved samples. This sample now contains MpUqUr,
UpMqMr, UpMqUr, MpMqMr and MpMqUr.

Fig. 1. Steps in computing p OR q

 MethyLogic: Implementation of Boolean Logic Using DNA Methylation 413

Fig. 2. Steps in computing p' OR q OR r'

Step 3: Compute q’ OR r’.
3.1 Separate the mixture of DNA from the last step into two pots.
3.2 In one, apply the mixture to the methyl-binding protein specific for the q site

and save the unbound material. In the other pot, apply the mixture to the
methyl-binding protein specific for the r site and save the unbound material.

3.3 Recombine the two saved samples. This sample now contains MpUqUr,
UpMqUr and MpMqUr.

Step 4: Compute p’ OR r
4.1 Separate the mixture of DNA from the last step into two pots.
4.2 In one, apply the mixture to the methyl-binding protein specific for the p site

and save the unbound material. In the other pot, apply the mixture to the
methyl-binding protein specific for the r site and save the bound material.

5.1 Recombine the two saved samples. This sample should only contain
UpMqUr from the bound material from the methyl-p site binding protein.
The bound material from the methyl-r binding protein will yield no DNA as
all the molecules from the previous step contain Ur.

414 N. Dimitrova and S. Gal

Step 5: Read the answer
Apply bisulfite treatment to the material and sequence the resulting DNA fragments.
Bisulfite treatment converts unmethylated Cs to Us while it has no effect on methy-
lated Cs. Where the sequence is the same as the starting material, that site was me-
thylated in the final product. Where the sequence is different and a U is substituted
for a C, that site was unmethylated in the final answer.

Example 2: Represent a logical formula: (a OR b) AND (c’) AND d using Methy-
Logic. We can think of it also as a representation of a logic circuit. We want to know
for which inputs (values of a, b, c and d) the logic circuit produces a “true” value.
Here we use a representation of logical variables with single-stranded DNA.

Step1: Compute a OR b
 We encode the variable a with a sequence and then b with another sequence in

such way that they would hybridize. For example, a would be encoded with 5’-
ACGCGA-3’ then b encoded with 5’-AAATCG-3’. The hybridized form of
this DNA would be represented as below: (in reality we want more than a 3-
base overlap for better hybridization). We should also note that all sequences
need to contain at least one C so it can be methylated. One can also work with
methylated As if necessary.

a 5’-ACGCGA-3’
 ||| (hydrogen bonds between strands)
b 3’-GCTAAA-5’

1.1 Combine four pots containing unmethylated a (Ua), methylated a (Ma), Ub,
and Mb and create four different kinds of double stranded DNA (Ua/Ub,
Ua/Mb, Ma/Ub, and Ma/Mb).

1.2 Use methyl- binding proteins (e.g. MeCP or MBD1 or antibodies to methyl-
C) to fish out the sequences that have hybridized and at the same time con-
tain methylated Cs by saving the bound fraction. This corresponds to per-
forming a OR b.

Step 2: Compute c’ AND d
2.1 We encode c and d with different sequences in such a way that they would

hybridize together, and as a hybrid ligate with the overhang of the a OR b
hybrid (see below). For example, c could be encoded with 5’-TTTCGC-3’
then d would be encoded with 5’-ATAGCG-3’ such that when hybridized
they form a structure as below: (in reality we want more than a 3-base over-
lap for better hybridization).

c 5’-TTTCGC-3’
 ||| (hydrogen bonds between strands)
d 3’-GCGATA-5’

As above, create 4 types of single-stranded DNAs, Uc, Ud, Mc and Md.
2.2 Apply NOT to c by applying PCR to the methylated c pot and a methyltrans-

ferase to the unmethylated c pot. For simple variables we can just exchange
pots.

 MethyLogic: Implementation of Boolean Logic Using DNA Methylation 415

2.3 Hybridize the two results with unmethylated d and methylated d.
2.4 Apply AND operator to the four pots: bisulfite treatment followed by incubat-

ing with an enzyme that destroys mismatched DNA. The bisulfite treatment
converts unmethylated Cs to U and does not affect the methylated Cs. Thus
in a hybrid where an unmethylated C is hybridized with a G, following bisul-
fite treatment, you will have a U-G mismatch instead of the normal C:G base-
pair. The mismatched DNA can be destroyed using specific enzymes that
cleave the mismatched double stranded DNA (see section 2).

Step 3: Compute the AND of the product from the previous two computations by
combining the pots resulting from step 1 and 2 and ligate. The product of this
reaction would have the DNA sequence structure as below:

a-c 5’-ACGCGATTTCGC-3’
 ||||||||| (hydrogen bonds between strands)
b-d 3’-GCTAAAGCGATA-5’

Apply bisulfite treatment followed by the enzyme that destroys mismatched DNA.
As mentioned above, the bisulfite treatment should convert unmethylated Cs to Us
and therefore generate a mismatched DNA sequence where U is opposite a G. Me-
thylated Cs will not be modified by this treatment and therefore should remain cor-
rectly basepaired with Gs on the other strand. Mismatched DNA can then be de-
stroyed using specific enzymes. The resulting DNA should satisfy the complex
clause: a OR b AND c’ AND d.

Step 4: Read the answer. For this, we would divide the mixture into two pots and
treat one of them with bisulfite. As mentioned above, this treatment converts
unmethylated C’s to U’s. We would then sequence the DNA strands in each
pot. We need to sequence both strands in order to find the truth values of the
logical variables in the circuit. Any difference will be because of unmethy-
lated C at that position. In our case, the state of site c should be negated when
we read the answer.

5 Conclusions and Future Work

We have introduced the concept of implementing Boolean logic with DNA methyla-
tion using both single and double-stranded DNA. We proposed two experimental
plans for implementation of a universal DNA computer based on “methylation logic”.
This approach is potentially generalizable more easily than our past approaches. The
past approaches always required the presence of appropriate restriction enzymes and,
recently methylases. That would naturally limit the types and numbers of sequences
with which one can work. Although some of our new approaches require sequence
specific methyl-binding proteins, other implementations use only the presence of
methylated residues and as such this expands the kinds of sequences we could use for
these approaches greatly. A natural follow-up is to test this procedure in laboratory

416 N. Dimitrova and S. Gal

experiments. All the materials are commercially available so we do not foresee any
obstacles in carrying out the experimental procedures.

References

1. Bird, A., DNA methylation patterns and epigenetic memory. Genes Dev, 2002. 16(1): p.
6-21.

2. Rollins, R.A., et al., Large-scale structure of genomic methylation patterns. Genome Re-
search, 2006 16(2): p. 157-63.

3. Jeltsch, A., Beyond Watson and Crick: DNA methylation and molecular enzymology of
DNA methyltransferases. ChemBioChem, 2002. 3(4): p. 274-93.

4. Esteller, M., et al., Cancer epigenetics and methylation. Science, 2002. 297(5588): p.
1807-8.

5. Conrad, M., Information processing in molecular systems. Currents in Modern Biology,
1972. 5: p. 1-14.

6. Livstone, M.S., D.van Noort, and L.F. Landweber, Molecular computing revisited: a
Moore's Law? Trends Biotechnol., 2003. 21(3): p. 98-101.

7. Head, T., One Mathematician's Tour from Biology into Computing and Back to Life. sub-
mitted, 2006.

8. Lederman, H., et al., Deoxyribozyme-Based Three-Input Logic Gates and Construction of
a Molecular Full Adder. Biochemistry, 2006. 45(4): p. 1194-1199.

9. Margolin AA, S.M., Boolean calculations made easy (for ribozymes). Nat Biotechnol.,
2005. 23(11): p. 1374-6.

10. Liu, Q., et al., DNA computing on surfaces. Nature, 2000. 413: p. 175-9.
11. Su, X. and L.M. Smith, Demonstration of a universal surface DNA computer. Nucleic Ac-

ids Res., 2004. 32(10): p. 3115-23.
12. Head, T., et al. Aqueous solutions of algorithmic problems: emphasizing knights on a 3X3.

in DNA Computing - 7th International Workshop on DNA-Based Computers. Jonoska, Na-
tasa; Seeman, Nadrian C., Editors, 2002: Springer. p. 191-202.

13. Hatada, I., et al., Genome-wide profiling of promoter methylation in human. Oncogene,
2006, e-published Jan 9.

14. Head, T., et al., Aqueous computing: a survey with an invitation to participate. J. Com-
puter Science & Technology, 2002. 17: p. 672-681.

15. Benenson, Y., et al., DNA molecule provides a computing machine with both data and fuel.
Proc Natl Acad Sci U S A, 2003. 100(5): p. 2191-6.

16. Gal, S. and T. Head. Exploring Methylation as a Tool for DNA Computing. in DNA11:
Conference on DNA based computers. 2005. London, Ontario.

17. Head, T., Writing by Methylation Proposed for Aqueous Computing, in Where Mathemat-
ics, Computer Science, Linguistics and Biology Meet, Carlos Martín-Vide; Victor Mitrana,
Editors. 2001, Kluwer Academic Publishers. p. 353-360.

18. Marinus, M.G. and N.R. Morris, Isolation of deoxyribonucleic acid methylase mutants of
Escherichia coli K-12. J Bacteriol, 1973. 114(3): p. 1143-50.

19. Geier, G.E. and P. Modrich, Recognition sequence of the dam methylase of Escherichia
coli K12 and mode of cleavage of Dpn I endonuclease. J Biol Chem., 1979. 254(4): p.
1408-13.

20. Pradhan, S., et al., Recombinant human DNA (cytosine-5) methyltransferase. I. Expression,
purification, and comparison of de novo and maintenance methylation. J Biol Chem, 1999.
274(46): p. 33002-10.

 MethyLogic: Implementation of Boolean Logic Using DNA Methylation 417

21. Bowen, N.J., M.B. Palmer, and P.A. Wade, Chromosomal regulation by MeCP2: struc-
tural and enzymatic considerations. Cell Mol Life Sci, 2004. 61(17): p. 2163-7.

22. Khan, R., et al., Human methylated DNA-binding protein. Determinants of a pBR322 rec-
ognition site. J Biol Chem, 1988. 263(28): p. 14374-83.

23. Shapiro, R., R.E. Servis, and M. Welcher, Reactions of uracil and cytosine derivatives with
sodium bisulfite:a specific deamination method. J. Am. Chem. Soc., 1970. 92: p. 422–424.

24. Hayatsu, H., Y. Wataya, and K. Kai, The addition of sodium bisulfite to uracil and to cyto-
sine. J. Am. Chem. Soc., 1970. 92: p. 724–726.

25. Fuhrmann, M., et al., Removal of mismatched bases from synthetic genes by enzymatic
mismatch cleavage. Nucleic Acids Res., 2005. 33(6): p. e58.

26. Till, B.J., et al., Mismatch cleavage by single-strand specific nucleases. Nucleic Acids
Res., 2004. 32(8): p. 2632-41.

27. Kimura, N., et al., Methylation profiles of genes utilizing newly developed CpG island me-
thylation microarray on colorectal cancer patients. Nucleic Acids Research, 2005. 33(5):
p. e46.

28. Fatemi, M., et al., Footprinting of mammalian promoters: use of a CpG DNA methyltrans-
ferase revealing nucleosome positions at a single molecule level. Nucleic Acids Research,
2005. 33(20): p. e176.

29. Sutherland, E., L. Coe, and E.A. Raleigh, McrBC: a multisubunit GTP-dependent restric-
tion endonuclease. J Mol Biol., 1992. 225(2): p. 327-48.

30. Strichman-Almashanu, L.Z., et al., A Genome-Wide Screen for Normally Methylated Hu-
man CpG Islands That Can Identify Novel Imprinted Genes. Genome Research, 2002. 12:
p. 543-554.

Development of DNA Relational Database and
Data Manipulation Experiments

Masahito Yamamoto1,2, Yutaka Kita3, Satoshi Kashiwamura1,
Atsushi Kameda2, and Azuma Ohuchi1,2

1 Graduate School of Information Science and Technology, Hokkaido University
North 14, West 9, Kita-ku, Sapporo, Hokkaido 060-0814, Japan

{ki-yu, kashiwa, masahito, ohuchi}@complex.eng.hokudai.ac.jp
http://harmo.complex.eng.hokudai.ac.jp/

2 Suyama Lab., Department of Life Sciences, The University of Tokyo
Komaba 3-8-1, Meguro-ku, Tokyo 153-8902

kameda@genta.c.u-tokyo.ac.jp

Abstract. An enormous amount of data such as genomic data can be
stored into DNA molecules as base sequences. DNA database is impor-
tant for organizing and maintaining these data, because extracted data
from DNA database can be directly manipulated by chemical reactions.
In this paper, we develop a DNA relational database with a simple data
model and realize a computational model (relational algebra) of data
manipulation as a sequence of chemical experiments. By using the devel-
oped database, it is shown that we can execute query operations based on
the contents of data (the values of attributes). Furthermore, we propose
a conversion scheme of query input to a series of experiment operations.

1 Introduction

Genomes represent genetic information and are just arrangement of DNA base
sequences. In addtion, DNA molecules are stable and nanoscale materials. Re-
cently, using these characteristics, ideas that treat DNA molecules as functional
materials have been executed. DNA memory is a recording medium that stores
data in DNA molecules. Baum proposed associative memory in which an as-
sociative search is realized by the parallel hybridization of DNA molecules [1].
Kashiwamura et al. described the use of nested PCR for hierarchical memory
operations to construct large scale DNA memory [2].

If a genome database is only constructed by DNA molecules that appended
information tags (synthesis DNA) to DNA the fragments of the genome DNA,
they can be directly manipulated by chemical reactions. In addition, storing and
processing individual genetic information in electronic data have many problems
from the viewpoint of protecting individual information. Reif et al. invented
a method that makes a database of DNA molecules without changing them
into digital media and retrieved the data from DNA molecules [3]. Even in a
large scale DNA database, processing time is fairly constant because chemical

C. Mao and T. Yokomori (Eds.): DNA12, LNCS 4287, pp. 418–427, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Development of DNA Relational Database 419

reactions are also fairly constant due to the massive parallel reactions of DNA
molecules.

In studies of DNA relational databases, Arita et al. showed the feasibility of
relational algebra (RA) through in vitro experiments [4], and Katsányi showed
the feasibility of relational algebra with theoretical models that consist of basic
biomolecular reactions [5]. However, in their models, one DNA molecule is repre-
sented as a tuple of databases. Therefore, such operations that only extract the
information of attributes is troublesome. To do this, cleavage or permutation re-
actions are required, and such recombinant processes cause error accumulations.
In addition, they did not address the feasibility of query processing.

In this paper, we construct a DNA relational database with a simple data
model in which one DNA molecule stores one piece of data. We confirmed the
success of five unique kinds of relational algebra, and executed query processing
that refers the contents of the data from a DNA relational database. Supposing
the actually utilization of a DNA relational database, we propose a SQL conver-
sion scheme to a series of experiment operations and discuss the estimation of
execution time and error based on a series of experiment operations.

2 Model

2.1 Data Model

A relation is denoted by R, and a test tube that consists of DNA molecules
representing R is denoted by U . Given two variables i = 1, 2, ..., n and j =
1, 2, ..., m,

R(A1, A2, . . . , An) = {(v(1)
1 , v

(1)
2 , . . . , v(1)

n),

(v(2)
1 , v

(2)
2 , . . . , v(2)

n), ...,

(v(m)
1 , v

(m)
2 , . . . , v(m)

n)},
where Ai is an attribute and v

(j)
i is an attribute value of the relation. A tuple

of each instance is denoted by tj = (v(j)
1 , v

(j)
2 , . . . , v

(j)
n). Given tj, we denote

IDj that stores the value of j. One single-stranded DNA (ssDNA) consists of
attribute A, attribute value v, and a tuple information ID and corresponds to a
cell of the relational database table shown in Fig. 1. Compared to conventional
models, our model freely extracts target molecules from attribute information.

2.2 DNA Computational Model

We define a DNA computational model (DCM) of the basic experimental oper-
ations for database processing and use a mathematical scheme based on Reif’s
RDNA model [6], which has slightly different notation for operations than the
models of Reif’s and Katsányi’s. We describe each operation that includes not
only the test tube but also DNA molecules that used in the experiments as
variables to represent the continuous operation of query processing to a DNA
relational database.

420 M. Yamamoto et al.

Fig. 1. Representation of data with ssDNA

– Merge(U1, . . . , Uk): Mix the DNA molecules in test tubes U1, . . . , Uk,
where k is an arbitrary integer.

– Divide(U, U1, . . . , Uk): Extract a portion of the solution of test tube U ,
and divide it into test tubes U1, . . . , Uk.

– Amplify(U, FW, RE): Execute amplification reactions for DNA molecules
in test tube U with sequence sets of forward primers FW and reverse primers
RE.

– Append(U, S, E)): Append corresponding sequence set S to DNA molecules
in test tube U and contain any subsequence E at the 3’ end.

– CollectID(U): Collect all ID of tuple information in test tube U .

For the double-stranded DNA (dsDNA) in which one of the ssDNA’s ends are
biotinylated in test tube U , operations are the following:
– Separate+(U): Extract ssDNA whose ends are not biotinylated.
– Separate−(U): Extract ssDNA whose ends are biotinylated.

For the DNA molecules in test tube U , operations are the following:
– Get(U, +S): Extract ssDNA that contains any subsequence S.
– Get(U,−S): Extract ssDNA that does not contain any subsequence S.

Using the basic operations, we can describe data manipulation and RA oper-
ations. We describe the packaging methods of five unique RA in Table 1. As well
as related works, we confirmed the success of the in vitro operation of relational
algebra with our model. These results were reported in our previous study [7].

3 Query Processing Experiments

To accomplish query processing to the DNA relational database, we assumed
the relation of patients R(3 × 3) and conducted the database search shown in
Fig. 2. As conventional relational databases, we used SQL in which we referred
to the information of male patients whose diagnosis was negative.

This experimental significance is to verify whether successive operations, AND
retrieval, and the extraction of a number of tuple that have equivalent attribute
values are feasible.

Development of DNA Relational Database 421

Table 1. Packaging method for five unique RA operations. Other operations can be
expressed by utilizing these ones.

Relational algebra Chemical experiments
Union Mix solutions
Difference Affinity separation
Projection & Selection PCR
Cartesian product ST-PCR [8]

Fig. 2. Query processing for relation of patients R(3 × 3)

3.1 Sequence Design

In this paper, we consider 16-mer ssDNA as a unit and assign them to attribute
Ai, tuple information IDj , and attribute value v

(j)
i . Here, we denote these 48-

mer ssDNA as data strands. We need to design 13 units in total to execute query
processing experiments.

We employed a sequence set of GC-Templates in the Template Method [9] for
sequence units. Sequences of GC-Templates not only have the same GCcontent
(the content of bases G and C in a sequence) but the same GCposition (the
position of bases G or C in a sequence). Especially due to the GCposition, these
units are not expected to cause much kinetic difference.

However, since the sequences of GC-Templates aren’t designed to consider
a thermodynamic viewpoint, some sequences may form secondary structure in
which a DNA molecule anneals with itself, possibly preventing the intended
experimental reactions. To solve this problem, we predict free energy (ΔG) and
secondary structure by Mfold [10]. We produced 20,000 sets of data strands by
combining three randomized units from all sequence units. Next, we calculated
the predicted value of ΔG and selected high scored data strands that consist of
unique sequence units. The sequences of each unit of relation R are shown in
Table 2. We also describe ssDNA that contains Ai and IDj as data(i, j), a set
of primers that correspond to Ai and IDj as p(i, j).

3.2 Experimental Procedure

Our chemical experimental procedure of query processing is shown in Fig. 3.

422 M. Yamamoto et al.

Table 2. Sequences used in chemical experiments. Each data strand data(i, j) is
represented Tag(Ai) + Data + Tag(IDj).

Tag Sequence (5’ to 3’)
A1 (name) AACCTCCCCACACAAC
A2 (gender) AAGCTCGCCACTGTTC
A3 (diagnosis) ATGGTCCGCTGTGTTC

Tag Sequence (5’ to 3’)
ID1 CAACACACCCCTCCAA
ID2 GTAGTCACGCCTCCTA
ID3 GATCTCTCCGCACGAT

Data Sequence (5’ to 3’)
A CTACACTCGCGACCTA
B CATCACTCGGGTCCAT
C CTAGTCAGCCGACCAA
male ATCGACCGGTCAGTTG
female CATGTCTCGCCACCAA
positive CATGTGACGGCTCCTT
negative TTCCAGGGGAGACTTC

First, we prepared a test tube of initial condition that contains nine types of
DNA molecules representing relation R. Here, once we divided the initial solution
to collect IDs. In collecting IDs, we mixed complementary strands correspond-
ing to the data of male and negative, respectively. After affinity separation, we
collected IDs and select reverse perimer from them. Next, we divided the initial
solution and executed continuous PCR, that is, PCR with male IDs and PCR
with negative IDs. After continuous PCR, we obtained derived solution.

Fig. 3. Experimental procedure of query processing from DNA relational database

3.3 Experimental Results

To collect IDs, we propose utilizing DNA chips. By utilizing DNA chips, we can
collect IDs of one solution at a time, however we collected IDs with PCR in this
experiment. To detect the experimental results, we used PolyAcrylamide Gel
Electrophoresis (PAGE), and the results of collect ID is shown in Fig. 4. Affin-
ity separations operated correctly because data strands d(2, 1) and d(2, 3),

Development of DNA Relational Database 423

representing “male”, and d(3, 2) and d(3, 3) representing “negative”, were am-
plified. From these results, we collected male IDs (ID1, ID3) and negative IDs
(ID2, ID3).

Fig. 4. Results of collected IDs experiment. In PAGE figure, lanes of male and negative
representing sample PCR with p(2, ∗) and p(3, ∗) for each solution of after affinity
separation. Bands appear in using reverse primer of target ID and not in others.

Using IDs collected in the previous step, we executed continuous PCR. For-
ward primers of continuous PCR are A1, A2, and A3 , and reverse primers are
selected from IDs. First, we performed PCR for the initial solution with male
IDs. Next, we performed PCR for the post-PCR solution with negative IDs. In
the derived solution, most DNA molecules in the tube were expected to be tuple
t3 of data(∗, 3). To verify this, we individually performed PCR for the derived
solution with all primer pairs. Amplification is observed when DNA molecules
in the solution correspond to the primer set, as shown in Fig. 5. Target data
strands data(∗, 3) were amplified, and others are not. Therefore, most DNA
molecules in the derived solution are data(∗, 3), and we accomplished chemical
experiment of query processing to the DNA database.

Fig. 5. Verifying PCR results of data reference. From initial solution, we derived so-
lution by collecting IDs and continuous PCR. In PAGE figure, each lane represents
sample of PCR with individual primer pairs p(∗, ∗) (PCR cycles are 15 and 20).
Bands only appear in using p(∗, 3). Moreover, proportion of data strands remained
fairly constant through successive operations.

424 M. Yamamoto et al.

4 SQL Converter

To execute query processing to the DNA relational database, we need to convert
query input into a series of experimental operations. As in the conventional
relational database, we use basic SQL as input and the series of experimental
operation expressed by DCM defined in Section 2. This conversion is expected to
indicate to automation of the experiment and estimation of run-time and error.

4.1 SQL Mapping

Basic SQL is described as follows.

SELECT column 1, column 2, . . . , column N
FROM table 1, table 2, . . . , table M
WHERE [search condition]

SQL means that it selects rows that satisfy search conditions from tables 1 ∼
M and derives a table that consists of columns 1 ∼ M. In the SELECT phrase,
we specify forward primers that utilize the PCR of the Projection operation, in
the FROM phrase, we specify test tubes that represent corresponding relations,
and in the WHERE phrase, we input search conditions by a logical formula. By
search conditions, reverse primers that utilize the PCR of the Selection operation
are specified. In this logical formula, literal p is described as “Ai =� v

(j)′
i ”. In

the case of negative literal ∼ p, the reverse primers of ∼ p are the subtracted
reverse primers of p from the reverse primer set.

To process logical queries, Reif et al. proposed processing them in a con-
junctive normal form (CNF) [11], that is, using repeated PCR for each clause
with primers that satisfy a given clause. However, in our model, it is difficult
to process logical formulas in clauses that contain NOT operator of one PCR.
In addition, duplication of the literals caused a concentration difference of the
primers and could not amplify target molecules.

Therefore, to respond to arbitrary input, we process input logical formula
as disjunctive normal form (DNF). In this form, we obtain output by executing
continuous PCR for conjunctive term in parallel and mixing after PCR solutions.

4.2 Conversion Procedure

The conversion SQL to DCM is executed according to the following procedure.

1. Convert the input of a logical formula into DNF P , and check the duplication
of the literals in P .

2. Divide the initial solution by the number of unique literals and collect ID in
parallel.

3. If some column name is specified in the SELECT phrase, then do step 4,
otherwise step 5.

4. Execute PCR for the Projection operation, and replace the forward primer
to the specified subset.

Development of DNA Relational Database 425

5. Divide the initial solution by the number of conjunctive terms, and execute
continuous PCR in parallel.

6. If an OR operator exists in P , then do step 7, otherwise step 8.
7. Mix all solutions of post continuous PCR.
8. Execute denaturation to put DNA molecules into ssDNA.

In case of SQL used in the query processing experiments, we obtained a series
of experimental operations by DCM as shown in Fig. 6. We omit the Cartesian
product and Join operation conversion because they can be converted by the
uniform procedure.

Fig. 6. Conversion from SQL used in Section 3 to DCM defined in Section 2

4.3 Analysis from a Series of Experimental Operations

By a given series of experimental operations, we can estimate the execution time
of the query processing experiments. Total execution time Ttotal is estimated as
follows:

Ttotal � Taffinity(1 +
Lunique

Caffinity
) + Tchip(

Lunique

Cchip
) + TPCR(

Ltotal

CPCR
),

where Taffinity, Tchip, and TPCR are the execution times of each experiment,
and Caffinity , Cchip, and CPCR are the capacity of each experiment, and Lunique

and Ltotal are the number of unique and total literals in P . This time is esti-
mated in view of using DNA chips to collect ID. Moreover, when the capacity
of experiments is unlimited, a series of experiments is represented as pattern
diagrams, as shown in Fig. 7 and Ttotal:

Ttotal � 2Taffinity + Tchip + kTPCR,

where k is a max size of a term in P of k-DNF. Therefore, execution time is in-
dependent of the number of the attributes and tuples and only increases linearly
by the number of literals. Compared to conventional database, our database
clearly takes a long time. However, in conventional genome databases, require
chemical experiments. In addition, we must produce necessary materials to exe-
cute experiments with analysis results. Therefore, the characteristics of a DNA
relational database that can directly manipulate biological materials positively
affects total analysis time.

426 M. Yamamoto et al.

Fig. 7. Pattern diagrams of series of experimental operation. Dotted line arrows rep-
resent complication of search condition.

In addition, chemical experiments always include error, and successive op-
erations can cause error accumulations. By using the output of a series of ex-
periment operations from a converter, we can estimate the error of successive
operations. In our model, we require k times PCR to process k-DNF derived
from the WHERE phrase. On this point, we modeled the proportion of target
and non-target on continuous PCR. A characteristic of PCR that exponentially
amplifies target molecules eliminates previous errors. We confirmed that the con-
tinuous PCR in our model was robust with general PCR parameters. Moreover,
in mixing solutions, the proportion of target and non-target is invariant before
and after operations.

5 Discussion

For AND\OR retrieval quality in our model, we execute the number of AND op-
erator times PCR in AND retrieval and simply mixing solutions in OR retrieval
by using DNF. The number of PCR is greater than when using CNF. However,
in DNF, we can execute PCR for each term in parallel.

The maximum size of our DNA database depends on the specificity of hy-
bridization. If using sequences with low specificity, we can not correctly extract
target molecules. To use many sequences, we must consider sequence length
and constraints. For example, we used 64 16-mer sequences generated by GC-
Templates in this paper. However, by using 23-mer orthogonal DNA sequences
[12], we can use 300 sequences. Even smaller than a conventional genome
database, our DNA relational database is useful as a secure database that can
store the critical part of human genome information that are closely linked to
some diseases.

6 Conclusion

We developed a DNA relational database model in which one DNA molecule
stored one piece of data. We confirmed successive operations of query processing

Development of DNA Relational Database 427

to the DNA relational database in vitro. Additionally, we proposed a conversion
scheme of SQL to DCM. From a derived series of experimental operations, we
discussed execution time and error.

However, to realize a DNA relational database, many problems need to be
solved. First, we would like to collect ID experimetns with DNA chips to process
at one time. The size of our database is still too small to use bioinformatics.
On this point, we must cooperate with large scale DNA memory. In addition, in
view of the accuracy of reactions, we would like to replace affinity separation to
PCR in collecting ID. As future work, we will solve these problems and construct
a DNA relational database system with real genome data.

References

1. E. B. Baum, “Building an Associative Memory Vastly Larger Than the Brain”,
Science, Vol. 268, pp. 583-585, 1995.

2. S. Kashiwamura, M. Yamamoto, A. Kameda, T. Shiba, and A. Ohuchi, “Hierar-
chical DNA memory based on nested PCR”, 8th International Workshop on DNA-
based Computers (DNA8), in Lecture Notes In Computer Science, pp. 112-123,
2003.

3. J. H. Reif, T. H. LaBean, M. Pirrung, V. S. Rana, B. Guo, C. Kingsford, G.
S. Wickham, “Experimental Construction of Very Large Scale DNA Databases
with Associative Search Capability”, 7th International Workshop on DNA-Based
Computers (DNA7), in Lecture Notes in Computer Science 2340, pp. 231-247, 2002.

4. M. Arita, M. Hagiya, and A. Suyama, “Joining and Rotating Data with Molecules”,
Proc. of IEEE 4th International Conference on Evolutional Computaion (ICEC’97),
pp. 243-248, in IEEE press, 1997.

5. I. Katsányi, “On implementating Relational Database on DNA Strands”, Acta
Cybernetica, vol. 16(2), pp. 259-270, 2003.

6. J. H. Reif, “Parallel biomolecular computation:Models and simulations”, Algorith-
mica, Vol. 25, pp.142-175, 1999.

7. Y. Kita, S. Kashiwamura, A. Kameda, M. Yamamoto, A. Ohuchi, “Data Manip-
ulation of DNA Relational Database”, Proceedings of The Ninth International
Symposium on Artificial Life and Robotics (AROB 11th ’06), pp. 629-632, 2006.

8. K. Hasimoto, A. Kameda, M. Yamamoto, and A. Ohuchi, “State Transition Model
Based on DNA Polymerization”, Proc. of the International Technical Conference
on Circuit/Systems, Computers and Communications (ITC-CSCC’03), pp. 1889-
1892, 2003.

9. M. Arita and S. Kobayashi, “DNA Sequence Design Using Templates”, New Gen-
eration Computing, vol. 20, pp. 263-277, 2002.

10. M. Zuker, “Mfold web server for nucleic acid folding and hybridization prediction”,
Nucleic Acids Research, vol. 31, pp. 3406-3415, 2003.

11. John H. Reif, Michael Hauser, Michael Pirrung, and Thomas LaBean, “Application
of Biomolecular Computing to Medical Science: A Biomedical Database System for
Storage and Retrieval of Genetic Information and Material, Chapter 3 of Complex
Systems Science in Biomedicine (Edited by Tom Deisboeck)”, Kluwer-Springer
Publishers, Chapter 3, pages 701-735, 2005

12. H. Yoshida and A. Suyama, “Solution to 3-SAT by breadth first search” Proc. 4th
International Meeting on DNA Based Computers, pp. 9-20, 1999.

Experimental Validation of the Statistical
Thermodynamic Model for Prediction of the Behavior of

Autonomous Molecular Computers Based on DNA
Hairpin Formation

Ken Komiya1,2,�, Satsuki Yaegashi3, Masami Hagiya2,3, Akira Suyama3,4,
and John A. Rose2,3,5,�,��

1 Dept. of Computational Intelligence and Systems Science, Tokyo Institute of Technology
komiya@dis.titech.ac.jp

2 Department of Computer Science, The University of Tokyo
hagiya@is.s.u-tokyo.ac.jp

3 Japan Science and Technology Agency-CREST
yaegashi@lyon.is.s.u-tokyo.ac.jp

4 Department of Life Sciences and Institute of Physics, The University of Tokyo
suyama@dna.c.u-tokyo.ac.jp

5 Institute of Information Communication Technology, Ritsumeikan Asia Pacific University
jarose@apu.ac.jp

Abstract. Due to the multi-state nature of autonomous computing systems, it is
important to develop a simulation model which accounts for process coupling,
and allows the precise prediction of the behavior of a composite system formed
by a series of competing reactions, in which each intermediate step is difficult to
probe. In this work, the statistical thermodynamic apparatus for predicting the ef-
ficiency of DNA hairpin-based computers is validated experimentally. The model
system employed is a simple competitive folding system, formed by two com-
peting hairpin structures (sub-optimal vs. optimal), with the intent of testing the
ability to predict the efficiency of target structure formation in the presence of
a non-target structure. System behavior was characterized via a set of fluores-
cence measurement experiments, to directly determine the fractional occupancy
of target structures versus temperature. Predicted and experimental behaviors are
compared for both the melting of each of the two isolated hairpin structures (con-
trol), and the efficiency of the competitive composite system. Results indicate
that the applied equilibrium model provides predictions which consistently agree
with experimental results, supporting design for the control and programming of
DNA-based systems.

1 Introduction

During formation of hairpin structures, an ensemble of single-stranded (ss) DNA
molecules independently execute an autonomous, intramolecular search of the set of ac-
cessible folds formed by hybridization between complementary pairs of subsequences.

� These authors contributed equally to the current work.
�� Corresponding author.

C. Mao and T. Yokomori (Eds.): DNA12, LNCS 4287, pp. 428–438, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Experimental Validation of the Statistical Thermodynamic Model 429

In the absence of significant strand association, the formation of a hairpin structure has
an efficiency which is independent of strand concentration [1], and can largely be con-
trolled via careful sequence design [2,3]. When properly controlled, this process may be
harnessed for information processing, providing a sophisticated form of parallel com-
putation, in which each single DNA molecule acts as an independent computing unit
[4], endowed with robustness in computing speed which is robust to changes in strand
concentration. Note that the transformations between distinct hairpin forms could be
regarded as the state transitions of a molecular machine. In an actual application [5], a
DNA-based state machine, the ‘Whiplash’ Machine was used to autonomously imple-
ment multiple state transitions via recursive polymerase extension, triggered by trans-
formations between repeatedly-extended hairpin structures.

In order to achieve practical DNA-based computing, bio-molecular reactions imple-
menting the underlying model of computation are expected to be appropriately efficient
and of high fidelity. Although the issue of sequence design to ensure high fidelity has
been well-studied for both folding and strand association processes [1,2], the develop-
ment of quantitative methods allowing a estimation of computational efficiency, along
with experimental validation remains rare.

In the present study, the statistical thermodynamic apparatus for the precise predic-
tion of the behavior of DNA hairpin-based computers is validated experimentally. The
theoretical model employed is an improved version, in terms of parameter selection, of
the coupled equilibrium model previously reported for the Whiplash PCR (WPCR) sys-
tem [6,7], and is applied to a competitive hairpin system, allowing a direct comparison
between predicted and experimental efficiency. The model system employed is a simple
competitive folding system, formed by two competing hairpin structures (sub-optimal
vs. optimal hairpin formation), each of which may potentially be formed by each strand.
Note that the specific intent of this design was to test the ability to predict the efficiency
of target structure formation in the presence of a non-target structure, which could be
applied to such unfavorable competitive effects during hairpin-based computation, due
to competition between a sub-optimal target and more stable non-targets [6]. An au-
tonomous molecular computation is, in general a composite system, formed by a series
of (often competing) reactions, in which each intermediate step is difficult to probe. In a
practical sense, it is important to establish the validity, applicability, and practical limi-
tations of the physical model to allow precise prediction of system behavior. Simulation
of the folding system enables us to estimate the efficiency of each computational step
performed via hairpin formation, to determine the optimal reaction conditions, and to
evaluate strategies for improving the efficiency and architecture [8].

Competitive hairpin formation is an intramolecular folding process, which occurs
with no changes with respect to DNA chemical structure or the total concentration
of strands. We therefore took advantage of the fluorescent resonance energy transfer
(FRET) or contact quenching technique [9], by which the change in the distance be-
tween the donor and acceptor fluorescent dyes can be monitored via the change in the
fluorescence intensity (FI), to determine the fractional occupancy versus temperature.
Results indicate that the applied equilibrium model provides predictions which consis-
tently agree with experimental results. Predicted and experimental behaviors are com-
pared for both: (1) the folding/melting of each of the two isolated hairpin structures, in

430 K. Komiya et al.

F

T28

T TGCTCGTGGTGCT

F ACGAGCACCACG

5'

3'

(A) CH
S

13

S
12

T29

TTTTTTTTTTTTTTTTTTTTTTTTTTTTT

TTTTTTTTTTTTTTTTTTTTTTTTTTTT

AGCA

ACGAGC

C

C
A S

13

T

F : FAM

: TAMRA

T28

T TGCTCGTGGTGCT

ACGAGCACCACG

5'

3'

S
13

S
12

T29

TTTTTTTTTTTTT

TTTTTTTTTTTTTTTTTTTTTTTTTTTT ACGAGCACCACGA

S
13

TTTTTTTTTTTTT

T

T
T

TGCTCGTGGTGCT

ACGAGCACCACG

5'

3'

(B) PL

TTTTTTTTTTTTTTTTTTTTTTTTTTTTT

TTTTTTTTTTTTTTTTTTTTTTTTTTTT

TTTT

TTTTTT

T

T
T

TGCTCGTGGTGCT

TTTTTTTTTTTT

5'

3'

TTTTTTTTTTTTT

TTTTTTTTTTTTTTTTTTTTTTTTTTTT ACGAGCACCACGA TTTTTTTTTTTTT

T

T
T

(C) BH

(D) TF

F TGCAGTGTAAGCAACTATTGTCT
3'5'

Fig. 1. Sequences used in the experiment (A) Strand CH may form two different hairpin struc-
tures (pl and bh). Vertical lines represent the formed base pairs. Upon formation of the upper
hairpin (pl), emission from FAM is quenched by contact quenching. (B)(C) Strands PL and BH
each form a unique hairpin structure. The impact on thermal stability due to the difference only
in the central loop-base sequence is negligible. Therefore, equivalent structures in CH and PL,
and in CH and BH are referred to collectively as pl and bh, respectively. (D) TF does not form
any specific structure.

terms of the melting temperatures (Tm’s) predicted for each in the absence of competi-
tion (control); and (2) the efficiency behavior of the competitive system formed by the
combination of the two, in terms of: (i) the temperature, T � at which the efficiency is
maximized (i.e., maximum occupancy of the target structure); (ii) the shape of the dis-
tribution vs. temperature, via the width (i.e., the full-width at half-maximum FWHM;
denoted here by ΔT �); and (3) the magnitude of the reduced efficiency at T �, due to
the occupancy of non-target hairpins.

2 Materials and Methods

2.1 Oligonucleotides

The sequences used in the experiment are: TGCAGTGTAAGCAACTATTGTCT
(S23), AGCACCACGAGCA (S13), GCACCACGAGCA (S12). S23 is a sequence

Experimental Validation of the Statistical Thermodynamic Model 431

selected from a 23-mer code word set [1,10] designed to meet the following three
requirements. First of all, codewords should exhibit similar Tm values, to ensure ‘nor-
mality’ in the stability of binding. Secondly, the sequence homology among the code-
words should be minimized to ensure ‘orthogonality’ (i.e., encoding to avoid unex-
pected interactions). Thirdly, each codeword should not form secondary structure, by
itself. S13 is a 13-mer subsequence generated by truncation of a 23-mer codeword from
the ‘orthonormal’ set, while S12 is identical to S13, except that it lacks the 5’-most base.
These sequences were carefully selected to avoid accidental generation of complemen-
tary subsequences upon codeword concatenation. The oligonucleotide, CH which was
employed for competitive hairpin formation, was encoded to have a sequence of the
form: S13 - T29 - S13 - T28 - S12 (5’ to 3’). Note that S13 indicates a sequence comple-
mentary to S13. T29 and T28 indicate poly-T sequences of length 29 and 28 bases, respec-
tively. The fluorescent dyes, FAM and TAMRA were attached to the strand’s 5’ and 3’
strand ends, respectively (Fig. 1(A)). The emission from FAM is quenched via FRET
in close proximity to TAMRA, since the absorption spectrum of TAMRA overlaps the
fluorescence emission spectrum of FAM, or by contact quenching, when placed in very
close contact (e.g., via blunt-ended hairpin formation [9]). The poly-T sequence, T28

was inserted to avoid FRET upon formation of the more stable hairpin structure, which
forms a duplex region of 13 base pairs (bp), causing the distance between FAM and
TAMRA flourophores to become sufficiently longer than the Förster radius of the pair
(Ro = 55 Å), defined as the distance at which the FRET efficiency is 50% [11]. On the
other hand, the FAM emission is efficiently quenched by contact quenching upon for-
mation of the less stable target hairpin structure, having a duplex region of 12 bp. Note
here that distribution among the less stable (target) and more stable (non-target) hairpin
structures corresponds to the transforming efficiency of the Whiplash machine between
the extendable hairpin structure, ‘planned (pl) hairpin’, and the unextendable hairpin
structure, ‘back-hybridized (bh) hairpin’ [5]. The oligonucleotides PL and BH for the
(uncoupled control) Tm analysis have sequences of a form similar to CH, but with S13 or
S12 replaced with a poly T sequence for PL or BH, respectively, to allow formation of
only one hairpin structure (Fig. 1(B)(C)). The oligonucleotide, TF used for the thermal
profiling of FAM has the sequence, S23, with FAM attached to the 5’ end (Fig. 1(D)).
All nucleotides were commercially synthesized and purified by Nippon EGT.

The design considerations involved in the specific selection of the 28 base spacer se-
quence, to effect a 40 base spacing between the FAM and TAMRA fluorophores upon
formation of the more stable hairpin structure, bh are critical, and deserve further com-
ment. In [11], the persistence length of poly-T ssDNA was measured via direct ob-
servation of the decrease in FRET efficiency accompanying separation of a fluorophore
donor-acceptor pair, Cy3/Cy5 (Förster radius, Ro = 59−61 Å) via poly-T dangling ends
of lengths from 0 (blunt-ended) to 70 bases, yielding persistence length values ranging
from a = 30 Å (at 2.0 M [NaCl]) to a = 15 Å (at 25 mM [NaCl]). Combining the lin-
early interpolated value at 0.165 M [NaCl] of a = 16 Å with the measured value for the
ssDNA inter-chain phosphate spacing also reported in [11] (l = 6.3 Å), and the well-
known limiting expression for the mean square distance of a freely rotating chain in the
infinite-chain limit derived in [12],

432 K. Komiya et al.

〈r2〉o = nl2 + 2nl(a− l), (1)

yielded an approximate FAM/TAMRA rms spacing of 〈r2〉1/2
o ≈ 80.5 Å for our design’s

effected insertion of a ssDNA spacer of length n = 40 bases, upon formation of the bh
hairpin. Note that due to the very short persistence length of ssDNA, this expression
was expected to provide an adequate approximation of 〈r2〉o for ssDNA chains longer
than about 30 bases. At this spacing, the FRET efficiency of the FAM/TAMRA pair,
estimated via the expression,

E = 1/[1 +(R/Ro)6], (2)

where the separation distance is approximated by R = 〈r2〉1/2
o , is roughly E = 0.092.

This predicted 91% decrease in FRET efficiency, accompanying formation of the more
stable hairpin structure, bh rather than the less stable (target) hairpin structure, pl was
taken as very adequate for the current purpose of distinguishing between formation of
the two species based on the accompanying FAM emission, and strongly motivated
our selection of the 28 nucleotide spacer. In addition, the prediction of excellent func-
tionality for our system was equally well supported by the roughly 80− 85% drop in
FRET efficiency reported for use of a 40 base poly-T spacer, between the Cy3/Cy5
fluorophore-quencher pair employed in [11] under similar salt conditions, which ex-
hibits a greater Förster radius of 59−61 Å.

2.2 Statistical Thermodynamic Modeling

The equilibrium behaviors of the competitive hairpin system shown in Fig. 1(A), and
the two simple hairpins in Fig. 1(B)(C), were each modeled using a standard statis-
tical thermodynamic approach. First, a statistical weight of folding for each hairpin
structure, which is independent of folding context, was separately estimated. Due to
the short lengths of the accessible duplex structures involved (12-13 bps), an all-or-
none model was taken to be adequate for each duplex, so that contributions to hair-
pin stability made by partially-melted intermediates were neglected. For each hairpin
stem, a sequence-dependent Gibbs free energy, ΔGo

stem of duplex stacking was first es-
timated via the standard Watson-Crick nearest-neighbor model, using the doublet pa-
rameters reported in [13], which estimates ΔGo

stem as a sum of the temperature and
ionic strength-dependent free energy contributions of each doublet, with contributions
from dangling ends included as an energetic perturbation. The accompanying statistical
weight of stacking for each hairpin stem was then estimated by the Gibbs factor, ωst =
exp(ΔGo

stem/RT), where R is the molar gas constant and T is the absolute temperature.
The statistical weight of loop formation was modeled via the explicit composition of
the statistical weights expected due to helix cooperativity/unwinding and loop closure.
The statistical penalty of unraveling at both duplex ends was modeled via the cooper-
ativity parameter, σ ≈ exp(ΔGo

init/RT), where ΔGo
init was estimated as the sum of two

sequence-dependent helix initiation parameters (i.e., one for each duplex end) listed
in [13]. The statistical weight of hairpin loop closure was estimated via a Jacobson-
Stockmeyer inverse-1.5 power law, ωloop = (1+n)−1.5, where n is the number of bases
in the loop, and the impacts of volume exclusion and chain stiffness on loop closure

Experimental Validation of the Statistical Thermodynamic Model 433

0 20 40 60 80 100

0.2

0.4

0.6

0.8

1.0

50 60 70 80 90

0.1

0.2

0.3

0.4

0.5

40
0.0 0.0

0.6

50 60 70 80 90

0.2

0.4

0.6

0.8

1.0

0.0

T (C)
40

F
ra

ct
io

n
al

 O
cc

u
p
an

cy

o

Temperature (C)o Temperature (C)

(A)

(B)

F
ra

ct
io

n
al

 O
cc

u
p
an

cy
,

ε

Θ (T)

Θ

Θ

o

ε (Τ)

ε (Τ)

C /CoC /Cobh ss

BH

PL

Fig. 2. Results of Simulation (A) Predicted thermal profile of the fraction of stacked base pairs.
The left and right curves represent the melting curves of hairpin structures formed by PL and
BH strands, respectively. (B) Predicted thermal profiles of the fractional population occupying
the pl hairpin structure (i.e., the efficiency, ε(T)), the bh hairpin structure (Cbh/Co), and the
unfolded form (Css/Co). Here, Co denotes the total strand concentration. The right figure shows a
magnification of the pl hairpin occupancy curve, ε(T) shown in the left figure. A dashed vertical
line and a horizontal arrow indicate the peak and FWHM of the curve, respectively.

was neglected, due to the use of large hairpin loops. The net equilibrium constant for
formation of each hairpin structure then takes the standard form, given by:

Keq = σωstωloop =
σexp(ΔGo

stem/RT)
(1 + n)1.5 . (3)

The estimated equilibrium constants for the two hairpin species Kpl and Kbh were then
employed to model the melting behavior for the two isolated, control hairpins shown in
Fig. 1(B)(C), as well as the efficiency behavior of the competitive strand in Fig. 1(A).

For each of the melting analyses of the simple control hairpins in Fig. 1(B)(C), the
fraction Θ of folded DNA strands was estimated by an expression of the form (all-or-
none model):

Θ =
Chp

Co
=
(

1 +
1

Khp

)−1

. (4)

Here, the total strand concentration for each simple equilibrium is given by Co = Css +
Chp, where Css and Chp denote the equilibrium concentrations of fully-opened and fully-
folded hairpin structures, respectively. Note that a law of mass action for simple hairpin

434 K. Komiya et al.

formation, Chp = CssKhp has been employed for simplification. Here, Khp corresponds
to Kpl and Kbh in the PL and BH melting analyses, respectively.

The efficiency of formation of the target hairpin structure for the competitive hairpin
system, CH was estimated via the coupled equilibrium expression,

ε =
Cpl

Co
=
[

1 +
(1 + Kbh)

Kpl

]−1

. (5)

Here, the total strand concentration for the coupled equilibrium is given by Co = Css +
Cpl +Cbh, where Css, Cpl , and Cbh denote the equilibrium concentrations of opened,
fully-formed pl hairpins, and fully-formed bh hairpin structures, respectively. Once
again, a mass action expression for each component equilibrium (i.e., Cpl = CssKpl and
Cbh = CssKbh) has been employed for simplification.

2.3 Tm Analysis

The melting temperature, Tm of a DNA duplex is defined as the temperature at which
50% of the base pairs are melted, and is specific for both duplex sequence and loop
structure. SYBR� GreenI (Molecular Probes) intercalates to DNA molecules, and ex-
hibits a large fluorescence enhancement upon formation of a DNA duplex. For each of
the strands forming single hairpin structures, PL and BH, we therefore measured the
variation in the fluorescence intensity (FI) of SYBR� GreenI with change in temper-
ature to obtain the thermal profile that represents the melting of the hairpin structure,
using a real-time PCR machine, OPTICON2 (Bio-Rad). Measurement was performed
in a 20 μl solution of 1X SSC buffer (150 mM NaCl, 15 mM Sodium citrate, pH 7.0
(23◦C), Invitrogen), containing 5 μM PL or BH and 1X SYBR� GreenI. The solution
was incubated at 94◦C for 1 min and gradually cooled to 10◦C at a rate of -0.1◦C /
sec, to ensure formation of the expected hairpin structure. The FI variation was then
monitored by increasing the temperature slowly to 99◦C, at a rate of 0.2◦C / sec.

2.4 Competitive Hairpin Formation

The intensity of the fluorescence emitted from fluorescent dyes varies with temperature.
We therefore measured the FI of the oligonucleotide, TF to obtain the thermal profile
of FAM, to be used for revision of the FI profile monitored during competitive hairpin
formation. Competitive hairpin formation of CH was then investigated by monitoring
the FI of the emission from FAM versus temperature. At higher temperatures, as the
hairpin structures of all DNA molecules were expected to be melted, the FAM emis-
sion was expected to be detected without reduction by FRET or contact quenching. At
lower temperatures, as most of the DNA molecules are expected to form the bh hairpin,
the FAM emission was also expected to be detected with little reduction. However, at
moderate temperatures, if a significant fraction of the DNA molecules formed the pl
hairpin which causes contact quenching as predicted via preliminary simulations, the
accompanying reduction of the FAM emission by contact quenching could be detected.
Measurement was performed in a 20 μl solution of 1X SSC buffer, containing 1 μM
CH. The solution was incubated at 94◦C for 1 min, and gradually cooled to 10◦C at

Experimental Validation of the Statistical Thermodynamic Model 435

a rate of -0.1◦C / sec. FI was then monitored by increasing the temperature slowly to
99◦C, at a rate of 0.2◦C / sec.

3 Results

3.1 Simulations

Fig. 2(A) illustrates the melting behavior of each of the simple hairpins formed by
the PL and BH strands, respectively encoded to form hairpins pl-only and bh-only, as
simulated by the model in Sec. 2.2. Simulated ionic strength was at 0.165 M [Na+].
The predicted melting behavior for each strand is illustrated in terms of the fraction
of folded strands, denoted by Θ. Note that under an all-or-none model, this quantity is
equal to the normalized fraction of stacked base pairs. For each curve, the simulated
sigmoidal structure is characteristic of the cooperative melting of a single DNA duplex
region. The simulated Tm values of the pl and bh hairpins were 64.8◦C and 67.3◦C,
respectively.

Fig. 2(B) illustrates the simulated efficiency behavior for the competitive strand CH,
in terms of the predicted fractional occupancy, ε of the pl hairpin structure, as a function
of reaction temperature. For clarity, the predicted fractions of bh hairpin, and unfolded
ssDNA are also shown. All predictions were estimated via the equilibrium thermody-
namic model described in Sec. 2.2, assuming an ionic strength of 0.165 M [Na+]. As
illustrated, model predictions indicate a non-symmetric, singly-peaked efficiency be-
havior, reaching a maximum value of 0.2 at optimal temperature, T � = 62.3◦C, corre-
sponds to a 20% occupancy of the pl hairpin. The accompanying curve width, estimated
via the full width at half-maximum (FWHM), is predicted to be ΔT� = 27.3◦C.

3.2 Experimental Tm Analysis

The Tm of each of hairpin structures pl and bh was determined by the conventional
method, as the temperature at which the negative first derivative (−dFI/dT) on the
plotted melting curve reaches its maximum value. The Tm of the pl and bh hairpins were
66.8◦C and 70.8◦C, respectively. For comparison to simulation, the thermal profiles
of the hairpin structures obtained by monitoring the FI of SYBR� GreenI were each
transformed into a plot of the fraction of stacked base pairs (Fig. 3(A)), according to the
normalizing method in [14]. A sudden increase or decrease to beneath zero (not shown)
observed near 90◦C was due to the normalizing treatment.

3.3 Competitive Hairpin Formation

The thermal profile of FAM emission is shown in Fig. 3(B). For normalization, a series
of FI values of TF were divided by the value at 80◦C (i.e., values were normalized by
setting the FI value at 80◦C to unity). Note that here, normalization was performed ex-
clusively for the purpose of clarifying relative FI values. Thus, an arbitrary temperature
can be set as the standard. As shown, the FI of FAM increased monotonically with in-
creasing temperature, up to 70◦C, and remained nearly constant at values above 70◦C.
Accordingly, the thermal profile of CH, obtained by monitoring the FI of FAM, and

436 K. Komiya et al.

(A)

Temperature (C)

(C)

o

Temperature (C)o

(D)

F
lu

o
re

sc
en

ce
 I

n
te

n
si

ty

R
el

at
iv

e
F

I
F

ra
ct

io
n

al
 O

cc
u

p
an

cy
,

ε
(T

)

Θ (Τ)

(B)

40 50 60 70 80 90
0.0

0.6

0.1

0.5

0.4

0.2

0.3

Θ

Θ

BH

PL

40 50 60 70 80 90

1.0

0.8

0.6

0.4

0.2

0.0

Temperature (C)
o

40 50 60 70 80 90

1.0

0.8

0.6

0.4

0.2

0.0

1.0

0.8

0.6

0.4

0.2

0.0

Temperature (C)o

40 50 60 70 80 90

Fig. 3. Experimental Results (A) Experimentally determined thermal profiles of the fraction of
stacked base-pairs, Θ. Left and right curves represent the melting curves of the hairpin structures
formed by the PL and BH strands, respectively. (B) Thermal profile of FAM emission. (C) Ex-
perimentally determined thermal profile of CH. (D) Revised thermal profile of CH representing
the fractional population of the pl hairpin structure, ε(T) vs. T . The dashed vertical line and a
horizontal arrow indicate the peak and FWHM of the curve, respectively.

shown in Fig. 3(C), was revised. For this purpose, a series of FI values were divided by
the relative FI values of TF. Finally, the revised values of CH were again normalized.
The series of revised FI values were divided by the value at 80◦C, since the value at
80◦C was the maximum value within the temperature range from 50 to 90◦C. Note that
for temperatures beneath roughly 40◦C, the revised FI values were considerably dis-
persed (data not shown). Each resulting value represents an estimate of the fractional
occupancy of DNA molecules in structural forms that hardly cause FRET or contact
quenching, which is equal to the sum of the populations occupying the bh hairpin and
the single-stranded form. By subtracting each value from 1, the thermal profile of the
fractional occupancy of DNA molecules in the pl hairpin was obtained (Fig. 3(D)). The
resulting plot exhibits a hill-shaped curve, characterized by a peak located at 57.6◦C,
having a maximum value of 0.45, and a peak width, estimated by the FWHM, of 21.4◦C.

4 Discussion

An explicit experimental validation of the effectiveness of the underlying thermody-
namic theory for modeling each of the specific component equilibria is an essential

Experimental Validation of the Statistical Thermodynamic Model 437

benchmark towards an advantageous treatment of the more complex, coupled hairpin
equilibrium. In addition, the hairpin structure (bh) of one component equilibrium was
designed to form a loop substantially larger than those studied in [13], which motivated
independent characterization. The experimentally-determined Tm values for the simple
hairpin structures, pl and bh were slightly higher (by 2.0 to 3.5◦C) than those predicted
via simulation. This result is consistent with the presence of modest stabilization by
partially-melted intermediates, which is neglected by an all-or-none model. When each
Tm was determined as the temperature at which Θ, the normalized fraction of stacks is
0.5, the experimentally determined values increased slightly (to 67.2◦C and 73.1◦C for
pl and bh, respectively). For comparison, simulations using the loop parameterization
method in [13] were also undertaken, yielding Tm values comparable to the experi-
mental values determined based on Θ (69.5◦C and 72.4◦C for pl and bh, respectively).
Given the performance generally expected to accompany use of the employed nearest-
neighbor parameter set, with an all-or-none model of duplex formation (e.g., agreement
to within 3.9◦C, for the hairpin Tm prediction method in [13]), it was concluded that
differences between experimental and simulated Tm values were well within the range
of uncertainty of the current models.

Overall predictions of the efficiency behavior vs. temperature for the competitive
hairpin system, as provided by fluorescence measurements, exhibited substantial quan-
titative similarity to model predictions. The most notable point of agreement was in
the predicted and experimental peak temperatures, which differed by only 4.7◦C (T�

= 62.3◦C (pred) vs. 57.6◦C (exp)), achieving roughly the same level of accuracy ex-
pected when predicting the melting of single hairpin species. The predicted peak width
(FWHM) also demonstrated reasonable agreement with the experimental value, differ-
ing by less than 6◦C (ΔT� = 27.3◦C (pred) vs. 21.4◦C(exp)). On the other hand, the
absolute value of the peak efficiency, ε(T �) provided only good order-of-magnitude
agreement, with the peak magnitude of the predicted efficiency attaining only half of
that determined in the FRET experiment. This difference might be attributed to multi-
plication of uncertainty, intrinsic to each measurement in revision.

As a concluding remark, the most significant point of comparison lies in the clear
experimental observation of the characteristic hill-shaped behavior predicted both here
and for WPCR [6] in the presence of competition with stable alternative hairpins. The
monotonically decreasing efficiency predicted to occur beneath T � is contradictory to
intuitive expectations based on considerations of the uncoupled, component equilibria,
as a naive consideration of the pl and bh hairpin Tm values, estimated separately instead
suggests a tendency towards an equal occupancy of the two species at temperatures
well beneath the Tm values of both component equilibria (since both hairpins will be
regarded as separately ‘stable’, in a qualitative sense). The experimental validation of
this fundamental prediction regarding competitive hairpin systems is a striking caveat
against the unqualified use of uncoupled Tm values to predict the overall behavior of
‘coupled DNA systems’, as is usual in the case in biomolecular reactions, and highlights
the need for further work on the efficient and accurate modeling of DNA-based systems.
Notably, semi-quantitative agreement between the predicted and experimental gross
thermal behaviors, which is obtained here, is generally taken to be indicative of the
feasibility of controlling molecular system behavior, which is required for molecular

438 K. Komiya et al.

programming beyond molecular computation (i.e., the programming of biomolecular
reactions, beyond simple usage for elementary computation).

Acknowledgements

Financial support generously provided by Grants-in-Aid for Scientific Research (Kiban
B, 15300100 and 18300100), from the Japan Society for the Promotion of Science
(JSPS) and by JST-CREST.

References

1. Rose, J.A., Deaton, R.J., Suyama, A.: Statistical thermodynamic analysis and design of
oligonucleotide based computers. Natural Computing 3 (2004)

2. Rose, J.A., Suyama, A.: Physical modeling of biomolecular computers: Models, limitations,
and experimental validation. Natural Computing 4 (2004) 411–26

3. Kubota, M., Ohtake, K., Komiya, K., Sakamoto, K., Hagiya, M.: Branching DNA machines
based on transitions of hairpin structures. In: Proc. Congr. Evol. Comp. (CEC’03). (2003)
2542–2548

4. Sakamoto, K., Kiga, D., Komiya, K., Gouzu, H., Yokoyama, S., Ikeda, S., Sugiyama, H.,
Hagiya, M.: State transitions by molecules. Biosystems 52 (1999) 81–91

5. Komiya, K., Sakamoto, K., Kameda, A., Yamamoto, M., Ohuchi, A., Kiga, D., Yokoyama,
S., Hagiya, M.: DNA polymerase programmed with a hairpin DNA incorporates a multiple-
instruction architecture into molecular computing. Biosystems 83 (2006) 18–25

6. Rose, J.A., Deaton, R.J., Hagiya, M., Suyama, A.: Equilibrium analysis of the efficiency of
an autonomous molecular computer. Phys. Rev. E 65 (2002) 1–13 Article 021910.

7. Rose, J.A., Takano, M., Hagiya, M., Suyama, A.: A DNA computing-based genetic program
for in vitro protein evolution via constrained pseudomodule shuffling. Journal of Genetic
Programming and Evolvable Machines 4 (2003)

8. Rose, J.A., Komiya, K., Yaegashi, S., Hagiya, M.: Displacement Whiplash PCR: optimized
architecture and experimental validation. In: DNA Computing. 12th Int’l Workshop on DNA-
Based Computers. (2006) in press

9. Marras, S., Kramer, F., Tyagi, S.: Efficiencies of FRET and and contact-mediated quenching
in oligonucleotide probes. Nucl. Acids. Res. 30 (2002) e122

10. Yoshida, H., Suyama, A.: Solution to 3-sat by breadth first search. In: DNA Based Computers
V. (2000) 9–22

11. Murphy, M.C., Rasnik, I., Cheng, W., Lohman, T.M., Ha, T.: Probing single-stranded DNA
conformational flexibility using fluorescence spectroscopy. Biophysical Journal 86 (2004)
2530–2537

12. Cantor, C., Schimmel, P.: Biophysical Chemistry, Part III: The Behavior of Biological
Macromolecules. W. H. Freeman, New York (1983)

13. SantaLucia, Jr., J., Hicks, D.: The thermodynamics of DNA structural motifs. Annu. Rev.
Biophy. Biomolec. Struct. 33 (2004) 415–40

14. Wartell, R., Benight, A.: Thermal denaturation of DNA molecules: A comparison of theory
with experiment. Phys. Rep. 126 (1985) 67–107

Author Index

Amarasinghe, Saman 308
Angelov, Stanislav 95

Baryshnikov, Yuliy 215
Beppu, Taro 374
Bobba, Kiran C. 337

Coffman, Ed 215
Csuhaj-Varjú, Erzsébet 58

Dimitrova, Nevenka 404
Domaratzki, Michael 182

Gal, Susannah 404
Garzon, Max H. 143, 337

Hagiya, Masami 381, 393, 428
Hill, Kathleen A. 111

Ibershoff, Joseph 286
Ibrahim, Zuwairie 350
Iimura, Naoki 172
Ilie, Lucian 71, 111
Ionescu, Mihai 1
Ishdorj, Tseren-Onolt 17

Jaromczyk, Jerzy W. 286
Jeng, Don Jyh-Fu 324
Johnson, Clifford R. 360
Jonoska, Nataša 83

Kameda, Atsushi 172, 381, 418
Kari, Lila 127
Kashiwamura, Satoshi 418
Kawashimo, Suguru 157
Keef, Thomas 239
Khalid, Marzuki 350
Khanna, Sanjeev 95
Kim, Joo-Kyung 298
Kita, Yutaka 418
Komiya, Ken 393, 428

LaBean, Thomas H. 195

Mahalingam, Kalpana 127
Majumder, Urmi 195
Manea, Florin 47
Mart́ın-Vide, Carlos 47
McColm, Gregory L. 83
Mi, Yongli 266
Mitrana, Victor 47

Neel, Andrew J. 143, 337

Ogura, Yusuke 374
Ohuchi, Azuma 172, 381, 418
Ono, Hirotaka 157, 274
Ono, Osamu 350

Păun, Andrei 1
Păun, Gheorghe 1
Pérez-Jiménez, Mario J. 1
Phan, Vinhthuy 143, 337
Popescu, Cristian 111

Reif, John H. 195, 223, 250
Rodŕıguez-Patón, Alfonso 33
Rose, John A. 350, 393, 428
Roy, Sujoy 143

Sadakane, Kunihiko 157, 274
Sahu, Sudheer 195, 223, 250
Shiozaki, Masashi 274
Shogenji, Rui 374
Solis-Oba, Roberto 71
Sośık, Petr 33
Staninska, Ana 83
Suyama, Akira 428

Tanaka, Fumiaki 172
Tanida, Jun 374
Tate, Naoya 374
Thies, William 308
Thorsen, Todd 308
Tinta, Liviu 111
Tsuboi, Yusei 350

Urbanski, John Paul 308

440 Author Index

van Noort, Danny 286
Verlan, Sergey 58
Visontai, Mirkó 95

Wang, Bei 250
Wang, Zhengyu 266
Watada, Junzo 324
Wei, Bryan 266

Wu, Berlin 324
Wu, Jui-Yu 324

Yaegashi, Satsuki 381, 393, 428
Yamamoto, Masahito 172, 381, 418
Yamashita, Masafumi 157, 274
Yimwadsana, Boonsit 215

Zhang, Byoung-Tak 298

	Frontmatter
	Molecular and Membrane Computing Models
	Computing with Spiking Neural P Systems: Traces and Small Universal Systems
	Minimal Parallelism for Polarizationless P Systems
	P Systems with Active Membranes Characterize PSPACE
	All NP-Problems Can Be Solved in Polynomial Time by Accepting Networks of Splicing Processors of Constant Size
	Length-Separating Test Tube Systems
	Gene Assembly Algorithms for Ciliates

	Complexity Analysis
	Spectrum of a Pot for DNA Complexes
	On the Complexity of Graph Self-assembly in Accretive Systems
	Viral Genome Compression

	Sequence and Tile Designs and Their Properties
	DNA Codes and Their Properties
	In Search of Optimal Codes for DNA Computing
	DNA Sequence Design by Dynamic Neighborhood Searches
	Sequence Design for Stable DNA Tiles
	Hairpin Structures Defined by DNA Trajectories

	DNA Tile Self-assembly Models
	Design and Simulation of Self-repairing DNA Lattices
	On Times to Compute Shapes in 2D Tile Self-assembly
	Capabilities and Limits of Compact Error Resilience Methods for Algorithmic Self-assembly in Two and Three Dimensions
	A Mathematical Approach to Cross-Linked Structures in Viral Capsids: Predicting the Architecture of Novel Containers for Drug Delivery

	Simulator and Software for DNA Computing
	A Framework for Modeling DNA Based Molecular Systems
	Uniquimer: A {\itshape de Novo} DNA Sequence Generation Computer Software for DNA Self-assembly
	A Probabilistic Model of the DNA Conformational Change
	Simulations of Microreactors: The Order of Things

	DNA Computing Algorithms and New Applications
	DNA Hypernetworks for Information Storage and Retrieval
	Abstraction Layers for Scalable Microfluidic Biocomputers
	Fuzzy Forecasting with DNA Computing
	``Reasoning'' and ``Talking'' DNA: Can DNA Understand English?

	Novel Experimental Approaches
	A New Readout Approach in DNA Computing Based on Real-Time PCR with TaqMan Probes
	Automating the DNA Computer: Solving n-Variable 3-SAT Problems
	Local Area Manipulation of DNA Molecules for Photonic DNA Memory

	Experimental Solutions
	Unravel Four Hairpins!
	Displacement Whiplash PCR: Optimized Architecture and Experimental Validation
	MethyLogic: Implementation of Boolean Logic Using DNA Methylation
	Development of DNA Relational Database and Data Manipulation Experiments
	Experimental Validation of the Statistical Thermodynamic Model for Prediction of the Behavior of Autonomous Molecular Computers Based on DNA Hairpin Formation

	Backmatter

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

